
VNU-HUS MAT1206E/3508: Introduction to
AI

First-order Predicate Logic
In-class Discussion

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học
Đại học KHTN, ĐHQG Hà Nội

hoanganhduc@hus.edu.vn

mailto:hoanganhduc@hus.edu.vn

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Contents

Introduction

Basics of First-order Predicate Logic
Syntax and Semantics
Variable Replacement and Substitution
Quantifiers and Normal Forms
Proof Calculi for Predicate Logic

Automated Theorem Provers

42

First-order Predicate
Logic

Hoàng Anh Đức

2 Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Introduction

Logic is one of the oldest areas in AI and was the
dominant approach from the 1950s through the 1980s
(recall symbolic AI).
Today, machine learning—especially statistical and deep
learning methods—drives most practical applications, and
logic-based methods are less prominent in mainstream AI.
Still, logic is crucial for understanding AI’s foundations and
for applications that require explicit, interpretable, and
verifiable reasoning.

Task planning for service robots.
Verification and decision-making in autonomous driving.
Combining symbolic knowledge in predicate logic with
sub-symbolic sensor data (e.g., via feature extraction from
deep learning) is a promising research direction.

Building on our earlier discussion of propositional logic, we
now introduce predicate logic as a more expressive
framework for knowledge representation and reasoning.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

3 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

(L,S,R)

Language Semantics Inference Rules

Terms
Logical Operators Op

¬,∧,∨,⇒,⇔, (,)

Predicate Symbols P
p(t1, t2, . . . , tn)

Quantifiers

∀, ∃

Variables V

Simple Terms

Constants K

Function Symbols F
f(t1, t2, . . . , tn)

Complex Terms

Predicate Logic Formulas (Syntax) Predicate Logic Formulas (Semantics)

Interpretation I

Variables V
Constants K

(mapping to real-world)

Objects
Names of

Symbols F
Function

Predicate
Symbols P

Functions

Relations

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

3 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

gr(plus(c1, c3), c2)

(indicating real-world relations)
Predicate Symbol Constants

(indicating real-world constants)

Function Symbol
(indicating a real-world function +)

∀x1∀x3∃x2 gr(plus(x1, x3), x2)⇔gr(plus(x3, x1), x2)

Variables
(indicating real-world variables)

Quantifiers

Logical Operators

Examples of Predicate Logic Formulas (Syntax)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

3 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

gr(plus(c1, c3), c2)

(indicating real-world relations)
Predicate Symbol Constants

(indicating real-world constants)

Examples of Predicate Logic Formulas (Semantics)

Interpretation I1

Relation > in math

Function Symbol
(indicating a real-world function +)

Function + in math

c1 7→ 1, c3 7→ 3, c2 7→ 2

True under I1

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

3 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

gr(plus(c1, c3), c2)

(indicating real-world relations)
Predicate Symbol Constants

(indicating real-world constants)

Examples of Predicate Logic Formulas (Semantics)

Interpretation I2

Relation > in math

Function Symbol
(indicating a real-world function +)

Function + in math

c1 7→ 2, c3 7→ 1, c2 7→ 3

False under I2

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

4 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

Exercise 1
Review the following concepts:
(a) Variables, Constants, Function Symbols, Predicate

Symbols
(b) (Simple/Complex) Terms
(c) Predicate-Logic Formulas, Literals, Free Variables
(d) CNF, Horn Formulas
(e) Interpretation (Assignment), Truth Value of a Formula
(f) Semantics Equivalence, Satisfiable/Unsatisfiable/Valid

Formulas, Models, Semantics Entailment

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

5 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

Exercise 2
(a) What are the input and output of a function symbol? (Hint:

Think about what a function symbol like plus(c1, c3) would
take as input and what it would return as output)

(b) What are the input and output of a predicate symbol?
(Hint: Think about what a predicate symbol like
greater(c1, c3) would take as input and what it would return
as output)

(c) Are there any differences between a function symbol and
a real function in mathematics? Simialrly, are there any
differences between a predicate symbol and a real
relation? (Hint: Think about what a function symbol or a
predicate symbol represents in real life)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

6 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

Exercise 3
Using the concepts mentioned in the previous exercises,
explain the family tree example in [Ertel 2025], Example 3.2, p.
45. You may start by answering the following questions:
(a) Which concepts from the above list are used in the

example?
(b) What are the “meanings” of the predicate symbols in the

example? Give examples of interpretations (assignments)
which make the predicates true/false.

