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In short, a logic can be viewed as a triple (L, S, R) where
L, the logic’s language, is a class of well-formed
(syntactically correct) sentences (formulas)
S, the logic’s semantics, is a formal specification of how to
assign meaning in the “real world” to the elements of L
R, the logic’s inference system, is a set of formal
derivation rules (or inference rules) over L

Note
We focus on propositional logic and first-order logic
We will explain these concepts more precisely in the
next slides
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We mention some fundamental concepts of logical
representation and reasoning without involving the technical
details (See [Russell and Norvig 2010], Section 7.3). To
illustrate these concepts, we use the ordinary arithmetic

A sentence (formula)1 is expressed according to the
syntax of the so-called knowledge representation
language, which specifies all the sentences that are
well-formed (syntactically correct)

“x + y = 4” is a well-formed sentence, while “xy4+ =” is not

The semantics (meaning) defines the truth (true/false) of
each sentence with respect to each possible world
(assignment, interpretation)

“x + y = 4” is true in a world where x is 2 and y is 2, but
false in a world where x is 1 and y is 1
In standard logics, every sentence must be either true or
false in each possible world—there is no “in between.”

1Here “sentence” is used as a technical term. It is related but not identical to
the sentences of English and other natural languages
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If a sentence φ is true in a possible world (assignment,
interpretation) m, we say that m satisfies φ or m is a
model of φ. The notation Mod(φ) is sometimes used to
indicate the set of all models of φ

Any assignment of real numbers to the variables x and y
such that x + y = 4 is a model of the sentence “x + y = 4”

Logical reasoning involves the relation of logical
entailment between sentences (formulas)—the idea that a
sentence (formula) β follows logically from another
sentence (formula) α

In mathematical notion, we write α |= β to indicate that α
entails β or β logically follows from α. That is, α |= β if and
only if, in every model in which α is true, β is also true

α |= β if and only if Mod(α) ⊆ Mod(β)

If α |= β, then α is a stronger assertion than β
The sentence “x = 0” entails the sentence “xy = 0”
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An inference algorithm is one that carries out logical
inference—the procedure of deriving valid conclusions
from a set KB of existing logical sentences (e.g., a
knowledge base)2

From the sentences “x = 2” and “y = 2”, one can derive the
conclusion “x + y = 4”

An inference algorithm to decide if KB |= α is the
so-called model checking: Enumerate all possible models
to check that α is true in all models in which KB is true. If
so, return “yes”. Otherwise, return “no”. (Model checking
works if the space of models is finite)
A sound (truth preserving) inference algorithm derives only
entailed sentences: if KB ̸|= α then KB ̸⊢ α

A complete inference algorithm derives all entailed
sentences: if KB |= α then KB ⊢ α

2One can think of KB as either a set of sentences or a single sentence that
asserts all the individual sentences
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Set of logical operators Op = {¬, ∧, ∨, ⇒, ⇔, (, )}
Set of symbols Σ (called the signature) whose elements
are propositional variables
Set of logical constants {t, f}
All the above sets are pairwise disjoint

Propositional Logic Formulas

t and f are (atomic) formulas
All propositional variables (e.g., members of Σ) are
(atomic) formulas
If A and B are formulas, then ¬A, (A), A ∧ B, A ∨ B,
A ⇒ B, A ⇔ B are also formulas
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t “true”
f “false”

¬A “not A”
A ∧ B “A and B”
A ∨ B “A or B”
A ⇒ B “if A then B” (implication)
A ⇔ B “A if and only if B” (equivalence)

Example 1
Given Σ = {A, B, C}. Then

A ∧ B

A ∧ B ∧ C

A ∧ A ∧ A

C ∧ B ∨ A

(¬A ∧ B) ⇒ (¬C ∨ A)
(((A)) ∨ B)

are (syntactically correct) formulas
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Backus-Naur Form (BNF)
Developed by John Backus and Peter Naur (1960).
A formal notation to describe the syntax of a given
language.
Meta-symbols of BNF

::= meaning “is defined as”
| meaning “or”

<> angle brackets used to surround category
names

Many authors have introduced some slight extensions of
BNF for the ease of use.

