
VNU-HUS MAT1206E/3508: Introduction to
AI

Search, Games and Problem Solving

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học
Đại học KHTN, ĐHQG Hà Nội

hoanganhduc@hus.edu.vn

mailto:hoanganhduc@hus.edu.vn

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Contents

Additional Materials

Introduction

Uninformed Search

Heuristic Search

Games with Opponents

Heuristic Evaluation Functions

Latest Research

74

Search, Games and
Problem Solving

Hoàng Anh Đức

2 Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Additional Materials

Prof. Ertel’s Lectures at Ravensburg-Weingarten University in
2011

https://youtu.be/RRO9-QXR0ss&t=2210 (Introduction)
https://youtu.be/rwefoi__Fk4 (Uninformed Search:
Breadth-First Search, Depth-First Search, Iterative
Deepening)
https://youtu.be/THZ3YxHAwno (Heuristic Search:
Greedy Search, A*-Search, IDA*-Search)
https://youtu.be/IW-HI0Pqgsk (Games with
Opponents, Heuristic Evaluation Functions)

https://youtu.be/RRO9-QXR0ss&t=2210
https://youtu.be/rwefoi__Fk4
https://youtu.be/THZ3YxHAwno
https://youtu.be/IW-HI0Pqgsk

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

3 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

The search for a solution in an extremely large search tree
presents a problem for nearly all inference systems.

From the starting state there are many possibilities for the first
inference step.
For each of these possibilities there are again many possibilities in
the next step, and so on.

Example 1
Even in the proof of a very simple formula from [Ertel 1993] with three
Horn clauses, each with at most three literals, the search tree for SLD
resolution has the following shape:

The tree was cut off at a depth of 14 and has a solution in the leaf
node marked by ⋆.
It is only possible to represent it at all because of the small
branching factor (= number of children at each node) of at most two
and a cutoff at depth 14.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

4 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 1 (cont.)
For realistic problems, the branching factor and depth of the first
solution may become significantly bigger .
Assume the branching factor is a constant equal to 30 and the
first solution is at depth 50. The search tree then has
3050 ≈ 7.2 × 1073 leaf nodes.

These assumptions are completely realistic. In chess for example,
there are over 30 possible moves for a typical situation, and a game
lasting 50 half-turns is relatively short. (Each player has 25 moves.)

But the number of inference steps is even bigger because not
only every leaf node, but also every inner node of the tree
corresponds to an inference step. Therefore we must add up the
nodes over all levels and obtain the total number of nodes of the
search tree

50∑
d=0

30d = 1 − 3051

1 − 30 = 7.4 × 1073,

which does not change the node count by much. Evidently, nearly
all of the nodes of this search tree are on the last level . As we will
see, this is generally the case.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

5 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 1 (cont.)
Assume we had 10,000 computers which can each
perform a billion inferences per second, and that we could
distribute the work over all of the computers with no cost.
The total computation time for all 7.4 × 1073 inferences
would be approximately

7.4 × 1073 inferences
10000 × 109 inferences/sec

= 7.4 × 1060 sec

≈ 2.3 × 1053 years,

which is about 1043 times as much time as the age of our
universe.
There is no realistic chance of searching this kind of
search space completely with the means available to us in
this world .

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

6 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Questions
Why do good chess players exist – and nowadays also good
chess computers?
Why do mathematicians find proofs for propositions in which
the search space is even larger?

Evidently we humans use intelligent strategies which
dramatically reduce the search space.

The experienced chess player, just like the experienced
mathematician, will, by mere observation of the situation,
immediately rule out many actions as senseless. Through his
experience, he has the ability to evaluate various actions for their
utility in reaching the goal .
Often a person will go by feel . If one asks a mathematician how
he found a proof, he may answer that the intuition came to him in
a dream.

In everyday problems, intuition plays a big role. We will later
deal with this kind of heuristic search method and additionally
describe processes with which computers can, similarly to
humans, improve their heuristic search strategies by learning.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

7 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 2 (8-Puzzle [Nilsson 1998]; [Russell and
Norvig 2010])

1 1

4 4

7 7

5

8

2

3

6

2

5

8

3

6

Figure: Possible starting and goal states of the 8-puzzle

Figure: Search tree for the 8-puzzle. Bottom right a goal state in depth
3 is represented. To save space the other nodes at this level have
been omitted

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

8 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 2 (8-Puzzle, cont.)
The branching factor of the search tree for 8-puzzle
alternates between two, three, and four .
The average branching factor of a tree is the branching
factor that a tree with a constant branching factor, equal
depth, and an equal amount of leaf nodes would have.

If we consider only the subtrees induced by the first three
levels of the search tree. To calculate the average branching
factor of this subtree, we take a tree T with constant
branching factor b, depth 2, and 8 leaf nodes, and calculate
b. Note that a tree T with constant branching factor b and
depth d has bd leaf nodes. Therefore, we have b2 = 8 and
thus b =

√
8 ≈ 2.83.

We also observe that each state is repeated multiple times
two levels deeper because in a simple uninformed search,
every action can be reversed in the next step.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

9 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 2 (8-Puzzle, cont.)

Figure: Cycles of length 2 in the search tree are somewhat redundant.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

10 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 2 (8-Puzzle, cont.)

Figure: Search tree for an 8-puzzle without cycles of length 2.

Observe that for any node excepting the root, the number of its
children decreases by 1 in the search tree without cycles of
length 2 ⇒ average branching factor ≈ 1.8.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

11 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Search Problems
A search problem is defined by the following values

State: Description of the state of the world in which
the search agent finds itself.

Starting state: The initial state in which the search agent is
started.