(c) What is the knowledge base KB formed in the example?
Can you give an example of a query Q which we hope to
derive from KB (other than the given query in the
example)?

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

7 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

To be able to compare terms, equality is a very important
relation in predicate logic
The equality of terms in mathematics is an equivalence
relation, meaning it is reflexive, symmetric and transitive
We define a predicate “=” using infix notation as is
customary in mathematics (that is, instead of writing
“eq(x, y)”, we write “x = y”)

Equality Axioms

∀x x = x (reflexive)
∀x∀y x = y ⇒ y = x (symmetry)

∀x∀y ∀z x = y ∧ y = z ⇒ x = z (transitivity)

To guarantee the uniqueness of functions, we additionally
require that for any function symbol f and any predicate
symbol p

∀x ∀y x = y ⇒ f(x) = f(y) (substitution axiom)
∀x ∀y x = y ⇒ p(x) ⇔ p(y) (substitution axiom)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic

8 Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Syntax and Semantics

Exercise 4
Can you define the predicate “<” in a similar way as the
equality “=”?

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

9 Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Variable Replacement and Substitution

Replacing a variable by a term

We write φ[x/t] for the formula that results when we replace
every free occurrence of the variable x in φ with the term t.
Thereby we do not allow any variables in the term t that are
quantified in φ. In those cases variables must be renamed to
ensure this

Example 1

∀x x = y
PL1 Formula

φ

Replacing the free variable y
by the term t(x) = x+ 1

These two xs must be different

PL1 Formula
φ[y/t]

∀x x = z + 1

⇒ Change variable name in t

∀x x = x + 1

Free variable
(thus not depending on x)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

10 Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Variable Replacement and Substitution

Substitution
A substitution σ is a map from variables to terms.

ϵ: the empty substitution
σ : x1/t1, x2/t2, . . . , xn/tn: a substitution that maps each
variable xi to the corresponding term ti

Also write σ = {x1/t1, x2/t2, . . . , xn/tn}

Apply σ to a term t, denoted by σ(t) or t[x1/t1, . . . , xn/tn]
to indicate σ(t), means simultaneously replacing every
occurrence of each xi in t by ti
As before, we do not allow any variables in the term ti that
are quantified in t. In those cases variables must be
renamed to ensure this

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

11 Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Quantifiers and Normal Forms

Negating Quantified Formulas

¬∀xφ ≡ ∃x¬φ
¬∃xφ ≡ ∀x¬φ

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

12 Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Quantifiers and Normal Forms

Prenex Normal Form (PNF)

A formula is in prenex normal form if it is of the form

Q1x1Q2x2 . . . Qnxnψ

where each Qi is a quantifier (∀ or ∃), xi are variables, and ψ
is a quantifier-free formula

Theorem 1
For every formula φ there is an equivalent formula φ′ in prenex
normal form

Example 2
Let φ = ∀x (P (x) → ∃y Q(x, y)).
φ is not in prenex normal form [Why?]
An equivalent prenex form: φ′ = ∀x ∃y (P (x) → Q(x, y)).
[Verify!]

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

13 Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Quantifiers and Normal Forms

Exercise 5
Review the following algorithms:
(a) Transforming a formula into an equivalent formula in

Prenex Normal Form (PNF)
(b) Skolemization:

Eliminate existential quantifiers by introducing Skolem
functions
If the original formula is true, then the resulting formula is
also true. The converse is not always true

To have a better understanding, try to apply these algorithms to
some predicate-logic formulas.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

14 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Our main goal is to introduce the resolution calculus for
predicate logic
We shall first begin with a simpler calculus formed by two
inference rules: Modus Ponens and ∀-Elimination

Modus Ponens (MP)

A, A ⇒ B

B

∀-Elimimation (∀-E)

∀x A

A[x/t]

Note: t is a ground term that
contains no variables

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

15 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

female(karen) female(anne) female(mary)

child(oscar, karen, frank) child(mary, karen, frank)

child(eve, anne, oscar) child(henry, anne, oscar)

child(isabelle, anne, oscar) child(clyde, mary, oscarb)

female(isabelle)female(eve)

∀x ∀y descendant(x, y) ⇔ (∃z child(x, y, z) ∨ (∃u∃v child(x, u, v) ∧ descendant(u, y))))

∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y)

KB

child(eve, oscar, anne)Q

?

