
VNU-HUS MAT1206E/3508: Introduction to
AI

First-order Predicate Logic

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học
Đại học KHTN, ĐHQG Hà Nội

hoanganhduc@hus.edu.vn

mailto:hoanganhduc@hus.edu.vn

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Contents

Motivation

Syntax

Semantics

Quantifiers and Normal Forms

Proof Calculi

Resolution

Automated Theorem Provers

Mathematical Examples

Applications

Summary

74

First-order Predicate
Logic

Hoàng Anh Đức

2 Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Motivation

Motivation
Many practical, relevant problems cannot be or can only very
inconveniently be formulated in the language of propositional
logic

Example 1
Statement: “Robot 7 is situated at the xy position (35, 79)”
Propositional variable:
Robot_7_is_situated_at_xy_position_(35, 79) (which is
true if the statement holds and false otherwise)
Assume that 100 robots can stop anywhere on a grid of
100 × 100 points. We need 106 propositional variables to
describe all possible positions of the robots [Why?]

74

First-order Predicate
Logic

Hoàng Anh Đức

3 Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Motivation

Example 1 (cont.)
Relationship between objects (robots): “Robot 7 is to the
right of robot 12”
Propositional variable:
Robot_7_is_to_the_right_of_robot_12
The relation can be represented by an ordered pair of
x-coordinates (x7, x12) where x7 > x12

There are 99 + 98 + · · · + 1 = (100 · 99)/2 = 4950 such
ordered pairs

There are 104 propositional variables to describe all
possible relations and therefore 104 formulas of the type:

Robot_7_is_to_the_right_of_robot_12 ⇔
Robot_7_is_situated_at_xy_position_(35, 79) ∧
Robot_12_is_situated_at_xy_position_(10, 93) ∨ . . .

with total 4950 · 104 alternatives on the right-hand side of
the formulas [Why?]

74

First-order Predicate
Logic

Hoàng Anh Đức

4 Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Motivation

Given 100 robots, describing the relation “Robot A is to the
right of robot B” for all pairs of robots requires a huge
number of propositional variables
In first-order predicate logic (PL1), we can define a
predicate position(number, xPosition, yPosition)
Now the relation can be described abstractly with

∀u∀vis_further_right(u, v) ⇔
∃xu∃yu∃xv∃yvposition(u, xu, yu) ∧ position(v, xv, yv) ∧ xu > xv

where ∀u is read as “for every u” and ∃v as “there exists v”

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

5 Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Syntax

Set of variables V
Set of constants K (which stand for objects)
Set of function symbols F (which stand for functions)
The sets V,K, F are pairwise disjoint

Terms
A term is a logical expression that refers to an object
All variables and constants are (atomic) terms
If t1, . . . , tn are terms and f is an n-place function
symbol, then f(t1, . . . , tn) is a (complex) term

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

6 Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Syntax

Example 2
f(sin(ln(3)), exp(x)) is a term

V = {x}, K = {3}, and F = {sin, ln, exp, f}
g(g(g(x))) is a term

V = {x}, K = ∅, and F = {g}
LeftLeg(John) is a term

V = ∅, K = {John}, and F = {LeftLeg}

It is important to remember that a complex term is just a
complicated kind of name. It is not a “subroutine call” that
“returns a value.”

Constant symbols are names for objects
It is not always convenient to have a distinct symbol for each
object. Therefore, we also use function symbols to indicate
names for objects

For example, instead of giving a constant symbol for “John’s
left leg”, we use LeftLeg(John)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

7 Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Syntax

To be able to establish logical relationships between terms, we
build formulas from terms

Predicate Logic Formulas

Let P be a set of predicate symbols (which stand for relations)
If t1, . . . , tn are terms and p is an n-place predicate symbol,
then p(t1, . . . , tn) is an (atomic) formula
If A and B are formulas, then ¬A, (A), A ∧B, A ∨B,
A ⇒ B, A ⇔ B are also formulas
If x is a variable and A a formula, then ∀xA and ∃xA are
also formulas. ∀ is the universal quantifier and ∃ the
existential quantifier
p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called literals
Formulas in which every variable is in the scope of a
quantifier are called first-order sentences or closed
formulas. Variables which are not in the scope of a
quantifier are called free variables
Definitions of CNF and Horn clauses hold for formulas of
predicate logic literals analogously

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

8 Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Syntax

Example 3

Formula Description
∀x frog(x) ⇒ green(x) All frogs are green

∀x frog(x) ∧ brown(x) ⇒ big(x) All brown fogs are big
∀x likes(x, cake) Everyone likes cake

¬∀x likes(x, cake) Not everyone likes cake
¬∃x likes(x, cake) No one likes cake

∃x ∀y likes(y, x) There is something that
everyone likes

∃x ∀y likes(x, y) There is someone who
likes everything

∀x ∃y likes(y, x) Everything is loved
by someone

∀x ∃y likes(x, y) Everyone likes something

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

9 Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Syntax

Example 3 (cont.)

Formula Description
∀x customer(x) ⇒ likes(bob, x) Bob likes every customer

∃x customer(x) ∧ likes(bob, x) There is a customer whom
Bob likes

∃xbaker(x) ∧ ∀y customer(y) There is a baker who
⇒ likes(x, y) likes all of his customers

∀xolder(mother(x), x) Every mother is older
than her child

∀xolder(mother(mother(x)), x) Every grandmother is older
than her daughter’s child

∀x ∀y ∀z rel(x, y) ∧ rel(y, z) rel is a transitive relation⇒ rel(x, z)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

10 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

In propositional logic, an interpretation (assignment) is a
mapping that assigns a truth value (either t or f) to each
variable. Analogously, in first-order predicate logic, we have

Interpretation

An interpretation (or assignment) I is defined as
A mapping from the set of constants and variables
K ∪ V to a set W of names of objects in the world
A mapping from the set of function symbols to the set of
functions in the world. Every n-place function symbol is
assigned an n-place function
A mapping from the set of predicate symbols to the set
of relations in the world. Every n-place predicate symbol
is assigned an n-place relation.

