
VNU-HUS MAT1206E/3508: Introduction to
AI

Logic Programming with PROLOG
In-class Discussion

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học
Đại học KHTN, ĐHQG Hà Nội

hoanganhduc@hus.edu.vn

mailto:hoanganhduc@hus.edu.vn

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Contents

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and Procedural Elements

Lists

Self-modifying Programs

A Planning Example

Constraint Logic Programming

46

Logic Programming
with PROLOG

Hoàng Anh Đức

2 Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Additional Materials

Learn Prolog Now!
https://www.let.rug.nl/bos/lpn/index.php

by Patrick Blackburn, Joost Bos, and Kristina
Striegnitz.

https://www.let.rug.nl/bos/lpn/index.php

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

3 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

PROLOG = Programming in Logic
PROLOG is used in many projects, primarily in AI and
computational linguistics.
We will now give a short introduction to this language,
present the most important concepts, show its strengths,
and compare it with other programming languages and
theorem provers.
Those looking for a complete programming course are
directed to textbooks such as [Bratko 2011]; [Clocksin and
Mellish 2013] and the documentations at
https://www.swi-PROLOG.org/ and
http://www.gPROLOG.org/.
PROLOG systems interpret Warren Abstract Machine
code (WAM).
PROLOG source code is compiled into so-called WAM
code, which is then interpreted by the WAM.
Performance: up to 10 million logical inferences per
second (LIPS) on a 1 Gigahertz PC

https://www.swi-PROLOG.org/
http://www.gPROLOG.org/

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

4 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

PROLOG is a declarative programming language, i.e., the
programmer declares what the program should
accomplish without specifying how to achieve the result.
PROLOG is based on Horn clauses.
A PROLOG program consists of a knowledge base
(database), which is simply a set of facts and rules about
some problem domain.

A knowledge base KB of family relationships is coded as a
PROLOG program

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscar).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

5 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

The execution of a PROLOG program is initiated by a
query , which is answered by proving that the query
logically follows from the facts and rules in the program.

Example query

?- child(eve, anne, oscar).

The query asks whether eve is a child of anne and oscar.
The expected answer is true (because it is a fact in the
knowledge base KB).
How does PROLOG find the answer?

PROLOG tries to unify the query with the facts in the
knowledge base KB.
There are six facts in the knowledge base.
Unification is attempted between the query and each of the
complementary literals in the input data in order of
occurrence. (In this example, the query unifies with the third
fact.)
If one of the alternatives fails, this results in backtracking to
the last branching point, and the next alternative is tested.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

6 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Variables
Variables begin with a Capital letter, or “_”

For example, X, Tom, _result

“_” is a nameless (anonymous) variable. We use it when
we need to use a variable, but we’re not interested in
what PROLOG instantiates the variable to
A variable can have a value

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

7 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Atoms
An atom is a constant in terms; it just stands for itself.
Atoms do not begin with a capital letter

For example, x, tom

Atomic formulas are called structures in PROLOG.
You can make an atom containing any characters at all
by enclosing it in single quotes:

For example, ’C:\\My Documents\\examples.pl’
If you use double quotes, you will get a list of ASCII
values, which is probably not what you want

?- X = "Hello". results
X = [72, 101, 108, 108, 111].

In a quoted atom, a single quote must be doubled or
backslashed

For example, ’Can’’t, or won\’t?’
Backslashes in file names must also be doubled

For example, ’C:\\My Documents\\examples.pl’
Better yet, use forward slashes in paths; every OS,
including Windows, understands this

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

8 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Predicates
A predicate is a definition of a functor (predicate symbol), which
is collection of clauses with the same functor and arity (number
of arguments).

loves(john, mary).
loves(mary, bill).
loves(chuck, X) :- female(X), rich(X).

These clauses should stay together.
The scope of a variable (such as X) is the single clause in which
it occurs.
A PROLOG program is just a collection of predicates.

Common Problems
Capitalization is meaningful !
No space is allowed between a functor and its argument list:

man(tom), not man (tom).

