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Prof. Ertel’s Lectures at Ravensburg-Weingarten University in
2011

https://youtu.be/IW-HI0Pqgsk&t=4455 (Computing
with Probabilities)
https://youtu.be/wbbAA8og4D8 (Computing with
Probabilities, The Principle of Maximum Entropy)
https://youtu.be/MWAWjCUuDUs (The Maximum Entropy
Method)
https://youtu.be/sQLzN6zWosY (The Maximum Entropy
Method, LEXMED)
https://youtu.be/xfv8xIk1-x4 (LEXMED, Reasoning
with Bayesian Networks)
https://youtu.be/z-WrA1xbkdY (Reasoning with
Bayesian Networks)
https://youtu.be/gMjuL5vMo04 (Reasoning with
Bayesian Networks)

https://youtu.be/IW-HI0Pqgsk&t=4455
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https://youtu.be/sQLzN6zWosY
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https://youtu.be/gMjuL5vMo04
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Introduction
Recall: The Flying Penguin Example

1. Tweety is a penguin
2. Penguins are birds
3. Birds can fly

Formalized in PL1, the
knowledge base KB is:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ⇒ fly(x)

It can be derived (for example, by resolution): fly(twetty).
If penguin(x) ⇒ ¬fly(x) (= “Penguins cannot fly”) is added
to the knowledge base KB, then ¬fly(twetty) can also be
derived.
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Introduction
Recall: The Flying Penguin Example

⇒ The knowledge base is inconsistent . (Because the logic is
monotonic; i.e., new knowledge can not void old knowledge.)
⇒ Require different kinds of logic!

This example illustrates problems with traditional
(classical) logic.
It shows how standard logic struggles with exceptions and
uncertain knowledge.
Key idea: Logic derives that a penguin can fly, which is
absurd!
Leads to the need for probabilistic or non-monotonic logic.
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Introduction

Additionally, reasoning with uncertain or incomplete knowledge
is important

In everyday situations and also in many technical
applications of AI, heuristic processes are very important .

Example: Use heuristic techniques when looking for a
parking space in city traffic.

Heuristics alone are often not enough, especially when a
quick decision is needed given incomplete knowledge.

Let’s just sit back
and think about
what to do!
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Introduction
Reasoning with conditional probabilities

Conditional probabilities instead of implication (as it is
known in logic)

Significantly better in modeling everyday causal reasoning.
Subjective probabilities

For example, if you are in the middle of the street and do not
know whether you should turn left or right. (That is, the
probabilities of turning left and turning right are unknown.)
From mathematical viewpoint, if you don’t know the
probabilities, you do nothing.
From AI viewpoint, you need to make a decision. So (even if
you don’t know anything) you “assume” that turning left and
right have the same probability 0.5 and make a decision
based on this “assumption”.
The “assumption” you made may not be true but it is
subjective to you.

Probability theory is well-founded.
Reasoning with uncertain and incomplete knowledge.

Maximum entropy method (MaxEnt) and the medical expert
system LEXMED.
Bayesian networks.
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Computing with Probabilities

Definition
Sample space Ω: the finite set of all possible outcomes
for an experiment.
Event: subset of Ω.

If the outcome of an experiment is included in an event E,
then event E has occurred.
A and B are events ⇒ A ∪ B is an event.

Elementary event: subset of Ω containing exactly one
element.
Sure event: Ω.
Impossible event: ∅.
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Computing with Probabilities

Example 1
Experiment: Rolling a fair six-sided die.
Sample space: Ω = {1, 2, 3, 4, 5, 6}.
Let E be the event “rolling an even number,” so E = {2, 4, 6} (a
subset of Ω).
If the die shows 4 (which is in E), then E has occurred.
Let A = {1, 3, 5} (odd numbers) and B = {4, 5, 6} (numbers
greater than 3).
Then A ∪ B = {1, 3, 4, 5, 6} (union of the subsets), which is also
an event meaning “rolling an odd number or a number greater
than 3.”
Elementary event: The event “rolling a 3” is {3}. This is the
smallest possible non-empty event, representing a single
specific outcome.
Sure event: Ω. This is the entire sample space, {1, 2, 3, 4, 5, 6},
which always occurs no matter what the die shows—you’re
guaranteed to roll one of these numbers.
Impossible event: ∅ (the empty set). This represents
something that can never happen, like “rolling a 7” on a
six-sided die. The subset is empty because no outcome in Ω
satisfies it.
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Computing with Probabilities

We will use propositional logic notation for set operations.