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

15 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

female(karen) female(anne) female(mary)

child(oscar, karen, frank) child(mary, karen, frank)

child(eve, anne, oscar) child(henry, anne, oscar)

child(isabelle, anne, oscar) child(clyde, mary, oscarb)

female(isabelle)female(eve)

∀x ∀y descendant(x, y) ⇔ (∃z child(x, y, z) ∨ (∃u∃v child(x, u, v) ∧ descendant(u, y))))

∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y)

KB

child(eve, oscar, anne)Q

?

Step Proved by
1. child(eve, anne, oscar) KB
2. ∀x∀y ∀z child(x, y, z) ⇒ child(x, z, y) KB
3. child(eve, anne, oscar) ⇒ child(eve, oscar, anne) ∀-E for 2: x/eve, y/anne, z/oscar
4. child(eve, oscar, anne) MP for 1 and 3

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

16 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Exercise 6
In the textbook, the author claimed in page 52 that “The
calculus consisting of the two given inference rules is not
complete.” where here “the two given inference rules” are
Modus Ponens and ∀-Elimination.
To prove that the claim is indeed correct, give an example of a
query Q that cannot be derived from the above example KB
using only these two inference rules. (That is, KB |= Q but
KB ̸⊢ Q using only Modus Ponens and ∀-Elimination)
(Hint: Think about what appears in the knowledge base but not
in the inference rules)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

17 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Theorem 2 (Gödel’s completeness theorem [Godel
1931])
First-order predicate logic is complete. That is, there is a
calculus with which every proposition that is a consequence of
a knowledge base KB can be proved. If KB |= φ, then it holds
that KB ⊢ φ.

Note
Indeed, as we will see later, there is a calculus (e.g., resolution
calculus) with which only true propositions can be proved.
That is, if KB ⊢ φ holds, then KB |= φ.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

18 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Triggered by the resolution calculus (introduced in 1965),
around 1970s, many scientists believed that one could
formulate almost every task of knowledge representation and
reasoning in PL1 and then solve it with an automated prover.

Figure: The Universal Logic Machine (from [Ertel 2025], Figure 3.3, p.
53)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

19 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Recall: Resolution Rule in Propositional Logic

A ∨B,¬B ∨ C

A ∨ C
or

A ∨B,B ⇒ C

A ∨ C

Recall: Resolution Proof in Propositional Logic

Input: Knowledge base KB
Goal: Decide whether KB |= Q

Method: Add ¬Q to the knowledge base. If the empty
clause can be derived, conclude KB |= Q. If there is no
more resolvable pair of clauses (and the empty clause is
not derived), conclude KB ̸|= Q

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

20 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Generalized Resolution Rule for PL1
The resolution rule for two clauses in CNF reads

A1 ∨ . . . Am ∨B,¬B′ ∨ C1 ∨ · · · ∨ Cn σ(B) = σ(B′)

σ(A1) ∨ · · · ∨ σ(Am) ∨ σ(C1) ∨ · · · ∨ σ(Cn)
,

where σ is the MGU of B and B′

What does this definition mean?
Premise 1: A1 ∨ . . . Am ∨B

Premise 2: ¬B′ ∨ C1 ∨ · · · ∨ Cn

σ(B) = σ(B′) means that B and B′ are matched by
applying the MGU σ [What is σ? How to find it?]
Apply σ for every literal in each premise
Now, Premise 1 becomes σ(A1) ∨ . . . σ(Am) ∨ σ(B) and
Premise 2 becomes ¬σ(B′) ∨ σ(C1) ∨ · · · ∨ σ(Cn)
The usual resolution rule can now be applied

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

21 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Exercise 7
Explain how to obtain the resolution rule in propositional logic
from the generalized resolution rule for PL1

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

22 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

For Completeness, we need an additional inference rule
Factorization Rule for PL1

Factorization of a clause is accomplished by

A1 ∨A2 ∨ · · · ∨An, σ(A1) = σ(A2)

σ(A2) ∨ · · · ∨ σ(An)
,

where σ is the MGU of A1 and A2

What does this definition mean?
Premise: A1 ∨A2 ∨ · · · ∨An

σ(A1) = σ(A2) means that A1 and A2 are matched after
their MGU σ is applied
Apply σ for every literal in the premise
Now, the Premise becomes σ(A1) ∨ σ(A2) ∨ . . . σ(An)
As p ∨ p ≡ p, the Conclusion σ(A2) ∨ . . . σ(An) is derived
Intuitively, after σ is applied, as σ(A1) = σ(A2), one of
these literals becomes “redundant” and can be “removed”