Example 2 (BNF for numbers)

<number> ::= <digit> | <number> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

which can be read as: “a number is a digit, or any number
followed by an extra digit”
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Example 3 (BNF for sentences)

<sentence> ::= <noun_phrase> <verb>
<noun_phrase> ::= <article> <noun>
<noun> ::= "horse" | "dog" | "hamster"
<article> ::= "" | "a" | "the"
<verb> ::= "stands" | "walks" | "jumps"

Some strings defined from this grammar:
the horse jumps
a dog walks
hamster jumps

Exercise 1 ([Ertel 2025], Exercise 2.1, p. 38)
Give a Backus-Naur form grammar for the syntax of
propositional logic.
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In propositional logic, there are two truth values: t for “true” and
f for “false”

The logical constants t and f are always assigned the
truth values t and f , respectively

Truth assignment

A mapping I : Σ → {t, f}, which assigns a truth value
to every propositional variable, is called an assignment or
interpretation

Exercise 2
How many assignments a propositional logic formula with n
different variables can have?

Note
In the textbook [Ertel 2025], the author uses t and f for both
logical constants and truth values
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A truth table for a formula φ is a table describing all
possible assignments of φ

Definition of the logical operators by truth table

A B (A) ¬A A ∧ B A ∨ B A ⇒ B A ⇔ B
t t t f t t t t
t f t f f t f f
f t f t f t t f
f f f t f f t t

The empty formula is true for all assignments
Operator priorities: ¬, ∧, ∨, ⇒, ⇔
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Semantically Equivalent Formulas

Two formulas F and G are called semantically equivalent if
they take on the same truth value for all assignments. We
write F ≡ G

F ≡ G if and only if F ⇔ G is true for all assignments
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Classification of Formulas
A formula is called

Satisfiable if it is true for at least one assignment
Logically valid or simply valid if it is true for all assignment .
True formulas are also called tautologies
Unsatisfiable if it is not true for any assignment

Every assignment that satisfies a formula is called a model of the
formula

The negation of any generally valid formula is unsatisfiable
The negation of a satisfiable, but not generally valid formula is
satisfiable

Exercise 3 ([Ertel 2025], Exercise 2.4, p. 37)
Check the following statements for satisfiability or validity
(a) (play_lottery ∧ six_right) ⇒ winner
(b) (play_lottery ∧ six_right ∧ (six_right ⇒ win)) ⇒ win
(c) ¬(¬gas_in_tank ∧ (gas_in_tank ∨ ¬car_starts) ⇒ ¬car_starts)
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Theorem 1
The operations ∧, ∨ are commutative and associative, and the following
equivalences are generally valid:

¬A ∨ B ⇔ A ⇒ B (implication)
A ⇒ B ⇔ ¬B ⇒ ¬A (contraposition)

(A ⇒ B) ∧ (B ⇒ A) ⇔ (A ⇔ B) (equivalence)
¬(A ∧ B) ⇔ ¬A ∨ ¬B (De Morgan’s law)
¬(A ∨ B) ⇔ ¬A ∧ ¬B

A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C) (distributive law)
A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C)

A ∨ ¬A ⇔ t (tautology)
A ∧ ¬A ⇔ f (contradiction)

A ∨ f ⇔ A

A ∨ t ⇔ t
A ∧ f ⇔ f
A ∧ t ⇔ A
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Proof of Theorem 1.
We prove only the first formula

A B ¬A ¬A ∨ B A ⇒ B (¬A ∨ B) ⇔ (A ⇒ B)
t t f t t t
t f f f f t
f t t t t t
f f t t t t

Exercise 4
Prove all remaining formulas in Theorem 1 using truth table
Exercise 5 ([Ertel 2025], Exercise 2.2, p. 38)
Show that the following formulas are tautologies
(a) ¬(A ∧ B) ⇔ ¬A ∨ ¬B

(b) A ⇒ B ⇔ ¬B ⇒ ¬A

(c) ((A ⇒ B) ∧ (B ⇒ A)) ⇔ (A ⇔ B)
(d) (A ∨ B) ∧ (¬B ∨ C) ⇒ A ∨ C
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Exercise 6 ([Ertel 2025], Exercise 2.5, p. 39)
Using the programming language of your choice, program a
theorem prover for propositional logic using the truth table
method for formulas in conjunctive normal form. To avoid a
costly syntax check of the formulas, you may represent clauses
as lists or sets of literals, and the formulas as lists or sets of
clauses. The program should indicate whether the formula is
unsatisfiable, satisfiable, or true, and output the number of
different interpretations and models.
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In AI, we are interested in deriving new knowledge or
answering questions using an existing knowledge base – KB.