Set notation Propositional logic Description
A ∩ B A ∧ B intersection / and
A ∪ B A ∨ B union / or

A ¬A complement / negation
Ω t certain event / true
∅ f impossible event / false

A, B, etc.: random variables.
We consider only discrete random variables with finite
value range.
Example:

The variable face_number for a dice roll is discrete with the
values 1, 2, 3, 4, 5, 6.
The probability of rolling a five or a six is equal to 1/3.

P (face_number ∈ {5, 6})
= P (face_number = 5 ∨ face_number = 6) = 1/3.
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Computing with Probabilities

Definition
Let Ω = {ω1, ω2, . . . , ωn} be finite. There is no preferred
elementary event, which means that we assume a symmetry
related to the frequency of how often each elementary event
appears. The probability P (A) of the event A is then

P (A) = |A|
|Ω|

= Number of favorable cases for A

Number of possible cases
.

Example 2
Throwing a die, the probability for an even number is

P (face_number ∈ {2, 4, 6}) = |{2, 4, 6}|
|{1, 2, 3, 4, 5, 6}|

= 3
6 = 1

2 .
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Computing with Probabilities

Any elementary event has the probability 1/|Ω| (Laplace
assumption).
Applicable only at finite event sets.
To describe events we use variables with the appropriate
number of values.

Example: Variable eye_color can take on the values green,
blue, brown.
eye_color = blue then describes an event because we are
dealing with a proposition with the truth values t or f .

Binary (boolean) variables (i.e., variables that can take on
the values t and f ) are propositions themselves.

Write P (JohnCalls) instead of P (JohnCalls = t).
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Computing with Probabilities

Theorem 1
(1) P (Ω) = 1.
(2) P (∅) = 0, which means that the impossible event has a

probability of 0.
(3) For pairwise exclusive events A and B, it is true that

P (A ∨ B) = P (A) + P (B).
(4) For two complementary events A and ¬A, it is true that

P (A) + P (¬A) = 1.
(5) For arbitrary events A and B, it is true that

P (A ∨ B) = P (A) + P (B) − P (A ∧ B).
(6) For A ⊆ B, it is true that P (A) ≤ P (B).
(7) If A1, A2, . . . , An are the elementary events, then

n∑
i=1

P (Ai) = 1 (normalization condition).
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Computing with Probabilities

For binary variables A, B,
P (A ∧ B) = P (A, B) stands for the probability of the event
A ∧ B.
Distribution or joint probability distribution P(A, B) of the
variables A and B is the vector

(P (A, B), P (A, ¬B), P (¬A, B), P (¬A, ¬B))

Distribution in matrix form
P(A, B) B = t B = f

A = t P (A, B) P (A, ¬B)
A = f P (¬A, B) P (¬A, ¬B)
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Computing with Probabilities

In general,
d variables X1, X2, . . . , Xd with n values each
The distribution contains the values
P (X1 = x1, . . . , Xd = xd)
x1, . . . , xd each may have n different values
The distribution can therefore be represented as a
d-dimensional matrix with a total of nd elements.
By the normalization condition, one of these nd values is
redundant.
Thus, the distribution is characterized by nd − 1 unique
values.
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Computing with Probabilities
Conditional Probability

Definition
For two events A and B, the probability P (A | B) for A under
the condition B (conditional probability) is defined by

P (A | B) = P (A ∧ B)
P (B)

P (A | B) = probability of A regarding event B only, i.e.

P (A | B) = |A ∧ B|
|B|

.

Indeed, this can be proved as follows.

P (A | B) = P (A ∧ B)
P (B) =

|A∧B|
|Ω|
|B|
|Ω|

= |A ∧ B|
|B|

.
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Computing with Probabilities
Conditional Probability

Definition
If, for two events A and B, P (A | B) = P (A), then these
events are called independent . In other words, A and B are
independent if the probability of the event A is not influenced
by the event B.