Goal state: If the agent reaches a goal state, then it
terminates and outputs a solution (if desired).

Actions: All of the agents allowed actions.
Solution: The path in the search tree from the starting

state to the goal state.
Cost function: Assigns a cost value to every action.

Necessary for finding a cost-optimal solution.
State space: Set of all states.
Search tree: States are nodes, actions are edges.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

12 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 2 (8-Puzzle, cont.)
Apply the definition to the 8-puzzle, we get

State: 3 × 3 matrix S with the values 1, 2, 3, 4, 5, 6, 7, 8
(once each) and one empty square.

Starting state: An arbitrary state.
Goal state: An arbitrary state.

Actions: Movement of the empty square Sij to the left (if
j ̸= 1), right (if j ̸= 3), up (if i ̸= 1), down (if i ̸= 3).

Solution: The path in the search tree from the starting
state to the goal state.

Cost function: The constant function 1, since all actions have
equal cost.

State space: The state space is degenerate in domains that
are mutually unreachable. (Thus there are
unsolvable 8-puzzle problems.)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

13 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

For analysis of the search algorithms, the following terms are
needed:

Branching factor

The number of successor states of a state s is called the
branching factor b(s), or b if the branching factor is constant.

Effective branching factor

The effective branching factor of a tree of depth d with n
total nodes is defined as the branching factor that a tree with
constant branching factor, equal depth, and equal n would
have.

Complete Search Algorithms

A search algorithm is called complete if it finds a solution
for every solvable problem. If a complete search algorithm
terminates without finding a solution, then the problem is
unsolvable.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

14 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

A tree with constant branching factor b and depth d has
total

n =
d∑

i=0
bi = bd+1 − 1

b − 1

nodes.

Theorem 1
For heavily branching finite search trees with a large constant
branching factor, almost all nodes are on the last level.

Exercise 1 ([Ertel 2025], Exercise 6.1, p. 124)
(a) Prove Theorem 1, which says that for a tree with large

constant branching factor b, almost all nodes are on the
last level at depth d.

(b) Show that this is not always true when the effective
branching factor is large and not constant.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

15 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Exercise 2 ([Ertel 2025], Exercise 6.2, p. 124)
(a) Calculate the average branching factor for the 8-puzzle

without a check for cycles.
(b) Calculate the average branching factor for the 8-puzzle for

uninformed search while avoiding cycles of length 2.

Exercise 3 ([Ertel 2025], Exercise 6.3, p. 125)
(a) What is the difference between the average and the

effective branching factor?
(b) Why is the effective branching factor better suited to

analysis and comparison of the computation time of
search algorithms than the average branching factor?

(c) Show that for a heavily branching tree with n nodes and
depth d the effective branching factor b is approximately
equal to the average branching factor and thus equal to
d
√

n.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

16 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Exercise 4 ([Ertel 2025], Exercise 6.4, p. 125)
(a) Calculate the size of the state space for the 8-puzzle, for

the analogous 3-puzzle (2 × 2-matrix), as well as for the
15-puzzle (4 × 4-matrix).

(b) Prove that the state graph consisting of the states (nodes)
and the actions (edges) for the 3-puzzle falls into two
connected subgraphs, between which there are no
connections.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

17 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 3 (Shortest Path from City A to City B)

Figure: The graph of southern Germany as an example of a search
task with a cost function.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

18 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Example 3 (cont.)
State: A city as the current location of the traveler.

Starting state: An arbitrary city A.
Goal state: An arbitrary city B.

Actions: Travel from the current city to a neighboring city.
Cost function: The distance between the cities. Each action

corresponds to an edge in the graph with the
distance as the weight.

State space: All cities, that is, nodes of the graph.

Optimal Search Algorithms

A search algorithm is called optimal if it always finds the
solution with the lowest cost , provided that at least one
solution exists.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

19 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Deterministic Problem
Every action leads from a state to a unique successor state.

Observable Problem
The agent always knows which state it is in.

Example 4
The 8-puzzle problem is deterministic and observable.
In route planning in real applications, both characteristics
are not always given.

The action “Drive from Munich to Ulm” may—for example
because of an accident—lead to the successor state
“Munich”.
It can also occur that the traveler no longer knows where he
is because he got lost.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

20 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

We want to ignore all kinds of complications similar to
those in the route planning problems. Therefore, we will
only look at problems that are deterministic and
observable.
Deterministic and observable problems make action
planning relatively simple because, due to having an
abstract model , it is possible to find action sequences for
the solution of the problem without actually carrying out
the actions in the real world . ⇒ Offline algorithms.
One faces much different challenges when, for example,
building robots that are supposed to play soccer . Here
there will never be an exact abstract model of the actions.
⇒ Online algorithms (which make decisions based on
sensor signals in every situation). (Reinforcement learning
works toward optimization of these decisions based on
experience.)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
21 Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Breadth-First Search

BREADTHFIRSTSEARCH(NodeList, Goal)

1 NewNodes = ∅
2 for all Node ∈ NodeList
3 if GoalReached(Node, Goal)
4 return (“Solution found”, Node)
5 NewNodes = append(NewNodes, Successors(Node))
6 if NewNodes ̸= ∅
7 return BREADTHFIRSTSEARCH(NewNodes, Goal)
8 else
9 return (“No solution”)

GoalReached(Node, Goal) calculates whether Node is a goal
node Goal.
Successors(Node) returns the list of all successor nodes of Node.
The search tree is explored from top to bottom until a solution is
found.

Every node in the node list is tested for whether it is a goal node. If
so, the program is stopped.
Otherwise all successors of the node are generated.
The search is then continued recursively on the list of all newly
generated nodes.
The whole thing repeats until no more successors are generated.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
22 Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Breadth-First Search

Analysis:
complete.