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

23 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

female(karen) female(anne) female(mary)

child(oscar, karen, frank) child(mary, karen, frank)

child(eve, anne, oscar) child(henry, anne, oscar)

child(isabelle, anne, oscar) child(clyde, mary, oscarb)

female(isabelle)female(eve)

∀x ∀y descendant(x, y) ⇔ (∃z child(x, y, z) ∨ (∃u∃v child(x, u, v) ∧ descendant(u, y))))

∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y)

KB

child(eve, oscar, anne)Q

?

child(eve, anne, oscar), child(x, y, z) ⇒ child(x, z, y) σ(B) = σ(B′)

¬child(x, y, z) ∨ child(x, z, y)≡

B

¬B′

σ : x/eve, y/anne, z/oscar

Gen. Res.
child(eve, oscar, anne)

σ(child(x, z, y))

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

24 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

With the above generalized rules, a resolution proof for the
family example would be:

Step Proved by
1. child(eve,anne,oscar) KB
2. ¬child(x, y, z) ∨ child(x, z, y) KB
3. ¬child(eve,oscar,anne) ¬Q
4. child(eve,oscar,anne) GenRes(1, 2)
5. () GenRes(3, 4)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

25 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Exercise 8
Write a resolution proof for the query Q = ∃y knows(henry, y)
with respect to the knowledge base
KB = ∀x knows(x,mother(x)), where mother(x) is a function
that returns the mother of x, knows(x, y) means “x knows y”,
and henry is a constant representing a person named Henry.

Exercise 9
Use the resolution calculus to prove that the formula
R = ∀x (¬shaves(baber, x) ∨ ¬shaves(x, x)) ∧ (shaves(x, x) ∨
shaves(baber, x)) (a.k.a the Russell’s paradox) is unsatisfiable,
where shaves(x, y) means “x shaves y” and baber is a
constant representing a barber. (Hint: Remeber that you can
also use the Factorization rule along with the Generalized
Resolution rule.)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

26 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Note
The search for a proof can be very frustrating in practice

Even when KB ∧ ¬Q has only a few clauses, every
resolution step generates a new clause which increases
the number of possible resolution steps in the next
iteration

Exercise 10
Do your own research on some strategies that can be used to
carry out a resolution proof more efficiently.

Unit Resolution
Set of Support (SOS) Strategy
Input Resolution

Pure Literal Rule
Subsumption

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

27 Proof Calculi for Predicate
Logic

Automated Theorem
Provers

References

Basics of First-order Predicate Logic
Proof Calculi for Predicate Logic

Exercise 11
Equality is a particularly problematic source of search-space
explosion. When the equality axioms are included in the
knowledge base, they can generate new clauses and
equations that in turn trigger further applications of the equality
axioms, potentially causing unbounded growth.
Because of this, special inference rules for equality like
demodulation and more generally paramodulation have been
developed which get by without explicit equality axioms and, in
particular, reduce the search space. Do your own research on
these two inference rules and explain how they work.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

28 Automated Theorem
Provers

References

Automated Theorem Provers

An automated theorem prover is a software tool that uses
logical reasoning to automatically prove or disprove
mathematical theorems or logical statements
It takes a set of axioms and a conjecture as input and
attempts to derive the conjecture from the axioms using
formal logic rules
Automated theorem provers are used in various fields,
including mathematics, computer science, and artificial
intelligence, to assist in formal verification, program
analysis, and knowledge representation
We demonstrate how to use an automated theorem prover
called E to solve some problems in first-order predicate
logic

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

29 Automated Theorem
Provers

References

Automated Theorem Provers

Figure: E Theorem Prover
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

30 Automated Theorem
Provers

References

Automated Theorem Provers

Definition
A structure (M, ·) consisting of a set M with a two-place inner
operation “·” is called a semigroup if the law of associativity

∀x∀y ∀z (x · y) · z = x · (y · z)

holds. An element e ∈ M is called left-neutral (right-neutral) if
∀x e · x = x (∀xx · e = x).

Theorem 3
If a semigroup has a left-neutral element el and a right-neutral
element er, then e1 = er.