Double quotes indicate a list of ASCII character values, not a
string
Don’t forget the period! (But if you do, you can put it on the next
line.)

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

9 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Central Ideas of PROLOG
SUCCESS (true) / FAILURE (false)

any computation can “succeed” or “fail”, and this is used
as a ‘test’ mechanism.

UNIFICATION (2-WAY MATCHING)
any two data items can be compared for similarity, and
values can be bound to variables in order to allow a
match to succeed.

SEARCHING
the whole activity of the PROLOG system is to search
through various options to find a combination that
succeeds.

BACKTRACKING
when the system fails during its search, it returns to
previous choices to see if making a different choice would
allow success.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

10 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Let’s try some examples from “Learn Prolog Now!”
(https://www.let.rug.nl/bos/lpn/index.php).

https://www.let.rug.nl/bos/lpn/index.php

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

11 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Exercise 1
Given the following KB

1 woman(mia).
2 woman(jody).
3 woman(yolanda).
4 playsAirGuitar(jody).
5 party.

What is the expected answer to the following queries? Why?

?- woman(mia).

?- playsAirGuitar(mia).

?- playsAirGuitar(vincent).

?- tatooed(jody).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

12 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Exercise 2
Given the following KB

1 happy(yolanda).
2 listens2Music(mia).
3 listens2Music(yolanda):- happy(yolanda).
4 playsAirGuitar(mia):- listens2Music(mia).
5 playsAirGuitar(yolanda):- listens2Music(yolanda).

What is the expected answer to the following queries? Why?

?- playsAirGuitar(mia).

?- playsAirGuitar(yolanda).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

13 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Exercise 3
Given the following KB

1 happy(vincent).
2 listens2Music(butch).
3 playsAirGuitar(vincent):- listens2Music(vincent),
4 happy(vincent).
5 playsAirGuitar(butch):- happy(butch).
6 playsAirGuitar(butch):- listens2Music(butch).

What is the expected answer to the following queries? Why?

?- playsAirGuitar(vincent).

?- playsAirGuitar(butch).

Explain why we can replace the two rules in lines 6–7 by the single
rule. (Note: Look up the meaning of the semicolon ; in PROLOG.)

playsAirGuitar(butch):- happy(butch);
listens2Music(butch).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

14 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Exercise 4
Given the following KB

1 woman(mia).
2 woman(jody).
3 woman(yolanda).
4

5 loves(vincent,mia).
6 loves(marsellus,mia).
7 loves(pumpkin,honey_bunny).
8 loves(honey_bunny,pumpkin).

What is the expected answer to the following queries? Why?

?- woman(X).

?- loves(marsellus,X), woman(X).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

15 Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Exercise 5
Given the following KB

1 loves(vincent,mia).
2 loves(marsellus,mia).
3 loves(pumpkin,honey_bunny).
4 loves(honey_bunny,pumpkin).
5

6 jealous(X,Y):- loves(X,Z), loves(Y,Z).

What is the expected answer to each of the following queries?
Why?

?- jealous(marsellus,W).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

16 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Introduction

In PROLOG, we can define predicates recursively.
A recursive definition requires:

At least one base case (non-recursive)
At least one recursive case

Let’s look at a classic example from “Learn PROLOG
Now!”: Eating and Digestion

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

17 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Example: Eating

Consider the following knowledge base:

1 is_digesting(X,Y) :- just_ate(X,Y).
2 is_digesting(X,Y) :-
3 just_ate(X,Z),
4 is_digesting(Z,Y).
5

6 just_ate(mosquito,blood(john)).
7 just_ate(frog,mosquito).
8 just_ate(stork,frog).

The definition of is_digesting/2 is recursive
It appears in both head and body of the second rule
The first rule (base case) provides an “escape” from
circularity

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

18 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Declarative Meaning

Declarative meaning: The logical meaning of the PROLOG
knowledge base
Base clause (non-recursive):

“If X has just eaten Y, then X is now digesting Y”

Recursive clause:
“If X has just eaten Z and Z is digesting Y, then X is digesting
Y too”

This captures the intuition of indirect digestion through
food chains

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

19 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Procedural Meaning

Procedural meaning: How PROLOG actually executes the
queries
For a query is_digesting(X,Y), PROLOG:

First tries the base rule: “Has X just eaten Y?”
If that fails, tries the recursive rule by finding some Z where:

X has just eaten Z, AND
Z is digesting Y (recursive subgoal)

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

20 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Example Execution

For the query:

?- is_digesting(stork,mosquito).