BFS can reach every depth in finite time ⇒ If there is a
solution, BFS will find it.

optimal, if all costs of all actions are the same.
Otherwise, BFS may not find a solution with the lowest cost.

Computation time =

c ·
d∑

i=0
bi = bd+1 − 1

b − 1 = O(bd).

Memory space = O(bd).
When all costs are not the same, we use a variant of BFS.

Uniform Cost Search
= BFS + The node with the lowest cost from the list of nodes
(which is sorted ascendingly by cost) is always expanded, and
the new nodes sorted in. ⇒ Always optimal!

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

23 Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Depth-First Search

DEPTHFIRSTSEARCH(Node, Goal)

1 if GoalReached(Node, Goal)
2 return (“Solution found”)
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅
5 Result = DEPTHFIRSTSEARCH(First(NewNodes), Goal)
6 if Result = “Solution found”
7 return (“Solution found”)
8 NewNodes = Rest(NewNodes)
9 return (“No solution”)

The function First returns the first element of a list, and Rest
the rest of the list.
After the expansion of a node only its successors are saved,
and the first successor node is immediately expanded.
The search quickly becomes very deep. Only when a node
has no successors and the search fails at that depth is the
next open node expanded via backtracking to the last branch,
and so on.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

24 Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Depth-First Search

Analysis:
incomplete (infinite loop when the tree has infinite depth).
not optimal (the optimal solution may not be found, e.g.,
when there is no solution in the far left branch and the tree
has infinite depth).

We can make the search tree finite by setting a depth limit
⇒ Pruned search tree.
However, even when a solution is not found in the pruned
search tree, maybe there is a solution outside the limit.

Computation time = O(bd).
Memory requirement = O(bd) (at most b nodes are saved
at each depth ⇒ need at most b · d memory cells.)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

25 Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Iterative Deepening

Iterative Deepening

We begin the depth-first search with a depth limit of 1. If no
solution is found, we raise the limit by 1 and start searching
from the beginning, and so on.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

26 Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Iterative Deepening

ITERATIVEDEEPENING(Node, Goal)

1 DepthLimit = 0
2 repeat
3 Result = DEPTHFIRSTSEARCH-B(Node, Goal, 0, DepthLimit)
4 DepthLimit = DepthLimit + 1
5 until Result = “Solution found”

DEPTHFIRSTSEARCH-B(Node, Goal, Depth, Limit)

1 if GoalReached(Node, Goal)
2 return (“Solution found”)
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅ and Depth < Limit
5 Result = DEPTHFIRSTSEARCH-B(First(NewNodes),

Goal, Depth+1, Limit)
6 if Result = “Solution found”
7 return (“Solution found”)
8 NewNodes = Rest(NewNodes)
9 return (“No solution”)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

27 Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Iterative Deepening

Analysis:
complete.
optimal, if costs are constant and increment = 1
Computation time = O(bd)
Memory requirement = O(bd).
One could argue that repeatedly re-starting depth-first
search at depth zero causes a lot of redundant work . For
large branching factors this is not the case. Indeed, the
computation time for all iterations besides the last can be
ignored .

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

28 Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Iterative Deepening

The sum of the number of nodes of all depths up to the one before
last dmax − 1 in all trees searched is much smaller than the number

of nodes in the last tree searched.

Let Nb(d) be the number of nodes of a search tree with
branching factor b and depth d and dmax be the last depth
searched.

The last search tree has Nb(dmax) =
dmax∑
i=0

bi = bdmax+1 − 1
b − 1

nodes.
All trees searched beforehand together have

dmax−1∑
d=1

Nb(d) =
dmax−1∑

d=1

bd+1 − 1
b − 1 = 1

b − 1

((dmax−1∑
d=1

bd+1
)

− dmax + 1
)

= 1
b − 1

(
bdmax+1 − 1

b − 1 − 1 − b − dmax + 1
)

≈ 1
b − 1

(
bdmax+1 − 1

b − 1

)
= 1

b − 1Nb(dmax)

nodes. For b > 2, this is less than Nb(dmax).

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

29 Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Comparison

Breadth-
first

search

Uniform
cost

search

Depth-
first

search

Iterative
deepening

Completeness Yes Yes No Yes
Optimal
solution

Yes (*) Yes No Yes (*)

Computation
time

bd bd ∞ or bds bd

Memory use
bd bd bd bd

(*): only true with constant action cost.
ds is the maximal depth for a finite search tree.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

30 Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Cycle Check

As we mentioned before, nodes may be repeatedly visited
during a search.

In the 8-puzzle, every move can be immediately undone,
which leads to unnecessary cycles of length two.

Such cycles can be prevented by recording within each
node all of its predecessors and, when expanding a node,
comparing the newly created successor nodes with the
predecessor nodes. All of the duplicates found can be
removed from the list of successor nodes.
This simple check costs only a small constant factor of
additional memory space and increases the constant
computation time c by an additional constant δ for the
check itself for a total c + δ.
This overhead for the cycle check is (hopefully) offset by a
reduction in the cost of the search. The reduction
depends, of course, on the particular application and
therefore cannot be given in general terms.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

31 Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Cycle Check

Question
How would a check on cycles of arbitrary length affect the search
performance?

The list of all predecessors must now be stored for each node,
which can be done very efficiently (e.g., using linked lists).
During the search, each newly created node must now be
compared with all its predecessors.
Computation time =

c1 ·
d∑

i=0

bi + c2 ·
d∑

i=0

i · bi

≈ c2 · d · bd

cost of generating nodes cost of the cycle check

Thus, the complexity of the search with the full cycle check
therefore only increases by a factor of d faster than for the
search without a cycle check . ⇒ Not much overhead, useful
for applications with repeatedly occurring nodes.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

32 Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Exercises

Exercise 5 ([Ertel 2025], Exercise 6.5, p. 125)
With breadth-first search for the 8-puzzle, find a path

(manually) from the starting node
1 3

4 2 6

7 5 8

to the goal node

1

4

7

2

5

8

3

6 .