Question
Does a formula (query) Q follow from the knowledge base
KB?

Entailment
A formula KB entails a formula Q (or Q follows from KB) if
every model of KB is also a model of Q. We write KB |= Q

Mod(Q)

Mod(Q)

Mod(KB)

Mod(KB)

Mod(Q)

Mod(KB)

KB |= Q KB ̸|= Q KB ̸|= Q
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Every formula chooses a subset of the set of all
assignments as its model

Tautologies, such as A ∨ ¬A, do not restrict the number of
satisfying assignments

Recall that the empty formula is true for all assignments.
Then, ∅ |= T for any tautology T . For short, we write |= T

Theorem 2 (Deduction theorem)
A |= B if and only if |= A ⇒ B

Proof.
If A |= B then A ⇒ B is a tautology.

Since A |= B, in
any assignment that makes A true, B is also true. In other
words, it cannot happen that A 7→ t and B 7→ f . Therefore,
A ⇒ B is always true

If A ⇒ B holds then A |= B.

Since A ⇒ B holds, it never
happens that A 7→ t and B 7→ f . Therefore, any
assignment that makes A true also makes B true, i.e.,
A |= B
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To show KB |= Q, we can construct a truth table to prove
KB ⇒ Q is a tautology . This is the first proof system for
propositional logic

Remind: This is indeed proof by model checking
Disadvantage: Very large computing in the worst case (2n

assignments for n propositional variables)
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A simple, but important consequence of Theorem 2 (Deduction
theorem):

Theorem 3 (Proof by contradiction)
KB |= Q if and only if KB ∧ ¬Q is unsatisfiable

Proof.
If KB |= Q then KB ∧ ¬Q is unsatisfiable.

By
Theorem 2, KB ⇒ Q is a tautology. Thus,

¬(KB ⇒ Q) ≡ ¬(¬KB ∨ Q) ≡ KB ∧ ¬Q

is unsatisfiable

If KB ∧ ¬Q is unsatisfiable, then KB |= Q.

Since
KB ∧ ¬Q is unsatisfiable, we have

¬(KB ∧ ¬Q) ≡ ¬KB ∨ Q ≡ KB ⇒ Q

is a tautology. Thus KB |= Q
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Using Theorem 3, we can also prove KB |= Q as follows:
To show KB |= Q, we can add the negated query ¬Q to
the knowledge base KB and derive a contradiction
By Theorem 1, a contradiction is unsatisfiable A ∧ ¬A ⇔ f

Question

But what does “derive a contradiction” mean?

Derivation KB ⊢ Q

is the syntactic manipulation of the formulas KB and Q by
applying the inference rules in order to greatly simplifying
them, such that in the end we can instantly see that KB |= Q

We will mention the “inference rules” later
KB ⊢ Q means “Q follows from KB syntactically” and
KB |= Q means “Q follows from KB semantically”
This is another proof system for propositional logic, which
we call a calculus
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In general, to ensure that a calculus does not generate errors,
we define its two fundamental properties:

Properties of a calculus

A calculus is called sound if every derived proposition
follows semantically . That is, for two formulas KB and
Q: if KB ⊢ Q then KB |= Q

A calculus is called complete if all semantic
consequences can be derived . That is, for two formulas
KB and Q: if KB |= Q then KB ⊢ Q
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If a calculus is both sound and complete, then syntactic
derivation and semantic entailment are two equivalent relations

KB Q
derivation

Mod(KB) Mod(Q)
entailment

|=

in
terp

retation

(assign
m
en
t)

in
terp

retation

(assign
m
en
t)

semantic level
(interpretations/assignments)

syntactic level
(formulas)

⊢

Figure: Syntactic derivation and semantic entailment. Mod(X)
denotes the set of models of a formula X
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Proof systems are usually made to operate on formulas in
conjunctive normal form

Conjunctive Normal Form (CNF)

A formula is in conjunctive normal form (CNF) if and only if it
consists of a conjunction