PROLOG’s execution:
1. Try base rule with X=stork, Y=mosquito:

just_ate(stork,mosquito) ⇒ fails
2. Try recursive rule:

Find Z where just_ate(stork,Z) ⇒ Z = frog
New subgoal: is_digesting(frog,mosquito)
Try base rule: just_ate(frog,mosquito) ⇒ succeeds!

3. Query succeeds: Yes, stork is digesting mosquito

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

21 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
The Importance of Base Cases

Warning
Always include a base case in recursive definitions!
Consider this dangerous rule:

p :- p.

Declaratively: “If property p holds, then property p holds”
(logical)
Procedurally: Creates an infinite loop

To prove p, I need to prove p
To prove p, I need to prove p
...and so on, forever

Without a base case, PROLOG won’t terminate

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

22 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Another Example: Family Relationships

Consider the following knowledge base:

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child(X,Y,Z).
9

10 descendant(X,Y) :- child(X,Y,Z).
11 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

The following query is not answered:

?- descendant(clyde,karen).

The clause in line 8, which specifies symmetry of the child
predicate, calls itself recursively without the possibility of
termination.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

23 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Another Example: Family Relationships

This problem can be solved with the following new program.
rel01.pl

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscarb).
7

8 descendant(X,Y) :- child(X,Y,Z).
9 descendant(X,Y) :- child(X,Z,Y).

10 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

?- descendant(clyde, karen).
true .

?- child(eve,oscar,anne).
false .

But now the query

?- child(eve,oscar,anne).

is no longer correctly answered because the symmetry of
child in the last two variables is no longer given.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

24 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Another Example: Family Relationships

A solution to both problems is found in the program.
rel02.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 descendant(X,Y) :- child(X,Y,Z).
12 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

The PROLOG
programmer must pay
attention to processing
and avoid infinite loops

The program is no
longer as elegant and
simple as the—logically
correct—first variant

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

24 Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Recursive Definitions
Another Example: Family Relationships

A solution to both problems is found in the program.
rel02.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 descendant(X,Y) :- child(X,Y,Z).
12 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

The PROLOG
programmer must pay
attention to processing
and avoid infinite loops

The program is no
longer as elegant and
simple as the—logically
correct—first variant

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

25 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Note
As we have seen in the previous examples, it is important to
control the execution of PROLOG.

Avoiding unnecessary backtracking especially can lead to
large increases in efficiency. One means to this end is the
cut operator. By inserting an exclamation mark into a
clause, we can prevent backtracking over this point.
Another possibility for execution control is the built-in
predicate fail, which is never true.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

26 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 1 (Cut operator in PROLOG)
max(X, Y, Max) means “the maximum of two numbers X and
Y is Max”

max.pl

1 max(X,Y,X) :- X >= Y.
2 max(X,Y,Y) :- X < Y.

Without cut.
In query ?- max(2,3,Z),
Z > 10., backtracking is
employed because Z = 3
and the second clause is
tested for max, which is
doomed to failure

maxwCut.pl

1 max(X,Y,X) :- X >= Y, !.
2 max(X,Y,Y).

With cut.
The second clause is only
called if it is really
necessary, that is, if the
first clause fails.
However, this optimization
makes the program harder
to understand.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

27 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 2 (Predicate fail in PROLOG)
In the family relationship example we can quite simply print out all
children and their parents with the query

?- child_fact(X,Y,Z), write(X),
write(’ is a child of ’), write(Y),
write(’ and ’), write(Z), write(’.’),
nl, fail.