The truth of a formula in PL1 depends on the interpretation

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

11 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Example 4
Constants K = {c1, c2, c3}
A two-place function symbols plus
A two-place predicate symbol gr

Consider the formula φ ≡ gr(plus(c1, c3), c2)

Interpretation I1

Mapping constants: c1 7→ 1, c2 7→ 2, and c3 7→ 3
Mapping function symbol: plus 7→ +
Mapping predicate symbol: gr 7→>

φ 7→ 1 + 3 > 2 or equivalently φ 7→ 4 > 2
The greater-than relation > on the set {1, 2, 3, 4} is the set
of pairs (x, y) of numbers in {1, 2, 3, 4} with x > y, and
(4, 2) is in that set
φ is true under the interpretation I1

Interpretation I2

Mapping constants: c1 7→ 2, c2 7→ 3, and c3 7→ 1
Mapping function symbol: plus 7→ −
Mapping predicate symbol: gr 7→>

φ 7→ 2 − 1 > 3 or equivalently φ 7→ 1 > 3
The greater-than relation > on the set {1, 2, 3, 4} is the set
of pairs (x, y) of numbers in {1, 2, 3, 4} with x > y, and
(1, 3) is not in that set
φ is false under the interpretation I2

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

11 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Example 4
Constants K = {c1, c2, c3}
A two-place function symbols plus
A two-place predicate symbol gr

Consider the formula φ ≡ gr(plus(c1, c3), c2)

Interpretation I2

Mapping constants: c1 7→ 2, c2 7→ 3, and c3 7→ 1
Mapping function symbol: plus 7→ −
Mapping predicate symbol: gr 7→>

φ 7→ 2 − 1 > 3 or equivalently φ 7→ 1 > 3
The greater-than relation > on the set {1, 2, 3, 4} is the set
of pairs (x, y) of numbers in {1, 2, 3, 4} with x > y, and
(1, 3) is not in that set
φ is false under the interpretation I2

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

12 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

The truth of a formula
An atomic formula p(t1, . . . , tn) is true (or valid) under the
interpretation I if, after interpretation and evaluation of all
terms t1, . . . , tn and interpretation of the predicate p through
the n-place relation r, it holds that (I(t1), . . . , I(tn)) ∈ r
The truth of quantifierless formulas follows from the truth of
atomic formulas through the semantics of the logical
operators ¬,∧,∨,⇒,⇔, like in propositional logic
A formula ∀xF is true under the interpretation I exactly
when it is true given an arbitrary change of the interpretation
for the variable x (and only for x)
A formula ∃xF is true under the interpretation I exactly
when there is an interpretation for x which makes the
formula true

The definitions of semantic equivalence of formulas, for the
concepts satisfiable, true, unsatisfiable, and model , along with
semantic entailment carry over unchanged from propositional
calculus to predicate logic

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

13 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

The semantics of logical operators holds analogously for PL1

A B (A) ¬A A ∧B A ∨B A ⇒ B A ⇔ B
t t t f t t t t
t f t f f t f f
f t f t f t t f
f f f t f f t t

The following theorems hold analogously for PL1

Theorem 1 (Deduction theorem)
A |= B if and only if |= A ⇒ B

Theorem 2 (Proof by contradiction)
KB |= Q if and only if KB ∧ ¬Q is unsatisfiable

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

14 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Example 5
A family tree

Karen A. Frank A.

Anne A. Oscar A. Mary B. Oscar B.

Henry A. Eve A. Isabelle A. Clyde B.

Child – A three-place relation (predicate)
Child = {(Oscar A.,Karen A.,Frank A.), (Mary B.,Karen A.,

Frank A.), (Henry A.,Anne A.,Oscar A.), (Eve A.,
Anne A.,Oscar A.), (Isabelle A.,Anne A.,Oscar A.),
(Clyde B.,Mary B.,Oscar B.)}

The triple (Oscar A., Karen A., Frank A.) stands for “Oscar
A. is a child of Karen A. and Frank A.”

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

15 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Example 5 (cont.)
From the names, we read off the one-place relation
(predicate) Female of the women
Female = {Karen A.,Anne A.,Mary B.,Eve A., Isabelle A.}
We now want to establish formulas for family relationships

We define a three-place predicate child(x, y, z) with the
semantics I(child(x, y, z)) = w ≡ (I(x), I(y), I(z)) ∈ Child
If I is the interpretation oscar 7→ Oscar A., eve 7→ Eve A.,
and anne 7→ Anne A., then I(child(eve, anne, oscar)) ≡
(Eve A., Anne A., Oscar A.) ∈ Child. Thus,
child(eve, anne, oscar) is true under the interpretation I
Naturally, based on what we knew from the real world, we
would want child(eve, oscar, anne) also to be true. To have
this, we require ∀x ∀y ∀z child(x, y, z) ⇔ child(x, z, y)
We can also define a two-place predicate descendant(x, y)
recursively as

∀x ∀y descendant(x, y) ⇔ ∃z child(x, y, z)
∨ (∃u ∃v child(x, u, v) ∧ descendant(u, y))

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

16 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

The predicates we defined in Example 5 are based on our
knowledge from the real world. Analogously to the
propositional logic, we can build a small knowledge base with
rules and facts, for example, like

KB ≡ female(karen) ∧ female(anne) ∧ female(mary)∧
female(eve) ∧ female(isabelle) ∧ child(oscar, karen, frank)∧
child(mary, karen, frank) ∧ child(eve,anne,oscar)∧
child(henry,anne,oscar) ∧ child(isabelle,anne,oscar)∧
child(clyde,mary,oscarb) ∧ (∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y))
∧ (∀x∀y descendant(x, y) ⇔ ∃z child(x, y, z)
∨ (∃u∃v child(x, u, v) ∧ descendant(u, y)))

and ask, for example, whether child(eve,oscar,anne) or
descendant(eve, frank) are (syntactically) derivable? To that
end, we require a calculus

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

17 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Exercise 1 ([Ertel 2025], Exercise 3.1, p. 63)
Let the three-place predicate “child” and the one-place
predicate “female” from Example 5 be given. Define:
(a) A one-place predicate “male”
(b) A two-place predicate “father” and “mother”
(c) A two-place predicate “siblings”
(d) A predicate “parents(x, y, z)”, which is true if and only if x

is the father and y is the mother of z
(e) A predicate “uncle(x, y)”, which is true if and only if x is the

uncle of y (use the predicates that have already been
defined)

(f) A two-place predicate “ancestor ” with the meaning:
ancestors are parents, grandparents, etc. of arbitrarily
many generations

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

18 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Exercise 2 ([Ertel 2025], Exercise 3.2, p. 64)
Formalize the following statements in predicate logic:
(a) Every person has a father and a mother
(b) Some people have children
(c) All birds fly
(d) There is an animal that eats (some) grain-eating animals
(e) Every animal eats plants or plant-eating animals which are

much smaller than itself

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

19 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

To be able to compare terms, equality is a very important
relation in predicate logic
The equality of terms in mathematics is an equivalence
relation, meaning it is reflexive, symmetric and transitive
We define a predicate “=” using infix notation as is
customary in mathematics (that is, instead of writing
“eq(x, y)”, we write “x = y”)