Theorem 2
For independent events A and B, it follows from the definition
that P (A ∧ B) = P (A) · P (B).
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Computing with Probabilities
Conditional Probability

Product Rule: For two events A and B,
P (A ∧ B) = P (A | B) · P (B).
Chain Rule: For random variables X1, . . . , Xn,

P(X1, . . . , Xn) = P(Xn | X1, . . . , Xn−1) · P(X1, . . . , Xn−1)
= P(Xn | X1, . . . , Xn−1) · P(Xn−1 | X1, . . . , Xn−2)
· P(X1, . . . , Xn−2)
= P(Xn | X1, . . . , Xn−1) · P(Xn−1 | X1, . . . , Xn−2)
· P(X1, . . . , Xn−2) · . . . · P(Xn | X1) · P(X1)

=
n∏

i=1
P(Xi | X1, . . . , Xi−1).

(Because the chain rule holds for all values of the (random)
variables X1, . . . , Xn, it has been formulated for the distribution
using the symbol P.)
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Conditional Probability

Since A ↔ (A ∧ B) ∨ (A ∧ ¬B) is true for binary variables
A and B, we also have

P (A) = P ((A ∧ B) ∨ (A ∧ ¬B))
= P (A ∧ B) + P (A ∧ ¬B). A ∧ B and A ∧ ¬B are

pairwise exclusive

In general,

P (X1 = x1, . . . , Xd−1 = xd−1)

=
∑
xd

P (X1 = x1, . . . , Xd−1 = xd−1, Xd = xd)

The application of this formula is called marginalization.
Marginalization can also be applied to distribution
P(X1, . . . , Xd). The resulting distribution P(X1, . . . , Xd−1)
is called the marginal distribution.
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Computing with Probabilities
Conditional Probability

P (A | B) = P (A ∧ B)
P (B) as well as P (B | A) = P (A ∧ B)

P (A) .

Theorem 3 (Bayes’ Theorem)

P (A | B) = P (B | A) · P (A)
P (B)
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Conditional Probability

Example 3
Leuko Leukocyte value higher than 10000

App Patient has appendicitis (appendix inflammation)

P(App, Leuko) App ¬App Total
Leuko 0.23 0.31 0.54

¬Leuko 0.05 0.41 0.46
Total 0.28 0.72 1

For example, it holds:

P (Leuko) = P (App, Leuko) + P (¬App, Leuko) = 0.54

P (Leuko | App) = P (Leuko, App)
P (App) = 0.23

0.28 ≈ 0.82.
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Example 3 (continued)

P (App | Leuko) = P (Leuko | App) · P (App)
P (Leuko) = 0.82 · 0.28

0.54 ≈ 0.43.

Assuming that appendicitis affects the biology of all
humans the same, regardless of ethnicity.
P (Leuko | App) is a universal value that is valid worldwide.
P (App | Leuko), on the other hand, is not universal,
because this value is influenced by the a priori probabilities
P (App) and P (Leuko). Each of these can vary according
to on’s life circumstances.

For example, P (Leuko) is dependent on whether a
population has a high or low rate of exposure to infectious
diseases. In the tropics, this value can differ significantly
from that of cold regions.

Bayes’ theorem, however, makes it easy for us to take the
universally valid value P (Leuko | App), and compute
P (App | Leuko) which is useful for diagnosis.
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Conditional Probability

Example 4
Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”
A: Alarm, B: Burglar. The seller claims P (A | B) = 0.99
Thus with high certainty: If alarm then burglary!

No! Be careful!
What does this mean when we hear the alarm go off?

Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P (B) = 0.001.
Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P (A) = 0.1.
Thus, P (B | A) = (P (A | B) · P (B))/P (A) ≈ 0.01 ⇒ There
will be too many false alarms!

Additionally, we have P (A) = P (A | B) · P (B) + P (A |
¬B) · P (B) = 0.00099 + P (A | ¬B) · 0.999 = 0.1, which
implies P (A | ¬B) ≈ 0.1 ⇒ The alarm will be triggered
roughly every tenth day that there is not a break-in
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Example 4
Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”
A: Alarm, B: Burglar. The seller claims P (A | B) = 0.99
Thus with high certainty: If alarm then burglary!
No! Be careful!
What does this mean when we hear the alarm go off?

Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P (B) = 0.001.
Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P (A) = 0.1.
Thus, P (B | A) = (P (A | B) · P (B))/P (A) ≈ 0.01 ⇒ There
will be too many false alarms!

Additionally, we have P (A) = P (A | B) · P (B) + P (A |
¬B) · P (B) = 0.00099 + P (A | ¬B) · 0.999 = 0.1, which
implies P (A | ¬B) ≈ 0.1 ⇒ The alarm will be triggered
roughly every tenth day that there is not a break-in
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The Principle of Maximum Entropy

A calculus for reasoning under uncertainty can be realized
using probability theory.
Often too little knowledge for solving the necessary
equations ⇒ new ideas are needed.
Idea from E.T. Jaynes (Physicist): Given missing
knowledge, one can maximize the entropy of the desired
probability distribution.

More precisely,
Take the precisely stated prior data or testable information
about a probability distribution. [What you already know.]
Consider the set of all candidate probability distributions that
satisfy those constraints. [What are the possibilities given
what you know?]
Choose the distribution from this set that maximizes the
(information) entropy. [What is the least biased choice given
what you know?]

Intuition: MaxEnt picks the distribution that agrees with what
you know and is otherwise as uniform as possible – it does
not introduce any extra (unjustified) structure.

Application to the LEXMED project.
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The Principle of Maximum Entropy

Let X be a discrete random variable with possible values
x1, x2, . . . , xn and probability distribution P(X) = (p1, p2, . . . , pn),
where pi = P (X = xi).

Definition
The (information) entropy H of the distribution P(X) is defined as

H(P) = −
n∑

i=1
pi log pi

Entropy is a measure of the uncertainty associated with a random
variable.

The higher the entropy , the more uncertain or unpredictable the
variable is.
If one outcome has probability 1 and all others 0, then the entropy is
0 (no uncertainty).
If all outcomes are equally likely, then the entropy is maximized
(maximum uncertainty).

Entropy is measured in nats when using the natural logarithm (ln)
and in bits when using the base-2 logarithm (log2). (The choice of
base for log depends on the context and application.)
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Modus Ponens
A, A ⇒ B

B
Generalization to probability rules

P (A) = α, P (B | A) = β

P (B) = ?
Given: two probability values α, β, Find: P (B).
Marginalization

P (B) = P (A, B) + P (¬A, B)
= P (B | A) · P (A) + P (B | ¬A) · P (¬A)

The values of P (A), P (¬A), and P (B | A) are known. But
P (B | ¬A) is unknown.
We cannot make an exact statement about P (B) with
classical probability theory, but at the most we can
estimate P (B) ≥ P (B | A) · P (A).
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Distribution

P(A, B) = (P (A, B), P (A, ¬B), P (¬A, B), P (¬A, ¬B))

Abbreviation

p1 = P (A, B)
p2 = P (A, ¬B)
p3 = P (¬A, B)
p4 = P (¬A, ¬B)

These four parameters (unknowns) p1, . . . , p4 define the
distribution.
Out of it, any probability for A and B can be calculated.
Four equations are required to calculate these unknowns.
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

Normalization condition: p1 + p2 + p3 + p4 = 1.
From the given values P (A) = α and P (B | A) = β we
calculate

P (A, B) = P (B | A) · P (A) = αβ

P (A) = P (A, B) + P (A, ¬B).

So far, we have the following system of three equations

p1 + p2 + p3 + p4 = 1
p1 = αβ

p1 + p2 = α

Solve it as far as is possible, we get

p1 = αβ

p2 = α(1 − β)
p3 + p4 = 1 − α

One equation is missing!
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

To come to a definite solution despite this missing knowledge,
we change our point of view. We use the given equation as a
constraint for the solution of an optimization problem.
Find: Distribution p = (p3, p4) which maximizes the entropy

H(p) = −
n∑

i=1
pi ln pi = −p3 ln p3 − p4 ln p4

under the constraint p3 + p4 = 1 − α.
Why should the entropy function be maximized?