Goal
Prove Theorem 3

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

31 Automated Theorem
Provers

References

Automated Theorem Provers
Proof by Intuitive Mathematical Reasoning

Proof of Theorem 3.
For every x ∈ M , it holds that

el · x = x (1)
x · er = x (2)

Replacing x = er in Eq. (1) and x = el in Eq. (2), we have

el · er = er (3)
el · er = el (4)

Combining Eq. (3) and Eq. (4), we have el = el · er = er.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

32 Automated Theorem
Provers

References

Automated Theorem Provers
Proof by Resolution Calculus

The function m(x, y) = x · y.
Negated query (¬el = er)1

Knowledge Base KB
Definitions of semi-groups and left-/right- neutrals.

(m(m(x, y), z) = m(x, m(y, z)))2 associativity

(m(el, x) = x)3 left-neutral

(m(x, er) = x)4 right-neutral

Equality axioms (for comparing terms)

(x = x)5 reflexive

(¬x = y ∨ y = x)6 symmetry

(¬x = y ∨ ¬y = z ∨ x = z)7 transitivity

(¬x = y ∨ m(x, z) = m(y, z))8 substitution for m

(¬x = y ∨ m(z, x) = m(z, y))9 substitution for m

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

33 Automated Theorem
Provers

References

Automated Theorem Provers
Proof by Resolution Calculus

A resoution proof may be as follows.

Step Proved by
10. x = m(el, x) Res(3, 6, x6/m(el, x3), y6/x3)
11. ¬m(el, x) = z ∨ x = z Res(7, 10, x7/x10, y7/m(el, x10))
12. er = el Res(4, 11, x4/el, x11/er, z11/el)
13. () Res(1, 12, ∅)

For example, Res(3, 6, x6/m(el, x3), y6/x3) means that in the
resolution of clause 3 with clause 6, the x in clause 6 is
replaced by m(el, x) where the variable x is from clause 3 and
y from clause 6 is replaced by x from clause 3.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

34 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Transformation in clause normal form language LOP (The
syntax of LOP represents an extension of the PROLOG syntax
for non Horn clauses.)

(¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bn) 7→ B1; . . . ; Bn<-A1, . . . , Am

An input file for E
halbgr1.lop

1 <- eq(el,er). % query
2 eq(m(m(X,Y),Z), m(X,m(Y,Z))). % associativity of m
3 eq(m(el,X), X). % left-neutral element of m
4 eq(m(X,er), X). % right-neutral element of m
5 eq(X,X). % equality: reflexivity
6 eq(Y,X) <- eq(X,Y). % equality: symmetry
7 eq(X,Z) <- eq(X,Y), eq(Y,Z). % equality: transitivity
8 eq(m(X,Z), m(Y,Z)) <- eq(X,Y). % equality: substitution in m
9 eq(m(Z,X), m(Z,Y)) <- eq(X,Y). % equality: substitution in m

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

35 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Run eprover --proof-object halbgr1.lop | epclextract
0 : : (eq(X1,X2)| (eq(X2,X1))) : initial("halbgr1.lop", at line 6 column 1)

1 : : (eq(X1,X2)|((eq(X1,X3))| (eq(X3,X2)))) : initial("halbgr1.lop", at line 7 column 1)

2 : : eq(m(el,X1),X1) : initial("halbgr1.lop", at line 3 column 1)

3 : : (eq(el,er)) : initial("halbgr1.lop", at line 1 column 1)

4 : : eq(m(X1,er),X1) : initial("halbgr1.lop", at line 4 column 1)

5 : : (eq(X1,X2)| (eq(X2,X1))) : fof simplification(0)

6 : : (eq(X1,X2)|((eq(X1,X3))| (eq(X3,X2)))) : fof simplification(1)

7 : : [++eq(X1,X2),--eq(X2,X1)] : 5

8 : : [++eq(m(el,X1),X1)] : 2

9 : : (eq(el,er)) : fof simplification(3)

10 : : [++eq(X1,X2),--eq(X1,X3),--eq(X3,X2)] : 6

11 : : [++eq(X1,m(el,X1))] : pm(7,8)

12 : : [--eq(el,er)] : 9

14 : : [++eq(m(X1,er),X1)] : 4

13 : : [++eq(X1,X2),--eq(m(el,X1),X2)] : pm(10,11)

15 : : [--eq(er,el)] : pm(12,7)

16 : : [] : sr(pm(13,14),15) : ’proof’

Note:
Due to the difference between versions of E, the output may be
different from the above figure.
Positive literals are identified by ++ and negative literals by --.
pm(a, b) stands for a resolution step between clause a and
clause b. (pm means Paramodulation.)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

36 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

We’ll walk through the prover’s steps, focusing on intuition.