Equality Axioms

∀x x = x (reflexive)
∀x∀y x = y ⇒ y = x (symmetry)

∀x ∀y ∀z x = y ∧ y = z ⇒ x = z (transitivity)

To guarantee the uniqueness of functions, we additionally
require that for any function symbol f and any predicate
symbol p

∀x ∀y x = y ⇒ f(x) = f(y) (substitution axiom)
∀x ∀y x = y ⇒ p(x) ⇔ p(y) (substitution axiom)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

20 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Exercise 3 ([Ertel 2025], Exercise 3.3, p. 64)
Adapt Exercise 1 by using one-place function symbols and
equality instead of “father” and “mother”

Exercise 4 ([Ertel 2025], Exercise 3.4, p. 64)
Give predicate logic axioms for the two-place relation “<” as a
total order. For a total order we must have (1) Any two
elements are comparable. (2) It is symmetric. (3) It is transitive

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

21 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Often a variable must be replaced by a term

Example 6
Consider the formula ∀xx = 5 ⇒ x = y
Replace y by the term sin(x)?

∀xx = 5 ⇒ x = sin(x) WRONG!

(The “x” in the term sin(x) is different from the “x” in the original
formula, as y does not depend on x in the original formula)

∀xx = 5 ⇒ x = sin(z) CORRECT!

Replacing a variable by a term

We write φ[x/t] for the formula that results when we replace
every free occurrence of the variable x in φ with the term t.
Thereby we do not allow any variables in the term t that are
quantified in φ. In those cases variables must be renamed to
ensure this

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

22 Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Semantics

Substitution
A substitution σ is a map from variables to terms.

ϵ: the empty substitution
σ : x1/t1, x2/t2, . . . , xn/tn: a substitution that maps each
variable xi to the corresponding term ti

Also write σ = {x1/t1, x2/t2, . . . , xn/tn}

Apply σ to a term t, denoted by σ(t) or t[x1/t1, . . . , xn/tn]
to indicate σ(t), means simultaneously replacing every
occurrence of each xi in t by ti

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

23 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

By definition, ∀x p(x) is true if and only if p(x) is true for all
interpretations of the variable x. Instead, we can write

∀x p(x) ≡ p(a1) ∧ · · · ∧ p(an),

for all constants a1, . . . , an in K
Similarly, for ∃x p(x)

∃x p(x) ≡ p(a1) ∨ · · · ∨ p(an),

for all constants a1, . . . , an in K
From this, it follows with the De Morgan’s law that

∀xφ ≡ ¬∃x¬φ

Through this equivalence, universal and existential
quantifiers are mutually replaceable

Example 7
“Everyone wants to be loved” ≡ “Nobody does not want to be
loved”

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

24 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Prenex Normal Form
A predicate logic formula φ is in prenex normal form if it holds
that

φ = Q1x1 . . . Qnxnψ

ψ is a quantifierless formula
Qi ∈ {∀,∃} for i = 1, . . . , n

Theorem 3
Every predicate logic formula can be transformed into an
equivalent formula in prenex normal form

Example 8
Be careful in case a quantified variable appears outside
the scope of its quantifier

For example, consider ∀x (p(x) ⇒ ∃x q(x))
In this case, one of the two variables “x” (in ∀x and ∃x) must
be renamed, for example, like ∀x (p(x) ⇒ ∃y q(y))

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

25 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Transformation into prenex normal form

Transformation into conjunctive normal form
Elimination of equivalences
Elimination of implications
Repeated application of De Morgan’s law and distributive
law

Renaming of variables if necessary
Factoring out universal quantifiers

The formula ∀x (p(x) ⇒ ∃y q(y)) can be written in prenex
normal form by bringing the quantifier ∃ to the front, as in
∀x ∃y (p(x) ⇒ q(y))

Exercise 5
How about (∀x p(x)) ⇒ (∃y q(y))? Can you bring this formula to
prenex normal form?

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

26 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Example 9 (Transforming into prenex normal form)
The convergence of a series (an)n∈N to a limit a is defined
by ∀ϵ > 0 ∃n0 ∈ N ∀n > n0 |an − a| < ϵ

We define the functions abs(x) for x, a(n) for an,
minus(x, y) for x− y, and the predicates el(x, y) for x ∈ y,
gr(x, y) for x > y. The formula becomes

∀ϵ (gr(ϵ, 0) ⇒ ∃n0 (el(n0,N) ⇒ ∀n (gr(n, n0)
⇒ gr(ϵ,abs(minus(a(n), a))))))

To bring the formula to prenex normal form:
No variables need to be renamed
Eliminating the implications

∀ϵ (¬gr(ϵ, 0) ∨ ∃n0 (¬el(n0,N) ∨ ∀n (¬gr(n, n0)
∨ gr(ϵ, abs(minus(a(n), a))))))

Move quantifiers to the front
∀ϵ ∃n0 ∀n (¬gr(ϵ, 0) ∨ ¬el(n0,N) ∨ ¬gr(n, n0)
∨ gr(ϵ, abs(minus(a(n), a))))

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

27 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Skolemization
Goal:

Eliminate all existential quantifiers from a formula in
prenex normal form

General Method:
Replacement of existentially quantified variables by new
Skolem functions
Deletion of resulting universal quantifiers

Note
After Skolemization, the resulting formula is no longer
equivalent to the original one
However, if the original formula is true, then the resulting
formula is also true

This is particularly useful when we want to show that a
formula, say KB ∧ ¬Q, is not satisfied

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

28 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Example 10 (Skolemization)
We skolemize the following formula

∀x1 ∀x2 ∃y1 ∀x3 ∃y2 p(f(x1), x2, y1) ∨ q(y1, x3, y2)

The variable y1 apparently depends on x1 and x2. We replace every
occurrence of y1 by a Skolem function g(x1, x2), where g is a new
function symbol that has not yet appeared in the formula

∀x1 ∀x2 ∀x3 ∃y2 p(f(x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, y2)

Analogously, the variable y2 apparently depends on x1, x2, and x3.
We replace every occurrence of y2 by a Skolem function h(x1, x2, x3)

∀x1 ∀x2 ∀x3 p(f(x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3))

Finally, as all variables are universally quantified, the universal
quantifiers can be left out, giving us the resulting skolemized formula

p(f(x1), x2, g(x1, x2)) ∨ q(g(x1, x2), x3, h(x1, x2, x3))

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

29 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

Example 11 (Skolemization)
We skolemize the following formula

∀ϵ∃n0 ∀n (¬gr(ϵ, 0) ∨ ¬el(n0,N) ∨ ¬gr(n, n0)
∨ gr(ϵ,abs(minus(a(n), a))))

The variable n0 apparently depends on ϵ. We replace
every occurrence of n0 by a Skolem function n0(ϵ).