The entropy measures the uncertainty of a distribution up to a
constant factor.
Negative entropy is then a measure of the amount of
information a distribution contains.
Maximizing the entropy minimizes the information content of the
distribution.
Because we are missing information about the distribution, it
must somehow be added in. We could fix an ad hoc value, for
example p3 = 0.1. Yet it is better to determine the values p3 and
p4 such that the information added is minimal .
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Problem: Maximizing H(p) = −p3 ln p3 − p4 ln p4 w.r.t the
constraint p3 + p4 − 1 + α = 0.
Method of Lagrange multipliers.
Lagrange function:

L = H(p) + λ(p3 + p4 − 1 + α)
= −p3 ln p3 − p4 ln p4 + λ(p3 + p4 − 1 + α)

Taking the partial derivatives with respect to p3 and p4

∂L

∂p3
= − ln p3 − 1 + λ = 0

∂L

∂p4
= − ln p4 − 1 + λ = 0

These two equations along with the constraint give us a
system of three equations and three unknowns p3, p4, λ.
Solving it, we have p3 = p4 = (1 − α)/2.
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A set of probabilistic equations is called consistent if there is at
least one solution, that is, one distribution which satisfies all
equations.

Theorem 4
Let there be a consistent set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function
with the given equations as constraints. The MaxEnt
distribution thereby defined has minimum information content
under the constraints.

It follows from this theorem that there is no distribution
which satisfies the constraints and has higher entropy than
the MaxEnt distribution.
A calculus, which leads to distributions with a higher
entropy is adding informations ad hoc, which again is not
justified.
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p3 and p4 always occur symmetrically.
Therefore, p3 = p4 (indifference).

Definition
If an arbitrary exchange of two or more variables in the
Lagrange equations results in equivalent equations, these
variables are called indifferent .

Theorem 5
If a set of variables {pi1 , pi2 , . . . , pik

} is indifferent, then the
maximum of the entropy under the given constraints is at the
point where pi1 = pi2 = · · · = pik

.



61

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

32 Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Development of Bayesian
Networks

Semantics of Bayesian
Networks

References

The Principle of Maximum Entropy
Maximum Entropy Without Explicit Constraints

No knowledge given ⇒ All varibles are indifferent.
(Indifference Principle.)
No constraints beside the normalization condition
p1 + p2 + · · · + pn = 1.

We can set p1 = · · · = pn = 1
n

.

Given a complete lack of knowledge, all worlds are equally
probable. That is, the distribution is uniform.
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Conditional Probability Versus Material Implication

Exercise 1
Do your own research on the relationship between conditional
probability and material implication in the context of modeling
reasoning.
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MaxEnt-Systems

Often, MaxEnt optimization has no symbolic solution.
Therefore: numerical entropy maximization.
SPIRIT (Symmetrical Probabilistic Intensional Reasoning
in Inference Networks in Transition, www.xspirit.de):
Fernuniversität Hagen.
PIT (Probability Induction Tool, http://www.maxent.de):
Munich Technical University.

Exercise 2
Do your own research on the application of MaxEnt systems in
the medical expert system LEXMED.

www.xspirit.de
http://www.maxent.de
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Reasoning with Bayesian Networks

d variables X1, . . . , Xd with n values each
Probability distribution has nd − 1 values.
In practice the distribution contains many redundancies.
⇒ It can be heavily reduced with the appropriate methods.
Bayesian networks utilize knowledge about the
independence of variables to simplify the model.
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Independent Variables

Simplest case: all variables are pairwise independent

P(X1, X2, . . . , Xd) = P(X1) · P(X2) · · · · · P(Xd)

Conditional probabilities become trivial:1

P (A | B) = P (A, B)
P (B) = P (A)P (B)

P (B) = P (A).

The situation becomes more interesting when only a
portion of the variables are independent or independent
under certain conditions. For reasoning in AI, the
dependencies between variables happen to be important
and must be utilized.

1In the naive Bayes method, the independence of all attributes is assumed,
and this method has been successfully applied to text classification.
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Example 5 (Alarm-Example, [Pearl 1988]; [Russell and
Norvig 2010])

Bob: single, has an alarm system in his house.
John and Mary: neighbors of Bob in the houses next door to
the left and right, respectively.
Bob asks John and Mary to call him at his office if they hear the
alarm.
Knowledge Base:

Variables: J = “John calls”, M = “Mary calls”, Al = “Alarm siren
sounds”, Bur = “Burglary”, Ear = “Earthquake”
Calling behaviors of John and Mary

P (J | Al) = 0.90
P (J | ¬Al) = 0.05

P (M | Al) = 0.70
P (M | ¬Al) = 0.01

The alarm is triggered by a burglary, but can also be triggered by
a (weak) earthquake, which can lead to a false alarm.