Exercise 6 ([Ertel 2025], Exercise 6.6, p. 125)
(a) Program breadth-first search, depth-first search, and

iterative deepening in the language of your choice and test
them on the 8-puzzle example.

(b) Why does it make little sense to use depth-first search on
the 8-puzzle?

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

33 Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Exercises

Exercise 7 ([Ertel 2025], Exercise 6.7, p. 125)
(a) Show that breadth-first search given constant cost for all

actions is guaranteed to find the shortest solution.
(b) Show that this is not the case for varying costs.

Exercise 8 ([Ertel 2025], Exercise 6.8, p. 125)
The predecessors of all nodes must be stored to check for
cycles during depth-first search.
(a) For depth-first search develop a data structure (not a hash

table) that is as efficient as possible for storing all nodes in
the search path of a search tree.

(b) For constant branching factor b and depth d, give a
formula for the storage space needed by depth-first search
with and without storing predecessors.

(c) Show that for large b and d, we have
d∑

k=0
k · bk ≈ d · bd.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

34 Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search

Heuristics are problem-solving strategies which in many
cases find a solution faster than uninformed search.
There is no guarantee!
In everyday life, heuristic methods are important.
Realtime-decisions under limited resources.
A good solution found quickly is preferred over a solution
that is optimal, but very expensive to derive.

Mathematical Modeling:
Heuristic evalutation function f(s) for states
Goal: Find, with little effort, a solution to the stated search
problem with minimal total cost .
Node = state + heuristic evaluation + ...

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

35 Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search

HEURISTICSEARCH(Start, Goal)

1 NodeList = [Start]
2 while True
3 if NodeList = ∅
4 return (“No solution”)
5 Node = First(NodeList)
6 NodeList = Rest(NodeList)
7 if GoalReached(Node, Goal)
8 return (“Solution found”, Node)
9 NodeList = SortIn(Successors(Node), NodeList)

SortIn(X,Y) inserts the elements from the unsorted list X
into the ascendingly sorted list Y.

The heuristic rating is used as the sorting key . Thus it is
guaranteed that the best node (that is, the one with the
lowest heuristic value) is always at the beginning of the list .
When sorting in a new node from the node list, it may be
advantageous to check whether the node is already
available and, if so, to delete the duplicate.

With appropriate evaluation
functions, one can generate
BFS and DFS from
HEURISTICSEARCH

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

36 Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search

Exercise 9 ([Ertel 2025], Exercise 6.13, p. 126)
Give a heuristic evaluation function for states with which
HEURISTICSEARCH can be implemented as depth-first search,
and one for a breadth-first search implementation.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

37 Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search

Ideally, the best heuristic would be a function that calculates
the actual costs from each node to the goal .

Question

How do we find a heuristic that is fast and simple to compute?

An idea for finding a heuristic simplification of the problem.
The original task is simplified enough that it can be solved
with little computational cost .
The costs from a state to the goal in the simplified problem
then serve as an estimate for the actual problem.
⇒ cost estimate function h.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
38 Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Greedy Search

Example 5 (Shortest Path from City A to City B)
Simplified Task: finding the straight line path from city to
city (that is, the flying distance).
Cost estimate function h(s) = flying distance from city s to
Ulm (given in the figure below).

Figure: City graph with flying distances from all cities to Ulm

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
39 Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Greedy Search

Example 5 (cont.)
We use the cost estimate function h(s) directly as the
evaluation function in the HEURISTICSEARCH, i.e., we set
f(s) = h(s).

Figure: Greedy search: from Linz to Ulm (left) and from Mannheim to
Ulm (right).

Not always find the optimal
solution

Mannheim–Nürnberg–Ulm:
401 km
Mannheim–Karlsruhe–
Stuttgart–Ulm: 323 km

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
39 Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Greedy Search

Example 5 (cont.)
We use the cost estimate function h(s) directly as the
evaluation function in the HEURISTICSEARCH, i.e., we set
f(s) = h(s).

Figure: Greedy search: from Linz to Ulm (left) and from Mannheim to
Ulm (right).

Not always find the optimal
solution

Mannheim–Nürnberg–Ulm:
401 km
Mannheim–Karlsruhe–
Stuttgart–Ulm: 323 km

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

40 A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
A*-Search

Cost function g(s) = Sum of accrued costs from root to
current node s.
Heuristic cost estimate h(s) = Estimated cost from current
node s to goal.
Heuristic evaluation function f(s) = g(s) + h(s).

Admissible heuristic cost estimate function
A heuristic cost estimate function h(s) that never
overestimates the actual cost from state s to the goal is
called admissible.

A*-algorithm

= HEURISTICSEARCH + f(s) = g(s) + h(s) + admissible h

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

41 A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
A*-Search

Exercise 10 ([Ertel 2025], Exercise 6.14, p. 126)
What is the relationship between the picture of the couple at
the canyon below and admissible heuristics?

Figure: He: “Dear, think of the fuel cost! I’ll pluck one for you
somewhere else.” She: “No, I want that one over there!”

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

42 A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
A*-Search

Example 5 (cont.)