∀ϵ ∀n (¬gr(ϵ, 0) ∨ ¬el(n0(ϵ),N) ∨ ¬gr(n, n0(ϵ))
∨ gr(ϵ,abs(minus(a(n), a))))

Finally, we have the skolemized formula

(¬gr(ϵ, 0) ∨ ¬el(n0(ϵ),N) ∨ ¬gr(n, n0(ϵ))
∨ gr(ϵ,abs(minus(a(n), a))))

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

30 Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Quantifiers and Normal Forms

When skolemizing a formula in prenex normal form
All existential quantifiers are eliminated from the outside
inward . That is, a formula of the form ∀x1 ∀x2 . . . ∀xn ∃y φ
is replaced by ∀x1 ∀x2 . . . ∀xn φ[y/f(x1, x2, . . . , xn)] where
f is a new function that has not yet appeared in φ
If an existential quantifier is on the far outside, such as in
∃y p(y), then y must be replaced by a constant

Running time (in the number of literals)

Transformation into prenex normal form
Exponential (naive)
Polynomial [Eder 1992]

Skolemization
Polynomial

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

31 Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Proof Calculi

For reasoning in predicate logic, various calculi of natural
reasoning have been developed
For example, Gentzen calculus or sequent calculus

These calculi are meant to be applied by humans: the
inference rules are more or less intuitive, the calculi work on
arbitrary PL1 formulas

Based on Example 5, we give an example of a small
“natural” proof using the following inference rules

Modus Ponens (MP)

A, A ⇒ B

B

∀-Elimimation (∀-E)

∀x A

A[x/t]

Note: t is a ground term that
contains no variables

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

32 Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Proof Calculi

Example 12 (A natural deduction)
In Example 5, we built a small knowledge base KB with rules and
facts
KB ≡ female(karen) ∧ female(anne) ∧ female(mary)∧
female(eve) ∧ female(isabelle) ∧ child(oscar, karen, frank)∧
child(mary, karen, frank) ∧ child(eve,anne,oscar)∧
child(henry,anne,oscar) ∧ child(isabelle,anne,oscar)∧
child(clyde,mary,oscarb) ∧ (∀x∀y ∀z child(x, y, z) ⇒ child(x, z, y))
∧ (∀x∀y descendant(x, y) ⇔ ∃z child(x, y, z)
∨ (∃u∃v child(x, u, v) ∧ descendant(u, y)))

Can child(eve,oscar,anne) be derived using the MP and ∀-E
inference rules?

Step Proved by
1. child(eve,anne,oscar) KB
2. ∀x∀y ∀z child(x, y, z) ⇒ child(x, z, y) KB
3. child(eve,anne,oscar) ⇒ child(eve,oscar,anne) ∀-E for 2: x/eve,

y/anne, z/oscar
4. child(eve,oscar,anne) MP for 1 and 3

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

33 Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Proof Calculi

The calculus with just MP and ∀-E is not complete
It can be extended to a complete calculus by adding
further inference rules

Theorem 4 (Gödel’s completeness theorem [Godel
1931])
First-order predicate logic is complete. That is, there is a
calculus with which every proposition that is a consequence of
a knowledge base KB can be proved. If KB |= φ, then it holds
that KB ⊢ φ

Every true proposition in first-order predicate logic is
provable (= syntactically derivable)
Is the reverse true? In other words, is everything we can
derive syntactically actually true?

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

34 Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Proof Calculi

Indeed, the answer is “yes”

Theorem 5 (Correctness)
There are calculi with which only true propositions can be
proved. That is, if KB ⊢ φ, then KB |= φ

Provability and semantic consequence are therefore
equivalent concepts, as long as correct and complete
calculus is being used . Thereby first-order predicate logic
becomes a powerful tool for mathematics and AI
The aforementioned calculi of natural deduction are rather
unsuited for automatization
Only resolution calculus, which was introduced in 1965
and essentially works with only one simple inference rule,
enabled the construction of powerful automated theorem
provers, which later were employed as inference machines
for expert systems

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

35 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Recall: Resolution Rule

A ∨B,¬B ∨ C

A ∨ C
or

A ∨B,B ⇒ C

A ∨ C

Recall: Resolution Proof
Input: Knowledge base KB
Goal: Decide whether KB |= Q

Method: Add ¬Q to the knowledge base. If the empty
clause can be derived, conclude KB |= Q. If there is no
more resolvable pair of clauses (and the empty clause is
not derived), conclude KB ̸|= Q

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

36 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 13 (Resolution Proof of Example 12)
KB ≡ child(eve,anne,oscar) ∧ (∀x ∀y ∀z child(x, y, z) ⇒
child(x, z, y))
Q ≡ child(eve,oscar,anne)
Proof:

Step Proved by
1. child(eve,anne,oscar) KB
2. ∀x∀y ∀z child(x, y, z) ⇒ child(x, z, y) KB
3. ¬child(eve,oscar,anne) ¬Q
4. child(eve,anne,oscar) ⇒ child(eve,oscar,anne) Unification for 2:

x/eve, y/anne,
z/oscar

5. ¬child(eve,anne,oscar) ∨ child(eve,oscar,anne) Equivalent form
of 4

6. ¬child(eve,anne,oscar) Res(3, 5)
7. () Res(1, 6)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

37 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 14
Everyone knows his own mother. Does Henry know
anyone?
We use a function symbol mother and a predicate symbol
knows
KB ≡ ∀x knows(x,mother(x))
Q ≡ ∃y knows(henry, y)
Proof:

Step Proved by
1. ∀x knows(x,mother(x)) KB
2. ∀y ¬knows(henry, y) ¬Q
3. knows(henry,mother(henry)) Uni. (σ) for 1: x/henry
4. ¬knows(henry,mother(henry)) Uni. (σ) for 2: y/mother(henry)
5. () Res(3, 4)

The replacement step σ defined by x/henry and
y/mother(henry) is called unification

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

38 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Unifier
Two literals are called unifiable if there is a substitution σ
for all variables which makes the literals look identical .
Such a σ is called a unifier .
A unifier is called the most general unifier (MGU) if all
other unifiers can be obtained from it by substitution of
variables.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

39 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 15
Two literals knows(x,mother(x)) and knows(henry, y) in
Example 14 are unifiable
With the subtitution σ : x/henry, y/mother(henry) both
literals become knows(henry,mother(henry)).
Two literals knows(henry, x) and knows(x,marry) are not
unifiable.