The corresponding output is

oscar is a child of karen and frank.
mary is a child of karen and frank.
eve is a child of anne and oscar.
henry is a child of anne and oscar.
isolde is a child of anne and oscar.
clyde is a child of mary and oscarb.
false.

where the predicate nl causes a line break in the output. What
would be the output in the end without use of the fail predicate?

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

28 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 3 (Negation as Failure)
In the family relationship example, the query

?- child_fact(ulla,X,Y).

would result false. because there are no facts about
ulla.
This answer is not logically correct . Specifically, it is not
possible to prove that there is no object with the name
ulla. Here the prover E would correctly answer
“No proof found.”
Thus if PROLOG answers false., this only means that
the query Q cannot be proved . For this, however, ¬Q must
not necessarily be proved .

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

29 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

A collection of ordered data.
Has zero or more elements enclosed by square brackets
and separated by commas (‘,’).

Example Description
[A] A list with one element
[] An empty list
[34,tom,[2,3]] A list with three elements

where the third element is
a list of two elements

[mia, love(honey), mia] A list with three elements
where the first and last
elements are identical

Like any object, a list can be unified with a variable

?- X = [Any, list, ’of elements’].
X = [Any, list, ’of elements’].

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

30 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

A list can be decomposed into its head (first element) and
tail (remaining elements) using the vertical bar operator
(‘|’).
For example, the list [A, B, C] can be decomposed as
follows:

?- [Head|Tail] = [A, B, C].
Head = A,
Tail = [B, C].

What are the head and the tail of the list [dead(z)]?
Note: The empty list has neither a head nor a tail. That is,
the empty list has no internal structure; for PROLOG, [] is
a special, particularly simple, list.

What is the output of the following query?

?- [H|T] = [].

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

31 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Exercise 6
Explain the purpose of each query and give PROLOG’s expected
answer. For each query below, state (1) what the query asks, (2) the
expected result (true/false or variable bindings), and (3) a brief
justification.

?- [X|Y] = [[], dead(z), [2, [b, c]], [], Z].

?- [X,Y | W] =
[[], dead(z), [2, [b, c]], [], Z].

?- [X1,X2,X3,X4 | Tail] =
[[], dead(z), [2, [b, c]], [], Z].

?- [_,X,_,Y|_] =
[[], dead(z), [2, [b, c]], [], Z].

?- [_,_,[_|X]|_] =
[[], dead(z), [2, [b, c]], [], Z].

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

32 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists
First recursive list program

It’s time to look at an example (from “Learn Prolog Now!”) of a
recursive PROLOG program for lists: the predicate member/2.

Goal: given an object X and a list L, decide whether X
belongs to L.
The standard definition (one fact and one recursive rule):

1 member(X,[X|T]).
2 member(X,[H|T]) :- member(X,T).

First clause (fact): “X is a member of a list if X is the head of
that list.” (uses the | operator)
Second clause (recursive rule): “X is a member of a list if X
is a member of the tail of the list.”
Declaratively this is straightforward: the two clauses capture
membership directly from the structure of lists.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

33 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists
Procedural behaviour — examples

Consider how PROLOG answers queries.
Immediate success:

?- member(yolanda,[yolanda,trudy,vincent,jules]).

PROLOG succeeds immediately by unifying with the first
clause.
Requires recursion/backtracking:

?- member(vincent,[yolanda,trudy,vincent,jules]).

PROLOG tries the first clause (fails), uses the recursive
clause repeatedly until the subgoal

member(vincent,[vincent,jules])

unifies with the first clause and succeeds.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

34 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists
Failure and termination

If the queried element is not in the list, recursion eventually
reaches the empty list and cannot proceed:

?- member(zed,[yolanda,trudy,vincent,jules]).

PROLOG will derive successive goals

member(zed,[trudy,vincent,jules])
member(zed,[vincent,jules])
member(zed,[jules])
member(zed,[])

and at member(zed,[]), neither clause applies (empty list
cannot be split), so search stops and the answer is no.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

35 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists
Enumerating members & a small improvement

member/2 can be used with variables to enumerate
elements:

?- member(X,[yolanda,trudy,vincent,jules]).
X = yolanda ;
X = trudy ;
X = vincent ;
X = jules ;
no

Small stylistic improvement: use anonymous variables for
irrelevant parts

1 member(X,[X|_]).
2 member(X,[_|T]) :- member(X,T).