K1 ∧ K2 ∧ · · · ∧ Km

of clauses. Each clause Ki (1 ≤ i ≤ m) consists of a
disjunction

Li1 ∨ Li2 ∨ . . . Lini

of literals. Finally, a literal is either a variable (positive literal)
or a negated variable (negative literal)
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Example 4 (Conjunctive Normal Form)
The formula (A ∨ B ∨ ¬C) ∧ (A ∨ B) ∧ (¬B ∨ ¬C) is in
conjunctive normal form

Variables: A, B, C
Literals: A, ¬A, B, ¬B, C, ¬C
Clauses: A ∨ B ∨ ¬C, A ∨ B, and ¬B ∨ ¬C

Theorem 4
Every propositional logic formula can be transformed into an
equivalent conjunctive normal form

Transforming a formula to CNF

Eliminate ⇒, ⇔ using known logic equivalences
Reduce the scope of signs through De Morgan’s laws
and the double negation
Convert to CNF using the associative and distributive
laws
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Example 5 (Transforming a formula to CNF)

A ∨ B ⇒ C ∧ D

≡ ¬(A ∨ B) ∨ (C ∧ D) implication
≡ (¬A ∧ ¬B) ∨ (C ∧ D) De Morgan
≡ (¬A ∨ (C ∧ D)) ∧ (¬B ∨ (C ∧ D)) distributive law
≡ ((¬A ∨ C) ∧ (¬A ∨ D)) ∧ ((¬B ∨ C) ∧ (¬B ∨ D)) distributive law
≡ (¬A ∨ C) ∧ (¬A ∨ D) ∧ (¬B ∨ C) ∧ (¬B ∨ D) associative law

Exercise 7 ([Ertel 2025], Exercise 2.3, p. 39)
Transform the following formulas into conjunctive normal form:
(a) A ⇔ B
(b) A ∧ B ⇔ A ∨ B
(c) A ∧ (A ⇒ B) ⇒ B
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A Quick Recap

Goal: showing KB |= Q by adding the negated query
¬Q to the knowledge base KB and derive a
contradiction

It suffices to work only with conjunctive normal forms
To carry out the (syntactic) derivation, we need a
calculus that is both sound and complete for the proof of
unsatisfiability of formulas. Which inference rules should
we use in such a calculus?
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We now focus on the inference rules—the rules applied to a set
of formulas to finally derive some conclusions

The Modus Ponens3 (or Implication-Elimination) rule

A, A ⇒ B

B
or A∧(A ⇒ B) ⊢ B or {A, A ⇒ B} ⊢ B

The set of formulas above the line is the premise
The formula below the line is the conclusion
One can derive the conclusion from the premise

Modus Ponens is sound
If both two formulas in the premise are true, the conclusion
is also true [Why? Verify this by a truth table]

Modus Ponens is not complete
{A ⇒ B, ¬B} |= ¬A [Why? Verify this by a truth table] but
{A ⇒ B, ¬B} ̸⊢ ¬A using just Modus Ponens repeatedly
To create a complete calculus as required, we can add more
rules. But, we will consider another inference rule instead

3Latin for “mode that affirms”
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The resolution rule

A ∨ B, ¬B ∨ C

A ∨ C
or

A ∨ B, B ⇒ C

A ∨ C

The derived formula is also called a resolvent
The resolution rule delete a pair of complement literals (B
and ¬B) from the two clauses and combines the rest of the
literals into a new clause
Two clauses may have more than one resolvent

Take C to be ¬A
In this case, these resolvents are tautologies [Why?]

The resolution rule is a generalization of the Modus
Ponens

Set A to be f
The resolution rule is equally usable if C is missing or if A
and C are missing
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Exercise 8 ([Ertel 2025], Exercise 2.6, p. 39)
(a) Show that Modus Ponens is a valid inference rule by

showing that A ∧ (A ⇒ B) |= B

(b) Show that the resolution rule is a valid inference rule

Exercise 9 ([Ertel 2025], Exercise 2.7, p. 39)
Show by application of the resolution rule that, in conjunctive
normal form, the empty clause is equivalent to the false
statement (Hint: Using the resolution rule, how to derive the
empty clause ()? What about the false statement f?)