The variable x cannot take on the values henry and marry
at the same time.
However, knows(henry, x) means that “Henry knows
everyone”. So we should be able to infer that Henry knows
Marry
The problem arises because both literals use the same
variable x, which can be avoided by renaming x in
knows(x, marry) to y (a new variable name) without
changing its meaning. Now, knows(henry, x) and
knows(y, marry) are unifiable by the substitution
σ : x/marry, y/henry

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

40 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 16
There are different unifiers for unifying the literals
p(f(g(x)), y, z) and p(u, u, f(u))

σ1 : y/f(g(x)), z/f(f(g(x))), u/f(g(x))
σ2 : x/h(v), y/f(g(h(v))), z/f(f(g(h(v)))), u/f(g(h(v)))
σ3 : x/h(h(v)), y/f(g(h(h(v)))), z/f(f(g(h(h(v))))), u/f(g(h(h(v))))
σ4 : x/h(a), y/f(g(h(a))), z/f(f(g(h(a)))), u/f(g(h(a)))
σ5 : x/a, y/f(g(a)), z/f(f(g(a))), u/f(g(a))

Among these unifiers, σ1 is the most general unifier
(MGU): The other unifiers can be respectively obtained
from σ1 through the substitutions x/h(v), x/h(h(v)),
x/h(a), and x/a

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

41 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Need a procedure to find a MGU given a set of
expressions
Requirements:

stop after a finite number of steps
return an MGU if the set is unifiable
state that the set is not unifiable otherwise

There are many possibilities
We go for a recursive procedure

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

42 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Basic Idea
Given a set of expressions {E1, . . . , Ek}.
Find a disagreement set (which we will define later).
Build a substitution that can eliminate the disagreement.

Example 17 (Disagreement Elimination)
Consider the set {p(a), p(x)} of expressions.
They disagree because of the arguments a and x.
The disagreement set here is {a, x}. Since x is a variable,
we can eliminate this disagreement by using the
substitution σ : x/a.
σ(p(a)) = σ(p(x)) = p(a).

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

43 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Disagreement Set

The disagreement set of a nonempty set of expressions W is
obtained by finding the first position (starting from the left) at
which not all the expressions in the W have the same symbol .
We then extract , from each expression, the sub-expression
that begins with the symbol occupying that position.
The set of these sub-expressions is the disagreement set .

Example 18
Consider the set W = {p(x), p(a)}.
The first position at which the string of symbols p(a) and
p(x) differ is the position number 3.
The sub-expressions starting from position 3 are a and x
respectively.
Disagreement set: {a, x}.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

44 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 19
Consider the set
W = {p(x, f(y, z)), p(x, a), p(x, g(h(k(x))))}.
The first position at which the string of symbols
p(x, f(y, z)), p(x, a), and p(x, g(h(k(x)))) differ is the
positioin number 3.
The sub-expressions starting from position 3 are f(y, z), a,
and g(h(k(x))), respectively.
Disagreement set: {f(y, z), a, g(h(k(x)))}

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

45 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Unification Algorithm:
(1) Set k = 0, W0 = W , and σ0 = ϵ (here ϵ denotes the empty

substitution).
(2) If Wk is a singleton, STOP, σk is a MGU. Otherwise, find

the disagreement set Dk for Wk.
(3) If there is a pair (vk, tk) such that vk, tk ∈ Dk, vk is a

variable that does not occur in the term tk, go to step (4);
Otherwise STOP, W is not unifiable.

(4) Appply the substitution vk/tk to σk and then add vk/tk to
the resulting set to obtain σk+1. Apply the substitution
vk/tk to Wk to obtain Wk+1.

(5) Set k = k + 1 and go to step (2).

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

46 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 20
W0 = W = {p(f(g(x)), y, z), p(u, u, f(u))}, σ0 = ϵ.
D0 = {f(g(x)), u} ⇒ σ1 = {u/f(g(x))},
W1 = {p(f(g(x)), y, z), p(f(g(x)), f(g(x)), f(f(g(x))))}.
D1 = {y, f(g(x))} ⇒ σ2 = {u/f(g(x)), y/f(g(x))}, W2 =
{p(f(g(x)), f(g(x)), z), p(f(g(x)), f(g(x)), f(f(g(x))))}.
D2 = {z, f(f(g(x)))} ⇒
σ3 = {u/f(g(x)), y/f(g(x)), z/f(f(g(x)))},
W3 = {p(f(g(x)), f(g(x)), f(f(g(x))))} ⇒ STOP and
output σ3.
MGU: u/f(g(x)), y/f(g(x)), z/f(f(g(x))). Term:
p(f(g(x)), f(g(x)), f(f(g(x)))).

Example 21
W0 = W = {p(f(x), g(y)), p(z, z)}, σ0 = ϵ.
D0 = {f(x), z} ⇒ σ1 = {z/f(x)},
W1 = {p(f(x), g(y)), p(f(x), f(x))}.
D1 = {g(y), f(x)} ⇒ STOP, W is not unifiable.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

46 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 20
W0 = W = {p(f(g(x)), y, z), p(u, u, f(u))}, σ0 = ϵ.
D0 = {f(g(x)), u} ⇒ σ1 = {u/f(g(x))},
W1 = {p(f(g(x)), y, z), p(f(g(x)), f(g(x)), f(f(g(x))))}.
D1 = {y, f(g(x))} ⇒ σ2 = {u/f(g(x)), y/f(g(x))}, W2 =
{p(f(g(x)), f(g(x)), z), p(f(g(x)), f(g(x)), f(f(g(x))))}.
D2 = {z, f(f(g(x)))} ⇒
σ3 = {u/f(g(x)), y/f(g(x)), z/f(f(g(x)))},
W3 = {p(f(g(x)), f(g(x)), f(f(g(x))))} ⇒ STOP and
output σ3.
MGU: u/f(g(x)), y/f(g(x)), z/f(f(g(x))). Term:
p(f(g(x)), f(g(x)), f(f(g(x)))).