Semantically identical, but clearer because each clause
names only what matters.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

36 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

PROLOG programs are not fully compiled, rather, they are
interpreted by the WAM. Therefore it is possible to modify
programs at runtime. A program can even modify itself.
With commands such as assert and retract, facts and
rules can be added to the knowledge base or taken out of
it.
Assert predicates

assert(X): Adds a new fact or clause to the database.
Term is asserted as the last fact or clause with the same key
predicate.
asserta(X): Same as assert, but adds a clause at the
beginning of the database.
assertz(X): Exactly same as assert(X).

Retract predicates
retract(X): Removes fact or clause X from the database.
retractall(X): Removes all facts or clauses from the
database for which the head unifies with X.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

37 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

A simple application of asserta is the addition of derived facts
to the beginning of the knowledge base with the goal of
avoiding a repeated, potentially time-expensive derivation.

Example 4 (Family Relationship)
dynamic_rel.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 :- dynamic descendant/2.
12 descendant(X,Y) :- child(X,Y,Z), asserta(descendant(X,Y)).
13 descendant(X,Y) :- child(X,U,V), descendant(U,Y),
14 asserta(descendant(X,Y)).

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

38 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

?- [dynamic_rel].
true.

?- descendant(clyde, karen).
true .

?- listing(descendant).
:- dynamic descendant/2.

descendant(clyde, karen).
descendant(mary, karen).
descendant(X, Y) :-
child(X, Y, Z),
asserta(descendant(X, Y)).
descendant(X, Y) :-
child(X, U, V),
descendant(U, Y),
asserta(descendant(X, Y)).

true.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

39 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

By manipulating rules with assert and retract, even
programs that change themselves completely can be
written. This idea became known under the term genetic
programming. It allows the construction of arbitrarily
flexible learning programs.
In practice, however, it turns out that, due to the huge
number of senseless possible changes, changing the code
by trial and error rarely leads to a performance increase.
Systematic changing of rules, on the other hand, makes
programming so much more complex that, so far, such
programs that extensively modify their own code have not
been successful.
Machine learning has been quite successful. However,
only very limited modifications of the program code are
being conducted here.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

40 A Planning Example

Constraint Logic
Programming

References

A Planning Example

Exercise 7
Understand how to solve this problem using PROLOG.
A farmer wants to bring a cabbage, a goat, and a wolf across a
river, but his boat is so small that he can only take them across

one at a time. The farmer thought it over and then said to
himself: “If I first bring the wolf to the other side, then the goat
will eat the cabbage. If I transport the cabbage first, then the

goat will be eaten by the wolf. What should I do?”

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

41 Constraint Logic
Programming

References

Constraint Logic Programming

The programming of scheduling systems, in which many
(sometimes complex) logical and numerical conditions must be
fulfilled, can be very expensive and difficult with conventional
programming languages.
This is precisely where logic could be useful .
An approach is to simply write all logical conditions in PL1 and
then enter a query . Usually this approach fails miserably . The
reason is the penguin problem discussed in “Limitations of
Logic”. The fact penguin(tweety) does ensure that
penguin(tweety) is true but does not rule out that
raven(tweety) is also true. To rule this out with additional
axioms is very inconvenient.
Constraint Logic Programming (CLP) [Jaffar and Lassez 1987],
which allows the explicit formulation of constraints for variables,
offers an elegant and very efficient mechanism for solving this
problem.