Exercise 10
(a) Does (A ∨ A) ∧ (¬A ∨ ¬A) |= f hold? Can you derive f

from (A ∨ A) ∧ (¬A ∨ ¬A) using only the resolution rule?
(b) From (a), what can you say about the completeness of a

calculus containing only the resolution rule?
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The generalized resolution rule
(A1 ∨ A2 ∨ · · · ∨ Am ∨ B), (¬B ∨ C1 ∨ C2 · · · ∨ Cn)

(A1 ∨ A2 ∨ · · · ∨ Am ∨ C1 ∨ C2 · · · ∨ Cn)

With the resolution rule alone, we cannot build a complete
calculus as desired (e.g., see Exercise 10). With
factorization, which allows deletion of copies of literals
from clauses, this problem is eliminated

Theorem 5
The resolution calculus for the proof of unsatisfiability of
formulas in conjunctive normal form is sound and complete

Note
The resolution calculus is not complete in general

{A, B} |= A ∨ B but {A, B} ̸⊢ A ∨ B using resolution rule
For our purpose, it suffices that for any unsatisfiable
formula F , we have F ⊢ (). (The resolution calculus
satisfies this, and thus it is refutation-complete)
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Exercise 11
(a) Let C1 = A1 ∨ ¬A2 ∨ A3 and C2 = A2 ∨ ¬A3 ∨ A4 be two clauses.

Show that one can resolve C1 and C2 in more than one way
(b) Are the resolvents from (a) tautologies?
(c) Prove the generalized statement: if two clauses can be resolved

in more than one way then all those resolvents are tautologies

With the resolution rule alone, we cannot build a complete
calculus as desired (e.g., see Exercise 10). With
factorization, which allows deletion of copies of literals
from clauses, this problem is eliminated

Theorem 5
The resolution calculus for the proof of unsatisfiability of
formulas in conjunctive normal form is sound and complete

Note
The resolution calculus is not complete in general

{A, B} |= A ∨ B but {A, B} ̸⊢ A ∨ B using resolution rule
For our purpose, it suffices that for any unsatisfiable
formula F , we have F ⊢ (). (The resolution calculus
satisfies this, and thus it is refutation-complete)
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With the resolution rule alone, we cannot build a complete
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Recap: Resolution Calculus

Transform KB ∧ ¬Q into CNF
Repeatedly apply the resolution and factorization rules
until there is no resolvable pair of clauses
Every time the resolution rule is applied, add the
resolvent to KB if it has not yet been included
If the empty clause is derived, conclude KB |= Q.
Otherwise, if there is no more resolvable pair of clauses
(and the empty clause is not derived), conclude KB ̸|= Q

Theorem 5
The resolution calculus for the proof of unsatisfiability of
formulas in conjunctive normal form is sound and complete

Note
The resolution calculus is not complete in general

{A, B} |= A ∨ B but {A, B} ̸⊢ A ∨ B using resolution rule
For our purpose, it suffices that for any unsatisfiable
formula F , we have F ⊢ (). (The resolution calculus
satisfies this, and thus it is refutation-complete)
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The generalized resolution rule
(A1 ∨ A2 ∨ · · · ∨ Am ∨ B), (¬B ∨ C1 ∨ C2 · · · ∨ Cn)

(A1 ∨ A2 ∨ · · · ∨ Am ∨ C1 ∨ C2 · · · ∨ Cn)
With the resolution rule alone, we cannot build a complete
calculus as desired (e.g., see Exercise 10). With
factorization, which allows deletion of copies of literals
from clauses, this problem is eliminated

Theorem 5
The resolution calculus for the proof of unsatisfiability of
formulas in conjunctive normal form is sound and complete

Note
The resolution calculus is not complete in general

{A, B} |= A ∨ B but {A, B} ̸⊢ A ∨ B using resolution rule
For our purpose, it suffices that for any unsatisfiable
formula F , we have F ⊢ (). (The resolution calculus
satisfies this, and thus it is refutation-complete)
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Because it is the job of the resolution calculus to derive a
contradiction from KB ∧ ¬Q, it is very important that the
knowledge base KB is consistent :

Consistent formulas
A formula KB is called consistent if it is impossible to derive
from it a contradiction, that is, a formula of the form ϕ ∧ ¬ϕ.