Example 21
W0 = W = {p(f(x), g(y)), p(z, z)}, σ0 = ϵ.
D0 = {f(x), z} ⇒ σ1 = {z/f(x)},
W1 = {p(f(x), g(y)), p(f(x), f(x))}.
D1 = {g(y), f(x)} ⇒ STOP, W is not unifiable.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

47 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Complexity of unification
The simplest unification algorithms are very fast in most
cases
Worst case: the computation time grows exponentially with
the size of the terms.
In practice, nearly all unification attempts fail, in most cases
the worst case complexity has no dramatic effect
The fastest unification algorithms have nearly linear
complexity [Bibel 1982]

Exercise 6 ([Ertel 2025], Exercise 3.5, p. 64)
Unify (if possible) the following terms and give the MGU and
the resulting terms
(a) p(x, f(y)) and p(f(z), u)
(b) p(x, f(x)) and p(y, y)
(c) x = 4 − 7 · x and cos y = z

(d) x < 2 · x and 3 < 6
(e) q(f(x, y, z), f(g(w,w), g(x, x), g(y, y))) and q(u, u)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

48 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Generalized Resolution Rule for PL1
The resolution rule for two clauses in conjunctive normal form reads

A1 ∨ . . . Am ∨B,¬B′ ∨ C1 ∨ · · · ∨ Cn σ(B) = σ(B′)

σ(A1) ∨ · · · ∨ σ(Am) ∨ σ(C1) ∨ · · · ∨ σ(Cn)
,

where σ is the MGU of B and B′

What does this definition mean?
Premise 1: A1 ∨ . . . Am ∨B
Premise 2: ¬B′ ∨ C1 ∨ · · · ∨ Cn

σ(B) = σ(B′) means that B and B′ are matched by applying the
MGU σ
Apply σ for every literal in each premise
Now, Premise 1 becomes σ(A1) ∨ . . . σ(Am) ∨ σ(B) and Premise
2 becomes ¬σ(B′) ∨ σ(C1) ∨ · · · ∨ σ(Cn)
The usual resolution rule can now be applied

Theorem 6 (Correctness)
The resolution rule is correct. That is, the resolvent is a semantic
consequence of the two parent clauses

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

49 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

For Completeness, we need an additional inference rule
Factorization Rule for PL1

Factorization of a clause is accomplished by

A1 ∨A2 ∨ · · · ∨An, σ(A1) = σ(A2)

σ(A2) ∨ · · · ∨ σ(An)
,

where σ is the MGU of A1 and A2

What does this definition mean?
Premise: A1 ∨A2 ∨ · · · ∨An

σ(A1) = σ(A2) means that A1 and A2 are matched after
their MGU σ is applied
Apply σ for every literal in the premise
Now, the Premise becomes σ(A1) ∨ σ(A2) ∨ . . . σ(An)
As p ∨ p ≡ p, the Conclusion σ(A2) ∨ . . . σ(An) is derived
Intuitively, after σ is applied, as σ(A1) = σ(A2), one of
these literals becomes “redundant” and can be “removed”

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

50 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 22
Russell’s paradox: There is a barber who shaves everyone
who does not shave himself
Q ≡ ∀x shaves(baber, x) ⇔ ¬shaves(x, x) ≡
∀x (¬shaves(baber, x) ∨ ¬shaves(x, x)) ∧ (shaves(x, x) ∨
shaves(baber, x))
Proof (that Q is contradictory):

Step Proved by
1. ¬shaves(baber, x) ∨ ¬shaves(x, x) Q
2. shaves(x, x) ∨ shaves(baber, x) Q
3. ¬shaves(baber,barber) Fak(1, σ : x/barber)
4. shaves(baber,barber) Fak(2, σ : x/barber)
5. () Res(3, 4)

Note: Without the Factorization Rule, from the two clauses 1
and 2, we can derive several tautologies, but no contradiction

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

51 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Exercise 7 ([Ertel 2025], Exercise 3.6, p. 64)
(a) Transform Russell’s Paradox from Example 22 into CNF
(b) Show that the empty clause cannot be derived using

resolution without factorization. Try to understand this
intuitively

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

52 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Theorem 7
The resolution rule together with the factorization rule is
refutation complete. That is, by application of factorization and
resolution steps, the empty clause can be derived from any
unsatisfiable formula in conjunctive normal form

Note
The search for a proof can be very frustrating in practice

Even when KB ∧ ¬Q has only a few clauses, every
resolution step generates a new clause which increases
the number of possible resolution steps in the next
iteration

Resolution Strategies

Unit Resolution
Set of Support (SOS) Strategy
Input Resolution

Pure Literal Rule
Subsumption

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

53 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Unit Resolution
Prioritizes resolution steps in which one of the two clauses
consists of only one literal , called a unit clause
Complete
Heuristic (search space reduction not guaranteed)

Set of Support (SOS) ⊂ KB ∧ ¬Q

Every resolution step must involve a clause from the SOS
The resolvent is added to the SOS
Search space reduction guaranteed
Not complete
Complete, if (KB ∧ ¬Q) \ SOS is satisfiable
Often, the negated query ¬Q is used as the initial SOS

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

54 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Input Resolution
A clause from the input set KB ∧ ¬Q must be involved in
every resolution step
Search space reduction guaranteed
Not complete

Pure Literal Rule
All clauses that contain literals for which there are no
complementary literals in other clauses are deleted
Search space reduction guaranteed
Complete
Is used by practically all resolution provers

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

55 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Subsumption
If the literals of a clause K1 represent a subset of the
literals of the clause K2, then K2 can be deleted

For example, the clause
(raining(today) ⇒ street_wet(today)) is redundant if
street_wet(today) is already valid

Search space reduction guaranteed
Complete
Is used by practically all resolution provers

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

56 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Exercise 8 ([Ertel 2025], Exercise 3.7, p. 64)
(a) Why is resolution with the set of support strategy

incomplete?
(b) Justify (without proving) why the set of support strategy

becomes complete if (KB ∧ ¬Q) \ SOS is satisfiable
(c) Why is resolution with the pure literal rule complete?