Figure: Two snapshots of the A* search tree for the optimal route from
Frankfurt to Ulm. In the boxes below the name of the city s we show
g(s), h(s), f(s). Numbers in parentheses after the city names show the
order in which the nodes have been generated by the Successors
function

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

43 A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
A*-Search

Theorem 2
The A* algorithm is optimal. That is, it always finds the solution
with lowest total cost if the heuristic h is admissible.
Proof.
The first solution node l found by A* never has a higher cost
than another arbitrary solution node l′, i.e., g(l) ≤ g(l′).

Definition of f f(s) = estimated cost
from start to goal via s

][

in ascending order of f
list of open nodes is sorted the heuristic is admissible

estimated cost
to the goal to the goal

actual cost≤
()l is a solution node

⇔ h(l) = 0

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

44 Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Route Planning with the A* Search Algorithm

Simple heuristic: air line distance (= straight-line
distance)
Better: Landmarks (e.g., see [Batzill 2016]) (shrinking the
search space more)

5 to 60 landmark nodes (= randomly selected cities).
Preprocessing: For all landmarks the shortest paths to all
nodes are stored.
Let l: landmark, s: current node, z: goal node, c∗(x, y): cost
of the shortest path from x to y.
Triangle inequality: c∗(s, l) ≤ c∗(s, z) + c∗(z, l).
Solving for c∗(s, z) yields an admissible heuristic h:

h(s) = c∗(s, l) − c∗(z, l) ≤ c∗(s, z).

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

45 Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Route Planning with the A* Search Algorithm

Figure: The search tree of A* search for planning a route from
Ravensburg to Biberach with: no heuristic (red), air line distance (dark
green), landmark heuristic (blue). Left: normal search, Right:
bidirectional search (plan in parallel a route from Ravensburg to
Biberach and from Biberach to Ravensburg. If the routes meet, given
certain conditions of the heuristic, an optimal route has been found.)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

46 Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Route Planning with the A* Search Algorithm

Figure: Comparison of search tree size and computation time for route
planning with and without each of the two heuristics. The landmark heuristic is
the clear winner.

Both heuristics clearly reduce the search space.
In the case of the landmark heuristic, we see the computation
time and the size of the search space reduced by a factor of
about 12. The cost of computing the heuristic is thus insignificant.
The straight-line distance, however, results in a search space
reduction of a factor of 6.6, but only an improvement of a factor of
2.2 in run time due to the overhead of computing the euclidean
distance.
In the case of bidirectional search, in contrast to unidirectional
search, we see a significant reduction of the search space even
without heuristic.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

47 Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Route Planning with the A* Search Algorithm

Optimization of time, not distance ⇒ adjust the heuristic
accordingly

straight-line distance d(s, z) is replaced by time
t(s, z) = d(s, z)/vmax where vmax is the maximum average
velocity.
air line heuristic estimate becomes worse (dividing by vmax
causes t(s, z) to be much too small).
landmark heuristic is still very good.
Further improvement: contraction hierarchies
(combining, in a precompution step, several edges into
so-called shortcuts, which are then used to reduce the
search space [Batzill 2016]; [Geisberger, Sanders,
Schultes, and Delling 2008]).

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

48 IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
IDA*-Search

Weaknesses of A*:
High memory requirements
List of open nodes must be sorted ⇒ Heapsort (logarithmic
time complexity for insertion and removal of nodes)

Solution: IDA*-algorithm [Korf 1985]
Iterative Deepening
The same as depth-first search, but limit for heuristic
evaluation f(s) (instead of depth limit).

Perform a DFS, cut off a branch when f(s) exceeds a given
threshold
This threshold starts at the estimate of the cost at the initial
state, and increases for each iteration of the algorithm.
At each iteration, the threshold used for the next iteration is
the minimum cost of all values that exceeded the current
threshold.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

49 Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Empirical Comparison of the Search Algorithms

Simple admissible heuristics for 8-puzzle

h1: counts the number of squares that are not in the right
place.
h2: Manhattan distance

For every square the horizontal and vertical distances to
that square’s location in the goal state are added together.
This value is then summed over all squares.

Example 6

Distance between

1 3

4 2 6

7 5 8

and

1

4

7

2

5

8

3

6 :

h1(s) = 3.
h2(s) = 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 3. (The values
respectively correspond to the squares numbered
1, 3, 4, 2, 6, 7, 5, 8.)

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

50 Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Empirical Comparison of the Search Algorithms

Exercise 11 ([Ertel 2025], Exercise 6.9, p. 126)
Using A* search for the 8-puzzle, search (manually) for a path

from the starting node
1 3

4 2 6

7 5 8

to the goal node
1

4

7

2

5

8

3

6 .

(a) using the heuristic h1

(b) using the heuristic h2

Exercise 12 ([Ertel 2025], Exercise 6.10, p. 126)
Construct the A* search tree for the city graph from the map in
Example 5 and use the flying distance to Ulm as the heuristic.
Start in Bern with Ulm as the destination. Take care that each
city only appears once per path.

Exercise 13 ([Ertel 2025], Exercise 6.15, p. 126)
Show that the heuristics h1 and h2 for the 8-puzzle are
admissible.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

51 Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Empirical Comparison of the Search Algorithms

Exercise 14 ([Ertel 2025], Exercise 6.11, p. 126)
(a) Show that the triangle inequality is valid for shortest

distances on maps.
(b) Using an example, show that it is not always the case that

the triangle inequality holds for direct neighbor nodes x
and y, where the distance is d(x, y). That is, it is not the
case that d(x, y) ≤ d(x, z) + d(z, y).

Exercise 15 ([Ertel 2025], Exercise 6.12, p. 126)
Program A* search in the programming language of your
choice using the heuristics h1 and h2 and test these on the
8-puzzle example.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

52 Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Empirical Comparison of the Search Algorithms

The described algorithms are implemented in
Mathematica.
Averaged over 132 randomly generated 8-puzzle
problems.