If KB is not consistent then anything can be derived

Exercise 11 ([Ertel 2025], Exercise 2.8, p. 39)
Show that, with resolution, one can “derive” any arbitrary
clause from a knowledge base that contains a contradiction
(Hint: What can be derived from a contradiction?)
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We start with a simple logic puzzle to illustrate the important steps
of a resolution proof

Example 6
Let’s solve the following logic puzzle from [Berrondo 1989]

A charming English family

Despite studying English for seven long years with brilliant
success, I must admit that when I hear English people speaking
English I’m totally perplexed. Recently, moved by noble feelings,
I picked up three hitchhikers, a father, mother, and daughter,
who I quickly realized were English and only spoke English. At
each of the sentences that follow I wavered between two possible
interpretations. They told me the following (the second possible
meaning is in parentheses): The father: “We are going to Spain
(we are from Newcastle).” The mother: “We are not going to Spain
and are from Newcastle (we stopped in Paris and are not going to
Spain).” The daughter: “We are not from Newcastle (we stopped in
Paris).” What about this charming English family?
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Step 1: Formalization (easy to make mistake or forget small
details)

We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF

Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4

Step 3: Proof (often very difficult)

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF

Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4

Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain



49

Propositional Logic

Hoàng Anh Đức

Logic

Syntax

Semantics

Proof Systems

34 Resolution

Horn Clauses

Computability and
Complexity

Applications and
Limitations

References

Resolution

Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k

Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7

P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain



49

Propositional Logic

Hoàng Anh Đức

Logic

Syntax

Semantics

Proof Systems

34 Resolution

Horn Clauses

Computability and
Complexity

Applications and
Limitations

References

Resolution

Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]

Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)

Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Step 1: Formalization
We set the variables S = “We are going to Spain”, N = “We are
from Newcastle”, and P = “We stopped in Paris”
From three propositions of father , mother , and daughter , we obtain
(S ∨ N) ∧ [(¬S ∧ N) ∨ (P ∧ ¬S)] ∧ (¬N ∨ P )

Step 2: Transformation into CNF
Converting the above formula into CNF gives us the following
knowledge base (clauses are numbered by the subscripted
indices) KB ≡ (S ∨ N)1 ∧ (¬S)2 ∧ (P ∨ N)3 ∧ (¬N ∨ P )4
Step 3: Proof

We write Res(m, n) : ⟨clause⟩k to indicate that ⟨clause⟩ is obtained
by resolution of clause m and clause n and is numbered k
Res(1, 2) : (N)5, Res(3, 4) : (P )6, and Res(1, 4) : (S ∨ P )7
P is also derived from Res(4, 5) and Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are
already available [Verify this claim]
Finally, to show that ¬S holds [Why?], we add (S)8 to the KB as a
negated query and derive ()9 by Res(2, 8)
Thus, we obtain ¬S ∧ N ∧ P . The family comes from Newcastle,
stopped in Paris, but is not going to Spain
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Example 7
Another logic puzzle from [Berrondo 1989]

The High Jump

Three girls practice high jump for their physical education final
exam. The bar is set to 1.20 meters. “I bet”, says the first girl to
the second, “that I will make it over if, and only if, you don’t”. If
the second girl said the same to the third, who in turn said the
same to the first, would it be possible for all three to win their
bets?
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Step 1: Formalization
We set the variables A = “The first girl’s jump succeeds”,
B = “The second girl’s jump succeeds”, and C = “The third
girl’s jump succeeds”
The first girl’s bet is A ⇔ ¬B, the second girl’s bet is
B ⇔ ¬C, and the third girl’s bet is C ⇔ ¬A
We show that they cannot all win the bet, that is,
Q ≡ ¬((A ⇔ ¬B) ∧ (B ⇔ ¬C) ∧ (C ⇔ ¬A)) holds. In other
words, we need to show by resolution that ¬Q is
unsatisfiable, i.e., ¬Q ⊢ ()

Step 2: Transformation into CNF
¬Q ≡ (¬A ∨ ¬B)1 ∧ (A ∨ B)2 ∧ (¬B ∨ ¬C)3 ∧ (B ∨ C)4 ∧
(¬C ∨ ¬A)5 ∧ (C ∨ A)6
Step 3: Proof