Starting Rules (Lines 0–4)

Line 0 (Symmetry): If x2 = x1, then x1 = x2.

eq(x1, x2) ∨ ¬eq(x2, x1)

Line 1 (Transitivity): If x1 = x3 and x3 = x2, then x1 = x2.

eq(x1, x2) ∨ ¬eq(x1, x3) ∨ ¬eq(x3, x2)

Line 2 (Left Identity): For any x, el · x = x.

eq(m(el, x1), x1)

Line 3 (Negated Conjecture): Assume el ̸= er.

¬eq(el, er)

Line 4 (Right Identity): For any x, x · er = x.

eq(m(x1, er), x1)

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

37 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Simplifying the Rules (Lines 5–10)

Lines 5–6: The prover rewrites Lines 0 and 1 into a
standard form for processing. Think of it as organizing
the rules.
Lines 7–10: Converts axioms into a logical format:

Line 8: [+ + eq(m(el, x1), x1)] — Restates el · x = x.
Line 9: ¬eq(el, er) — Restates el ̸= er.
Line 10: Transitivity in logical form.

First Big Step (Line 11)

The prover uses symmetry (Line 7) and left identity (Line
8) to derive:

[+ + eq(x1,m(el, x1))]

Intuition: If el · x = x, then x = el · x. Like saying: “If
1 · x = x, then x = 1 · x.” A small logical flip to rewrite
equations.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

38 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Combining Transitivity (Line 13)

Combines transitivity (Line 10) with Line 11 to derive:

[+ + eq(x1, x2),− − eq(m(el, x1), x2)]

Intuition: Either x = y or el · x ̸= y. If el · x isn’t equal to
y, then x can’t be y. Sets up a rule for testing equalities.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

39 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Using the Right Identity (Line 14 and Line 16)

Line 14: [+ + eq(m(x1, er), x1)] — Restates x · er = x.
In Line 16, combines Line 13 with Line 14:

eq(x1,m(x1, er)) ∨ ¬eq(m(el, x1),m(x1, er))

Since m(x1, er) = x1, simplifies to:

eq(x1, x1) ∨ ¬eq(m(el, x1), x1)

Since x1 = x1 is true, this becomes:

¬eq(m(el, x1), x1)

Problem: This says el · x ̸= x, contradicting Line 8
(el · x = x). Like saying 1 · x ̸= x, which can’t be true.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

40 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Tying It to the Goal (Line 15 and Line 16)

Line 15: [− − eq(er, el)] — Says er ̸= el, from el ̸= er via
symmetry.
In Line 16, set x1 = er in ¬eq(m(el, x1), x1):

¬eq(m(el, er), er)

Why it matters: Line 8 says el · er = er, so el · er ̸= er is
false. If el = er, then er = el, contradicting er ̸= el.
Result: Empty clause ([]), meaning “this math doesn’t
add up.” Thus, el ̸= er is impossible, so el = er.

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

41 Automated Theorem
Provers

References

Automated Theorem Provers
Proof By E Theorem Prover

Exercise 12
Use the E theorem prover to solve [Ertel 2025], Exercise 3.9,
p. 64. Prepare the LOP input file and run E (for example:
eprover –proof-object <file> | epclextract). Collect the
prover’s output and ask an LLM (like ChatGPT) to translate the
machine proof into concise, human-readable mathematical
reasoning. What do you think about the output of the LLM?

42

First-order Predicate
Logic

Hoàng Anh Đức

Introduction

Basics of First-order
Predicate Logic
Syntax and Semantics

Variable Replacement and
Substitution

Quantifiers and Normal
Forms

Proof Calculi for Predicate
Logic

Automated Theorem
Provers

42 References

References

Ertel, Wolfgang (2025). Introduction to Artificial
Intelligence. 3rd. Springer. DOI:
10.1007/978-3-658-43102-0.
Godel, Kurt (1931). “Diskussion zur Grundlegung der
Mathematik: Erkenntnis 2.” In: Monatshefte fur
Mathematik Und Physik 32, pp. 147–148.

https://doi.org/10.1007/978-3-658-43102-0

	Introduction
	Basics of First-order Predicate Logic
	Syntax and Semantics
	Variable Replacement and Substitution
	Quantifiers and Normal Forms
	Proof Calculi for Predicate Logic

	Automated Theorem Provers
	References