Figure: Comparison of the computation cost of uninformed search
and heuristic search for solvable 8-puzzle problems with various
depths. Measurements are in steps and seconds. All values are
averages over multiple runs (see last column).

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

53 Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Empirical Comparison of the Search Algorithms

The heuristics significantly reduce the search cost compared
to uninformed search.
If we compare iterative deepening to A* with h1 at depth 12,
for example, it becomes evident that h1 reduces the number
of steps by a factor of about 3000, but the computation time by
only a factor of 1023. This is due to the higher cost per step for
the computation of the heuristic.
Closer examination reveals a jump in the number of steps
between depth 12 and depth 14 in the column for h1.

This jump cannot be explained solely by the repeated work
done by IDA*.
It comes about because the implementation of the A* algorithm
deletes duplicates of identical nodes and thereby shrinks the
search space. This is not possible with IDA* because it saves
almost no nodes.
Despite this, A* can no longer compete with IDA* beyond depth
14 because the cost of sorting in new nodes pushes up the time
per step so much.

Effective branching factor
Uninformed search: 2.8 Heuristic h1: 1.5 Heuristic h2: 1.3

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

54 Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Summary

Of the various search algorithms for uninformed search,
iterative deepening is the only practical one because it is
complete and can get by with very little memory.
IDA* is complete, fast and memory efficient.
Good heuristics greatly reduce the effective branching
factor.
Heuristics have no performance advantage for unsolvable
problems because the unsolvability of a problem can only
be established when the complete search tree has been
searched through.

For solvable problems, heuristics often reduce computation
time dramatically, but for unsolvable problems the cost can
even be higher with heuristics.
For example, in the proof of PL1 formulas (which is
undecidable), the search tree can be infinitely deep. This
means that, in the unsolvable case, the search potentially
never ends.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

55 Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Summary

Question

How to find good heuristics?

Manually, e.g. by simplification of the problem.
Simplify the original problem.
Solve the simplified (easier) version.
Optimal solutions from the simplified version ⇒ heuristic
functions.

Automatic generation of heuristics by machine-learning
techniques.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

56 Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents

Games for two players
Chess, Checkers, Othello, Go
deterministic (= every action (a move) results in the same
child state given the same parent state), observable (=
every player always knows the complete game state)
Card games: only partially observable.

The player does not know the other players’ cards, or only
has partial knowledge about them.

Zero-sum games: Win + Loss = 0
Every gain one player makes means a loss of the same
value for the opponent.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents

57 Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Minimax Search

Characteristics of games:
The effective branching factor in chess is around 30 to 35.
50 moves per player: 30100 ≈ 10148 leaf nodes ⇒ no chance to
fully explore the search tree.
Real-time requirement (chess is often played with a time limit)
⇒ Limited search depth.
Among the leaf nodes of this depth-limited tree there are
normally no solution nodes (that is, nodes which terminate the
game) ⇒ heuristic evaluation function B for board positions.

The level of play strongly depends on the quality of the function
B.

Player: Max, Opponent: Min.
Assumption: Opponent Min always makes the best move he
can.
The higher the evaluation B(s) for position s, the better
position s is for the player Max and the worse it is for his
opponent Min.

Max maximizes the evaluation of his moves.
Min minimizes evaluation of his moves.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents

58 Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Minimax Search

Figure: A minimax game tree with look-ahead of four half-moves. The
evaluations of all leaves are given. The evaluation of an inner node is
derived recursively as the maximum or minimum of its child nodes,
depending on the node’s level.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

59 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

Figure: An alpha-beta game tree with look-ahead of four half-moves. The
dotted portions of the tree are not traversed because they have no effect on
the end result.

At every leaf node the evaluation function is calculated.
For every maximum node the current largest child value is saved in α.
For every minimum node the current smallest child value is saved in β.
If at a minimum node k the current value β ≤ α, then the search under k
can end. Here α is the largest value of a maximum node in the path from
the root to k.
If at a maximum node l the current value α ≥ β, then the search under l
can end. Here β is the smallest value of a minimum node in the path
from the root to l.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

60 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

ALPHABETAMAX(Node, α, β)

1 if DepthLimitReached(Node)
2 return (Rating(Node))
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅
5 α = Maximum(α, ALPHABETAMIN(First(NewNodes), α, β))
6 if α ≥ β
7 return (β)
8 NewNodes = Rest(NewNodes)
9 return (α)

ALPHABETAMIN(Node, α, β)

1 if DepthLimitReached(Node)
2 return (Rating(Node))
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅
5 β = Minimum(β, ALPHABETAMAX(First(NewNodes), α, β))
6 if β ≤ α
7 return (α)
8 NewNodes = Rest(NewNodes)
9 return (β)

ALPHABETAMIN and ALPHABETAMAX

are extensions of DFS which call
themselves mutually.

Initial call:
ALPHABETAMAX(RootNode, −∞, ∞).

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = ∞

0

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = ∞

0

α = 0
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = ∞

0

9

α = 0
β = 9

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = ∞

0

α = 0
β = 1

1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = ∞

0

α = 0
β = 1

1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1

α = 1
β = ∞

1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1

α = 1
β = ∞

1

α = 1
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1

α = 1
β = ∞

1

6

α = 1
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1

α = 1
β = ∞

1

6

α = 1
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1

α = 1
β = ∞

1

6

α = 1
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

α = −∞
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

α = −∞
β = 6

α = −∞
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

α = −∞
β = 6

3

α = −∞
β = 3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

α = −∞
β = 6

3

α = −∞
β = 3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

α = −∞
β = 6

3

α = −∞
β = 3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

3

α = −∞
β = 3

α = 3
β = 6

3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

3

α = −∞
β = 3

α = 3
β = 6

3

α = 3
β = 6

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

α = −∞
β = 6

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = −∞
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

α = 3
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

9

α = 3
β = 9

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

2

α = 3
β = ∞

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

2

2

α = 3
β = 2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

2

2

α = 3
β = 2

2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

61 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

70 9 1 6 7 3 4 1 5 9 2 2 3 4 58 1 2 7 6 9 4

Max

Min

Max

Min

Eval.