Res(1, 6) : (¬B ∨ C)7
Res(4, 7) : (C)8
Res(2, 5) : (B ∨ ¬C)9
Res(3, 9) : (¬C)10
Res(8, 10) : ()
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Exercise 12 ([Ertel 2025], Exercise 2.9, p. 39)
Formalize the following logical functions with the logical operators and
show that your formula is valid. Present the result in CNF
(a) The XOR operation (exclusive or) between two variables (Recall

that p XOR q is true if and only if exactly one of p and q is true)
(b) The statement “at least two of the three variables A, B, C are

true”

Exercise 13 ([Ertel 2025], Exercise 2.10, p. 39)
Solve the following case with the help of a resolution proof:

If the criminal had an accomplice, then he came in a car. The criminal
had no accomplice and did not have the key, or he had the key and
an accomplice. The criminal had the key. Did the criminal come in a
car or not?

Exercise 14 ([Ertel 2025], Exercise 2.11, p. 40)
Show by resolution that the formula
(a) (A ∨ B) ∧ (¬B ∨ C) ⇒ (A ∨ C) is a tautology
(b) ¬(¬gas_in_tank ∧ (gas_in_tank ∨ ¬car_starts) ⇒ ¬car_starts) is

unsatisfiable
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The (refutation-)completeness of resolution calculus
makes it a very important inference method .
In many practical situations, however, the full power of
resolution is not needed. Some real-world knowledge
bases satisfy certain restrictions on the form of formulas
(sentences) they contain, which enables them to use a
more restricted and efficient inference algorithm



49

Propositional Logic

Hoàng Anh Đức

Logic

Syntax

Semantics

Proof Systems

Resolution

39 Horn Clauses

Computability and
Complexity

Applications and
Limitations

References

Horn Clauses

Horn Clauses
are the clauses of the form (having at most one positive literal)

(¬A1 ∨ · · · ∨ ¬Am ∨ B) or (¬A1 ∨ · · · ∨ ¬Am) or B

or (equivalently)

A1 ∧ · · · ∧ Am ⇒ B or A1 ∧ · · · ∧ Am ⇒ f or B

Example 8
Set A1 = “The weather is nice”, A2 = “There is snow on
the ground”, B = “I will go skiing”, C = “I will work”
The sentence “If the weather is nice and there is snow on
the ground, I will go skiing or I will work”
(A1 ∧ A2 ⇒ B ∨ C) is not a Horn clause
The sentence “If the weather is nice and there is snow on
the ground, I will go skiing” (A1 ∧ A2 ⇒ B) is a Horn clause
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Horn clauses are distinctly simpler to interpret than the
general clauses
A Horn clause with a single positive literal is a fact . In Horn
clauses with negative and one positive literal, the positive
literal is called the head , and the rest is called the body

Exercise 15 ([Ertel 2025], Exercise 2.12, p. 40)
Prove the following equivalences, which are important for
working with Horn clauses:
(a) (¬A1 ∨ · · · ∨ ¬Am ∨ B) ≡ A1 ∧ · · · ∧ Am ⇒ B

(b) (¬A1 ∨ · · · ∨ ¬Am) ≡ A1 ∧ · · · ∧ Am ⇒ f
(c) A ≡ t ⇒ A
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Horn clauses are easier to handle not only in daily life, but
also in formal reasoning
The generalized Modus Ponens rule

A1 ∧ · · · ∧ Am, A1 ∧ · · · ∧ Am ⇒ B

B

Example 9
Let the knowledge base consist of the following clauses

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4

Does “skiing” hold?

YES (use Modus Ponens (MP))
MP(2, 3) : (snow)5

MP(1, 5, 4) : (skiing)6
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Horn clauses are easier to handle not only in daily life, but
also in formal reasoning
The generalized Modus Ponens rule

A1 ∧ · · · ∧ Am, A1 ∧ · · · ∧ Am ⇒ B

B

Example 9
Let the knowledge base consist of the following clauses

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4

Does “skiing” hold?