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

57 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Equality is an especially inconvenient cause of explosive
growth of the search space

Example 23
Knowledge Base KB includes

Equality Axioms
∀x x = x
∀x ∀y x = y ⇒ y = x
∀x ∀y ∀z x = y ∧ y = z ⇒ x = z

Substitution Axioms
∀x ∀y x = y ⇒ f(x) = f(y), for every function symbol f
∀x ∀y x = y ⇒ p(x) ⇔ p(y), for every predicate symbol p

The symmetry clause ¬x = y ∨ x = y can be unified with
every positive or negated equation. This leads to the
derivation of new clauses and equations upon which
equality axioms can again be applied, and so on. (Most of
these new clauses are not helpful to a proof)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

58 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Special inference rules for equality have been developed
which get by without explicit equality axioms and, in
particular, reduce the search space

Demodulation: Take a clause t1 = t2 and some clause α
that contains the term t1, and yields a new clause formed by
substituting t2 for t1 within α. Note that demodulation is
directional ; given t1 = t2, the t1 always gets replaced with
t2, never vice versa

t1 = t2, (. . . t . . .), σ(t1) = σ(t)

(. . . σ(t2) . . .)
Premise 1: t1 = t2
Premise 2: A formula α = (. . . t . . .)
σ(t1) = σ(t) means that the terms t1 and t are matched after
σ is applied
The substitution σ is applied for α, t1, and t2
Now, α becomes (. . . σ(t1) . . .)
Replace σ(t1) by σ(t2) everywhere in α, we get the
Conclusion (. . . σ(t2) . . .)

Paramodulation: More general rule, works with conditional
equations

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

59 Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Resolution

Example 24 (Demodulation)
KB contains

father(father(x)) = grandfather(x)
birthdate(father(father(John)), 1945)

By demodulation, we get
birthdate(grandfather(John), 1945)

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

60 Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Automated Theorem Provers

Theorem Provers: Implementations of proof calculi on
computers.

Otter, 1984
One of the oldest resolution provers (with equality handling).
L. Wos, W. McCune: Argonne National Laboratory, Chicago.
Otter was successfully applied in specialized areas of
mathematics: “Currently, the main application of Otter is
research in abstract algebra and formal logic. Otter and its
predecessors have been used to answer many open
questions in the areas of finite semigroups, ternary Boolean
algebra, logic calculi, combinatory logic, group theory,
lattice theory, and algebraic geometry.”

SETHEO, 1987
PROLOG technology.
Warren Abstract Machine.
W. Bibel, J. Schumann, R. Letz: Munich Technical
University.
PARTHEO: implementation on parallel computers.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

61 Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

References

Automated Theorem Provers

E, 2000
Modern equation prover.
S. Schulz: Munich Technical University.
Homepage of E: “E is a purely equational theorem prover for
clausal logic. That means it is a program that you can stuff a
mathematical specification (in clausal logic with equality)
and a hypothesis into, and which will then run forever, using
up all of your machines resources. Very occasionally it will
find a proof for the hypothesis and tell you so ;-).”

Vampire
Resolution with equality handling.
A. Voronkov: University of Manchester, England.
Winner of CADE (CADE = Conference on Automated
Deduction) ATP (Automated Theorem Prover) System
Competition from 2001 to 2006.

Isabelle, 2002
Interactive prover for higher-order predicate logic
T. Nipkov, L. Paulson, M. Wenzel: Univ. Cambridge, Munic
Techn. Univ.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

62 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

We now wish to demonstrate the application of an automated
prover with the aforementioned prover E. E is a specialized
equality prover which greatly shrinks the search space through
an optimized treatment of equality.

Definition
A structure (M, ·) consisting of a set M with a two-place inner
operation “·” is called a semigroup if the law of associativity

∀x∀y ∀z (x · y) · z = x · (y · z)

holds. An element e ∈ M is called left-neutral (right-neutral) if
∀x e · x = x (∀xx · e = x).

Theorem 8
If a semigroup has a left-neutral element el and a right-neutral
element er, then e1 = er.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

63 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

First, we prove by intuitive mathematical reasoning.

Proof of Theorem 8.
For every x ∈ M , it holds that

el · x = x (1)
x · er = x (2)

Replacing x = er in Eq. (1) and x = el in Eq. (2), we have

el · er = er (3)
el · er = el (4)

Combining Eq. (3) and Eq. (4), we have el = el · er = er.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

64 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Next, we carry out the resolution proof manually. The function
m(x, y) = x · y.

Negated query (¬el = er)1

Knowledge Base KB
Definitions of semi-groups and left-/right- neutrals.

(m(m(x, y), z) = m(x, m(y, z)))2 associativity

(m(el, x) = x)3 left-neutral

(m(x, er) = x)4 right-neutral

Equality axioms (for comparing terms)

(x = x)5 reflexive

(¬x = y ∨ y = x)6 symmetry

(¬x = y ∨ ¬y = z ∨ x = z)7 transitivity

(¬x = y ∨ m(x, z) = m(y, z))8 substitution for m

(¬x = y ∨ m(z, x) = m(z, y))9 substitution for m

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

65 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

A resoution proof may be as follows.

Step Proved by
10. x = m(el, x) Res(3, 6, x6/m(el, x3), y6/x3)
11. ¬m(el, x) = z ∨ x = z Res(7, 10, x7/x10, y7/m(el, x10))
12. er = el Res(4, 11, x4/el, x11/er, z11/el)
13. () Res(1, 12, ∅)

For example, Res(3, 6, x6/m(el, x3), y6/x3) means that in the
resolution of clause 3 with clause 6, the x in clause 6 is
replaced by m(el, x) where the variable x is from clause 3 and
y from clause 6 is replaced by x from clause 3.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

66 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Now we want to apply the prover E (https:
//wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html) to the
problem.
Transformation in clause normal form language LOP (The
syntax of LOP represents an extension of the PROLOG syntax
for non Horn clauses.)

(¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bn) 7→ B1; . . . ; Bn<-A1, . . . , Am

An input file for E
halbgr1.lop

1 <- eq(el,er). % query
2 eq(m(m(X,Y),Z), m(X,m(Y,Z))). % associativity of m
3 eq(m(el,X), X). % left-neutral element of m
4 eq(m(X,er), X). % right-neutral element of m
5 eq(X,X). % equality: reflexivity
6 eq(Y,X) <- eq(X,Y). % equality: symmetry
7 eq(X,Z) <- eq(X,Y), eq(Y,Z). % equality: transitivity
8 eq(m(X,Z), m(Y,Z)) <- eq(X,Y). % equality: substitution in m
9 eq(m(Z,X), m(Z,Y)) <- eq(X,Y). % equality: substitution in m

https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

67 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Calling the prover with
eprover --proof-object halbgr1.lop | epclextract. The
output:

0 : : (eq(X1,X2)|~(eq(X2,X1))) : initial("halbgr1.lop", at_line_6_column_1)
1 : : (eq(X1,X2)|(~(eq(X1,X3))|~(eq(X3,X2)))) : initial("halbgr1.lop", at_line_7_column_1)
2 : : eq(m(el,X1),X1) : initial("halbgr1.lop", at_line_3_column_1)
3 : : ~(eq(el,er)) : initial("halbgr1.lop", at_line_1_column_1)
4 : : eq(m(X1,er),X1) : initial("halbgr1.lop", at_line_4_column_1)
5 : : (eq(X1,X2)|~(eq(X2,X1))) : fof_simplification(0)
6 : : (eq(X1,X2)|(~(eq(X1,X3))|~(eq(X3,X2)))) : fof_simplification(1)
7 : : [++eq(X1,X2),--eq(X2,X1)] : 5
8 : : [++eq(m(el,X1),X1)] : 2
9 : : ~(eq(el,er)) : fof_simplification(3)
10 : : [++eq(X1,X2),--eq(X1,X3),--eq(X3,X2)] : 6
11 : : [++eq(X1,m(el,X1))] : pm(7,8)
12 : : [--eq(el,er)] : 9
13 : : [++eq(X1,X2),--eq(m(el,X1),X2)] : pm(10,11)
14 : : [++eq(m(X1,er),X1)] : 4
15 : : [--eq(er,el)] : pm(12,7)
16 : : [] : sr(pm(13,14),15) : ’proof’

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

68 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Lines 0–4: marked with initial, the clauses from the
input data are listed again.
Positive literals are identified by ++ and negative literals by
--.
pm(a, b) stands for a resolution step between clause a
and clause b. (pm means Paramodulation.)
The proof found by E is somewhat similar to the manually
created proof.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

69 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Because we explicitly model the equality by the predicate eq, the
particular strengths of E do not come into play. Now we omit the
equality axioms and obtain

halbgr2.lop

1 <- el = er. % query
2 m(m(X,Y),Z) = m(X,m(Y,Z)) . % associativity of m
3 m(el,X) = X . % left-neutral element of m
4 m(X,er) = X . % right-neutral element of m

as the input.
The proof also becomes more compact.

0 : : ~(equal(el,er)) : initial("halbgr2.lop", at_line_1_column_1)
1 : : equal(m(X1,er),X1) : initial("halbgr2.lop", at_line_4_column_1)
2 : : equal(m(el,X1),X1) : initial("halbgr2.lop", at_line_3_column_1)
3 : : ~(equal(el,er)) : fof_simplification(0)
4 : : [++equal(m(X1,er), X1)] : 1
5 : : [++equal(m(el,X1), X1)] : 2
6 : : [--equal(el, er)] : 3
7 : : [++equal(er, el)] : pm(4,5)
8 : : [] : cn(rw(6,7)) : ’proof’

From the above output, the proof consists essentially of a single
inference step on the two relevant clauses 4 and 5.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

70 Mathematical
Examples

Applications

Summary

References

Mathematical Examples

Exercise 9 ([Ertel 2025], Exercise 3.8, p. 64)
Formalize and prove with resolution that in a semigroup with at
least two different elements a, b, a left-neutral element e (i.e.,
for every element x, we have e · x = e), and a left null element
n (i.e., for every element x, we have n · x = n), these two
elements have to be different, that is, that n ̸= e. Use
demodulation.

Exercise 10 ([Ertel 2025], Exercise 3.9, p. 64)
Obtain the theorem prover E (https:
//wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html) or
another prover and prove the following statements. Compare
these proofs with those in the text.
(a) The claim from Example 7 in Lecture “Propositional Logic”.
(b) Russell’s paradox from Example 22.
(c) The claim from Exercise 9.

https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

71 Applications

Summary

References

Applications

Some applications of Automated Theorem Provers.
Four color theorem was first proved in 1976 with the help
of a special prover.
Inference in expert systems.

Little use nowadays due to the problems of predicate logic
in modeling uncertainty

Automated program verification.
For example, in sofware engineering, a proof of certain
security characteristics of a program is required.
Such a proof cannot be brought about through testing of a
finished program, for in general it is impossible to apply a
program to all possible inputs. This is therefore an ideal
domain for general or even specialized inference systems.

Software reuse.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

72 Applications

Summary

References

Applications

Example 25 (Software reuse)
Specification of the query

PREQ: the preconditions, which must hold before
the desired program is applied.

POSTQ: the postconditions, which must hold after the
desired program is applied.

Task: Search a software database for modules, which fulfil
these requirements. For each module M , the software
database contains a description of the preconditions
PREM and the postconditions POSTM .

Thus it must hold: PREQ ⇒ PREM .
If, for example, a module in the database only accepts lists of
integers, then lists of integers as input must also appear as
preconditions in the query.
An additional requirement in the query that, for example, only
even numbers appear, doesn’t cause a problem.

It must also hold: POSTM ⇒ POSTQ.
After the application of the module, all properties required by
the query must be fulfilled.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

73 Summary

References

Summary

The proof of mathematical theorems can be automated.
Automated provers can be used for verification tasks.
PL1 is not suitable for reasoning in everyday life.

74

First-order Predicate
Logic

Hoàng Anh Đức

Motivation

Syntax

Semantics

Quantifiers and
Normal Forms

Proof Calculi

Resolution

Automated Theorem
Provers

Mathematical
Examples

Applications

Summary

74 References

References

Ertel, Wolfgang (2025). Introduction to Artificial
Intelligence. 3rd. Springer. DOI:
10.1007/978-3-658-43102-0.
Eder, Elmar (1992). Relative Complexities of First Order
Calculi. Springer-Verlag. DOI:
10.1007/978-3-322-84222-0.
Bibel, Wolfgang (1982). Automated Theorem Proving.
Springer Science & Business Media. DOI:
10.1007/978-3-322-90100-2.
Godel, Kurt (1931). “Diskussion zur Grundlegung der
Mathematik: Erkenntnis 2.” In: Monatshefte fur
Mathematik Und Physik 32, pp. 147–148.

https://doi.org/10.1007/978-3-658-43102-0
https://doi.org/10.1007/978-3-322-84222-0
https://doi.org/10.1007/978-3-322-90100-2

	Motivation
	Syntax
	Semantics
	Quantifiers and Normal Forms
	Proof Calculi
	Resolution
	Automated Theorem Provers
	Mathematical Examples
	Applications
	Summary
	References