α = 3
β = ∞

0

α = −∞
β = 0

α = 0
β = 1

1 6

α = 1
β = 6

α = 6
β = ∞

6

3

α = −∞
β = 3

α = 3
β = 6

3

1

α = 3
β = 1

1

α = −∞
β = 3

3

3

α = 3
β = ∞

2

α = 3
β = 2

2

2

α = 3
β = 2

2

2

α = 3
β = 2

2

Figure: A more detailed illustration of Alpha-Beta Pruning

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

62 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

Analysis: (see [Pearl 1984])
Computation time heavily depends on the order in which
child nodes are traversed
Worst-Case: does not offer any advantage.

Successors of maximum nodes are sorted in ascending
order, successors of minimum nodes are sorted in
descending order .
With constant branching factor b, the number nd of leaf
nodes to evaluate at depth d is nd = bd.

Best-Case:
Successors of maximum nodes are sorted in descending
order, successors of minimum nodes are sorted in
ascending order .
Effective branching factor ≈

√
b ⇒ nd ≈

√
b

d = bd/2 leaf
nodes. ⇒ Search horizon is doubled. (E.g., if you have
computational resources to do a full search with depth d1
then in the best case, with that same resources, you can
search with depth 2d1 using alpha-beta pruning.)
In chess, this means effective branching factor reduces
from 35 to about 6 ≈

√
35.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

63 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

Analysis (cont.): (see [Pearl 1984])
Average-Case:

The child nodes are randomly sorted .
Effective branching factor ≈ b3/4 ⇒ nd ≈ b3d/4 leaf nodes.
In chess, this means effective branching factor reduces
from 35 to about 14.

Heuristic node order:
Connect alpha-beta pruning with iterative deepening over
the depth limit ⇒ At every new depth limit we can access
the ratings of all nodes of previous levels and order the
successors at every branch.
Effective branching factor of roughly 7 to 8, which is close to
the optimal value

√
35 ≈ 6.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

64 Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Alpha-Beta-Pruning

Exercise 16 ([Ertel 2025], Exercise 6.16, p. 127)
(a) The search tree for a two-player game is given in the below figure with

the ratings of all leaf nodes. Use minimax search with α-β pruning from
left to right. Cross out all nodes that are not visited and give the optimal
resulting rating for each inner node. Mark the chosen path.

(b) Test yourself using the following applets:
http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html and
https://raphsilva.github.io/utilities/minimax_simulator/

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
https://raphsilva.github.io/utilities/minimax_simulator/

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

65 Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Non-deterministic Games

e.g. dice games
In the game tree, there are three types of levels in the
sequence Max, dice, Min, dice, ..., where each dice roll
node branches six ways.
Average the values of all rolls

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

66 Heuristic Evaluation
Functions

Latest Research

References

Heuristic Evaluation Functions

The following example illustrates how to find good heuristic evaluation
functions using the knowledge of human experts in a chess
program [Frayn 2005].
Example 7

Experts are questioned about the most important factors in the
selection of a move ⇒ these factors are quantified ⇒ list of relevant
features or attributes.
These are then (in the simplest case) combined into a linear
evaluation function B(s) for positions, which could look like

B(s) = a1 · material + a2 · pawn_structure+
+ a3 · king_safety + a4 · knight_in_center+
+ a5 · bishop_diagonal_coverage + · · ·

material = material(own_team) − material(opponent)
material(team) = num_pawns(team) · 100 + num_knights(team) · 300+

+ num_bishops(team) · 300 + num_rooks(team) · 500+
+ num_queens(team) · 900

Weights ai are set intuitively after discussion with experts + changed
after each game based on positive and negative experience. Better:
optimizing weights by machine-learning methods.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

67 Heuristic Evaluation
Functions

Latest Research

References

Heuristic Evaluation Functions

Example 7 (cont.)
Optimizing weights by machine-learning methods.

Expert is only asked about relevant features f1(s), f2(s), . . .
A machine learning process is used to find an evaluation function
that is as close to optimal as possible.

Start with an initial pre-set evaluation function (determined by the
learning process).
Let the chess program play.
At the end of the game a rating is derived from the result (victory,
defeat, or draw).
Based on this rating, the evaluation function is changed with the
goal of making fewer mistakes next time.

Problems:
Credit Assignment
positive or negative feedback only at the end
no ratings for individual moves
Feedback for actions of the past? ⇒ Reinforcement Learning

Most of the world-best chess computers still work without
machine-learning techniques. Reasons:

Reinforcement learning has large computation times
Manually created heuristics are already heavily optimized.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

68 Latest Research

References

Latest Research

Definition by Elaine Rich: Artificial Intelligence is the study of
how to make computers do things at which, at the moment,
people are better.
Direct comparison of computer and human in a game

1950 Claude Shannon, Konrad Zuse, John von
Neumann: first chess programs

1955 Arthur Samuel: Program that learns to play
checkers on a IBM 701.

archived games, every individual move had
been rated by experts.
Program plays against itself.
Credit Assignment: For each individual
position during a game it compares the
evaluation by the function B(s) with the one
calculated by alpha-beta pruning and
changes B(s) accordingly.