YES (use Modus Ponens (MP))
MP(2, 3) : (snow)5

MP(1, 5, 4) : (skiing)6
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Horn clauses are easier to handle not only in daily life, but
also in formal reasoning
The generalized Modus Ponens rule

A1 ∧ · · · ∧ Am, A1 ∧ · · · ∧ Am ⇒ B

B

Example 9
Let the knowledge base consist of the following clauses

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4

Does “skiing” hold? YES (use Modus Ponens (MP))
MP(2, 3) : (snow)5

MP(1, 5, 4) : (skiing)6
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With Modus Ponens we obtain a complete calculus for
formulas that consist of propositional logic Horn clauses

If KB contains only Horn clauses and KB |= Q, then
KB ⊢ Q using just Modus Ponens
Horn clauses are closed under resolution (and therefore
Modus Ponens): if you resolve two Horn clauses, you get
back a Horn clause

Modus Ponens can be used with forward chaining or
backward chaining algorithms

Forward Chaining: starts with facts and finally derives the
query (as in Example 9)

In the case of large knowledge bases, however, Modus
Ponens may derive many unnecessary formulas if one begins
with the wrong clauses

Backward Chaining: starts with the query and works
backwards until the facts are reached
Both algorithms are very natural and run in time that is
linear in the size of the knowledge base
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For backward chaining, SLD resolution is often used
instead of Modus Ponens
Inference rule:

A1 ∧ · · · ∧ Am ⇒ B1, B1 ∧ B2 ∧ · · · ∧ Bn ⇒ f

A1 ∧ · · · ∧ Am ∧ B2 ∧ · · · ∧ Bn ⇒ f
Example 10

Let’s come back to Example 9 and now add the negated
query (skiing ⇒ f)5 to the knowledge base

(nice_weather)1

(snowfall)2

(snowfall ⇒ snow)3

(nice_weather ∧ snow ⇒ skiing)4

(skiing ⇒ f)5

We carry out SLD resolution beginning with the resolution
steps that follow from this clause

Res(5, 4) : (nice_weather ∧ snow ⇒ f)6
Res(6, 1) : (snow ⇒ f)7
Res(7, 3) : (snowfall ⇒ f)8
Res(8, 2) : ()
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With SLD Resolution (“Selection rule driven linear resolution
for definite clauses”)

“linear resolution”: further processing is always done on
the currently derived clause
The search space is reduced
The literals of the current clause are always processed in a
fixed order (for example, from right to left) (“Selection
rule driven”)
The literals of the current clause are called subgoals. The
literals of the negated query are the goals
The proof (contradiction) is found, if the list of subgoals of
the current clauses (the so-called goal stack) is empty
If, for a subgoal ¬Bi, there is no clause with the
complementary literal Bi as its clause head, the proof
terminates and no contradiction can be found

PROLOG programs consist of predicate logic Horn clauses.
Their processing is achieved by means of SLD resolution
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Exercise 16 ([Ertel 2025], Exercise 2.13, p. 40)
Show by SLD resolution that the following Horn clause set is
unsatisfiable

(A)1

(B)2

(C)3

(D)4

(E)5

(A ∧ B ∧ C ⇒ F )6

(A ∧ D ⇒ G)7

(C ∧ F ∧ E ⇒ H)8

(H ⇒ f)9
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The truth table method determines every model of any
formula in finite time
The sets of unsatisfiable, satisfiable, and valid formulas
are decidable
The worst case running time is O(2n) where n is the
number of variables
Optimization: semantic tree, grows exponentially in the
worst case.
In resolution, in the worst case, the number of derived
clauses grows exponentially with the number of clauses
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Question

Can proof in propositional logic go faster? Are there better
algorithms?

Answer: Probably not
Cook-Levin Theorem ([Cook 1971]; [Levin 1973]): The
3-SAT problem is NP-complete

For Horn clauses, however, there is an algorithm in which
the computation time for testing satisfiability grows only
linearly as the number of literals in the formula increases

Exercise 17 ([Ertel 2025], Exercise 2.14, p. 40)
In Sect. 2.6, it says: “Thus it is clear that there is probably
(modulo the P/NP problem) no polynomial algorithm for 3-SAT,
and thus probably not a general one either.” Justify the
“probably” in this sentence.
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Applications and Limitations

Theorem provers for propositional logic are part of the
developer’s everyday toolset in digital technology

Verification of digital circuits
Generation of test patterns for testing of microprocessors in
fabrication
Special proof systems that work with binary decision
diagrams (BDD) are also employed as a data structure for
processing propositional logic formulas

Simple AI applications: simple expert systems can work
with discrete variables, few values, no cross-relations
between variables
Probabilistic logic uses propositional logic and probabilistic
computation to model uncertainty
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