The interpreter constantly monitors the execution of the program for
adherence to all of its constraints.
The programmer is fully relieved of the task of controlling the
constraints, which in many cases can greatly simplify programming.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

42 Constraint Logic
Programming

References

Constraint Logic Programming

Example 5 (Applying the CLP mechanism of
GNU-PROLOG (The finite domain (FD) constraint
solver))
The secretary of Albert Einstein High School has to come up with a
plan for allocating rooms for final exams. He has the following
information: the four teachers Mayer, Hoover, Miller and Smith give
tests for the subjects German, English, Math, and Physics in the
ascendingly numbered rooms 1, 2, 3 and 4. Every teacher gives a
test for exactly one subject in exactly one room. Besides that, he
knows the following about the teachers and their subjects.
(1) Mr. Mayer never tests in room 4.
(2) Mr. Miller always tests German.
(3) Mr. Smith and Mr. Miller do not give tests in neighboring rooms.
(4) Mrs. Hoover tests Mathematics.
(5) Physics is always tested in room number 4.
(6) German and English are not tested in room 1.

Who gives a test in which room?

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

43 Constraint Logic
Programming

References

Constraint Logic Programming

raumplan.pl

1 %%% Run in GNU-PROLOG
2 start :-
3 fd_domain([Mayer, Hoover, Miller, Smith],1,4),
4 fd_all_different([Mayer, Miller, Hoover, Smith]),
5

6 fd_domain([German, English, Math, Physics],1,4),
7 fd_all_different([German, English, Math, Physics]),
8

9 fd_labeling([Mayer, Hoover, Miller, Smith]),
10

11 Mayer #\=4, % Mayer not in room 4
12 Miller #= German, % Miller tests German
13 dist(Miller, Smith) #>= 2, % Distance Miller/Smith >= 2
14 Hoover #= Math, % Hoover tests mathematics
15 Physics #= 4, % Physics in room 4
16 German #\= 1, % German not in room 1
17 English #\= 1, % English not in room 1
18 nl,
19 write([Mayer, Hoover, Miller, Smith]), nl,
20 write([German, English, Math, Physics]), nl.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

44 Constraint Logic
Programming

References

Constraint Logic Programming

GNU-PROLOG built-in predicates:
fd_domain(Vars, Lower, Upper) constraints each element X of Vars
to take a value in Lower..Upper.
fd_all_different(List) constrains all variables in List to take
distinct values.
fd_labeling(Vars, Options) assigns a value to each variable X of
the list Vars according to the list of labeling options given by Options.
This predicate is re-executable on backtracking. fd_labeling(Vars) is
equivalent to fd_labeling(Vars, []).

The variables Mayer,Hoover,Miller,Smith as well as
German,English,Math,Physics can each take on an integer value
from 1 to 4 as the room number. (Lines 3–6.)
A binding Mayer = 1 and German = 1 means that Mr. Mayer gives
the German test in room 1.
Lines 4 and 7 ensure that the four particular variables take on
different values.
Line 9 ensures that all variables are assigned a concrete value in the
case of a solution. This line is not absolutely necessary here. If there
were multiple solutions, however, only intervals would be output.
In lines 11–17 the constraints are given, and the remaining lines
output the room numbers for all teachers and all subjects in a simple
format.

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

45 Constraint Logic
Programming

References

Constraint Logic Programming

The program is loaded into GNU-PROLOG with
[’raumplan.pl’]., and with start. we obtain the output

[3,1,2,4]
[2,3,1,4]

true ?

yes

This output corresponds to the plan

Room num. 1 2 3 4
Teacher Hoover Miller Mayer Smith
Subject Math German English Physics

46

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

Basic of PROLOG

Recursive Definitions

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

46 References

References

Clocksin, William F. and Christopher S. Mellish (2013).
Programming in PROLOG Using the ISO Standard. 3rd.
Springer Science & Business Media. DOI:
10.1007/978-3-642-97005-4.
Bratko, Ivan (2011). Prolog programming for artificial
intelligence. 4th. Addison-Wesley.
Jaffar, Joxan and Jean-Louis Lassez (1987). “Constraint
Logic Programming.” In: Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 111–119. DOI:
https://doi.org/10.1145/41625.41635.

https://doi.org/10.1007/978-3-642-97005-4
https://doi.org/https://doi.org/10.1145/41625.41635

	Additional Materials
	Basic of PROLOG
	Recursive Definitions
	Execution Control and Procedural Elements
	Lists
	Self-modifying Programs
	A Planning Example
	Constraint Logic Programming
	References