1961 Samuel’s checkers program beat the fourth-best
checkers player in the USA.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

69 Latest Research

References

Latest Research

1990 Tesauro: Reinforcement learning.
Learning backgammon program named
TD-Gammon, which played at the world
champion level.

1997 IBM’s Deep Blue defeated the chess world
champion Gary Kasparov with a score of 3.5
games to 2.5.
Deep Blue could on average compute 12
half-moves ahead with alpha-beta pruning.

2004 Hydra: Chess computer on parallel machine
Uses 64 parallel Xeon processors with 3
GHz computing power and 1 GByte memory
each.
Software: Christian Donninger (Austria) and
Ulf Lorenz, Christopher Lutz (Germany).
Position evaluation: FPGA Co-processor
(Field Programmable Gate Arrays).
Evaluates 200 million possitions per second.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

70 Latest Research

References

Latest Research

2004 Hydra: Chess computer on parallel machine
Hydra can on average compute about 18
half-moves ahead.
Hydra often makes moves which grand champions
cannot comprehend, but which in the end lead to
victory.
Alpha-beta search with relatively general,
well-known heuristics and a good hand-coded
position evaluation.
Hydra works without learning.

2009 Pocket Fritz 4, running on a PDA, won the Copa
Mercosur chess tournament in Buenos Aires.

9 wins and 1 draw against 10 excellent human
chess players, three of them grandmasters.
search engine HIARCS 13 (Higher Intelligence Auto
Response Chess System) searches less than
20,000 positions per second.
Pocket Fritz 4 is about 10,000 slower than Hydra ⇒
HIARCS 13 uses better heuristics to decrease the
effective branching factor than Hydra

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

71 Latest Research

References

Latest Research
Go

square board with 361 squares
181 white, 180 black stones
average branching factor: about 300
after 4 half-moves: 8 · 109 positions
classical game tree search processes have no chance!
Pattern recognition on the board!
Deep Learning for pattern recognition, reinforcement learning,
and Monte Carlo tree search lead to successful results.

January of 2016: Google [Silver et al. 2016] and Facebook [Tian
and Zhu 2015] published the breakthrough concurrently.
That same month, the program AlphaGo, developed and
presented in [Silver et al. 2016] by Google DeepMind, defeated
European Go champion Fan Hui 5:0. Two months later, Korean
player Lee Sedol, one of the best in the world, was defeated 4:1.
The program plays hundreds of thousands of games against
itself and uses the results (win, loss, draw) to learn the best
possible heuristic score for a given position. Monte Carlo tree
search is used as a replacement for Minimax search, which is
not suitable for Go.

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

72 References

References

Ertel, Wolfgang (2025). Introduction to Artificial
Intelligence. 3rd. Springer. DOI:
10.1007/978-3-658-43102-0.
Batzill, Adrian (2016). “Optimal route planning on mobile
systems.” MA thesis. Masterarbeit, Hochschule
Ravensburg Weingarten.
Silver, David, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. (2016).
“Mastering the game of Go with deep neural networks
and tree search.” In: nature 529.7587, pp. 484–489. DOI:
10.1038/nature16961.
Tian, Yuandong and Yan Zhu (2015). “Better computer go
player with neural network and long-term prediction.” In:
arXiv preprint. arXiv: 1511.06410.

https://doi.org/10.1007/978-3-658-43102-0
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1511.06410

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

73 References

References (cont.)

Russell, Stuart J. and Peter Norvig (2010). Artificial
Intelligence: A Modern Approach. 3rd. Pearson.
Geisberger, Robert, Peter Sanders, Dominik Schultes,
and Daniel Delling (2008). “Contraction hierarchies:
Faster and simpler hierarchical routing in road networks.”
In: Experimental Algorithms: 7th International Workshop,
WEA 2008 Provincetown, MA, USA, May 30-June 1,
2008 Proceedings 7. Springer, pp. 319–333. DOI:
10.1007/978-3-540-68552-4_24.
Frayn, Colin (2005). Computer Chess Programming
Theory. URL:
http://www.frayn.net/beowulf/theory.html.
Nilsson, Nils J. (1998). Artificial Intelligence: A New
Synthesis. Morgan Kaufmann.

https://doi.org/10.1007/978-3-540-68552-4_24
http://www.frayn.net/beowulf/theory.html

74

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Exercises

Heuristic Search
Greedy Search

A*-Search

Route Planning with the A*
Search Algorithm

IDA*-Search

Empirical Comparison of
the Search Algorithms

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

74 References

References (cont.)

Ertel, Wolfgang (1993). “Parallele Suche mit
randomisiertem Wettbewerb in Inferenzsystemen.”
PhD thesis. Technische Universität München.
Korf, Richard E (1985). “Depth-first iterative-deepening:
An optimal admissible tree search.” In: Artificial
intelligence 27.1, pp. 97–109. DOI:
10.1016/0004-3702(85)90084-0.
Pearl, Judea (1984). Heuristics: Intelligent Search
Strategies for Computer Problem Solving.
Addison-Wesley Series in Artificial Intelligence.
Addison-Wesley Publishing Company.

https://doi.org/10.1016/0004-3702(85)90084-0

	Additional Materials
	Introduction
	Uninformed Search
	Breadth-First Search
	Depth-First Search
	Iterative Deepening
	Comparison
	Cycle Check
	Exercises

	Heuristic Search
	Greedy Search
	A*-Search
	Route Planning with the A* Search Algorithm
	IDA*-Search
	Empirical Comparison of the Search Algorithms
	Summary

	Games with Opponents
	Minimax Search
	Alpha-Beta-Pruning
	Non-deterministic Games

	Heuristic Evaluation Functions
	Latest Research
	References