P (Al | Bur, Ear) = 0.95
P (Al | Bur, ¬Ear) = 0.94

P (Al | ¬Bur, Ear) = 0.29
P (Al | ¬Bur, ¬Ear) = 0.001

A priori probabilities: P (Bur) = 0.001, P (Ear) = 0.002. (Bur and
Ear are independent.)

Requests: P (Bur | J ∨ M), P (J | Bur), P (M | Bur)
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Graphical Representation of Knowledge as a Bayesian Network

A Bayesian network is a directed acyclic graph (DAG) in
which

each node represents a random variable,
each edge Xi → Xj represents a direct influence of
variable Xi on variable Xj , and
each node is associated with a conditional probability table
(CPT) that quantifies the effects that the parents have on
the node.

The structure of the graph encodes conditional
independence assumptions that can be exploited to
simplify the representation of the joint probability
distribution.
The joint probability distribution over all variables
X1, . . . , Xd can be expressed as

P(X1, X2, . . . , Xd) =
d∏

i=1
P(Xi | Parents(Xi)),

where Parents(Xi) denotes the set of parent nodes of Xi

in the graph.
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Reasoning with Bayesian Networks
Graphical Representation of Knowledge as a Bayesian Network

Burglary

Bur Ear P (Al)
t t
t

t
f

f
f f

0.95
0.94
0.29
0.001

P (Bur)
0.001

Earthquake
P (Ear)
0.002

Alarm

John
Al P (J)
t 0.90 Mary

Al P (M)
t 0.70

f 0.05 f 0.01

Figure: Bayesian network for the alarm example with the associated
CPTs (conditional probability tables). The CPT of a node lists all the
conditional probabilities of the node’s variable conditioned on all the
nodes connected by incoming edges.
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Conditional Independence

Definition
Two variables A and B are called conditionally independent ,
given C if

P(A, B | C) = P(A | C) · P(B | C).

(This equation is true for all combinations of values for all three
variables (that is, for the distribution).)

Remark
independent ̸⇒ conditional independent.
conditional independent ̸⇒ independent.

A and B are independent events means knowing that A
happened would not tell you anything about whether B
happened (or vice versa).
A and B are conditionally independent events, given C means
that if you already knew that C happened, then knowing that
A happened would not tell you further information about
whether B happened.
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Example 6 (Alarm-Example (cont.))
John and Mary independently react to an alarm.
P(J, M | Al) = P(J | Al) · P(M | Al).
Thus, given an alarm, two variables J and M are
independent .
(Without any condition,) J and M are not independent, that is,
P(J, M) ̸= P(J) · P(M). [Why?]

Hint: It suffices to show that the equation does not hold for one
combination of values of J and M , say P (J, M) ̸= P (J) · P (M).
(More precisely, P (J = t, M = t) ̸= P (J = t) · P (M = t).)
Calculate P (Al) using the given probabilities, marginalization,
and independence of Bur and Ear.
(Result: P (Al) ≈ 0.00252.)
Then calculate P (J) and P (M) using conditional probabilities
and the computed P (Al).
(Result: P (J) = 0.052 and P (M) = 0.0117.)
Similarly, calculate P (J, M) using conditional probabilities,
conditional independence of J and M given Al.
(Result: P (J, M) ≈ 0.002086.)
Compare P (J, M) and P (J) · P (M).
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Example 7 (Alarm-Example (cont.))
John react to an alarm, but does not react to a burglary.
(This could be, for example, because of a high wall that
blocks his view on Bob’s property, but he can still hear the
alarm.)

P(J, Bur | Al) = P(J | Al) · P(Bur | Al).

Given an alarm, the variables J and Ear, M and Bur, as
well as M and Ear are also independent.

P(J, Ear | Al) = P(J | Al) · P(Ear | Al)
P(M, Bur | Al) = P(M | Al) · P(Bur | Al)
P(M, Ear | Al) = P(M | Al) · P(Ear | Al)
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Theorem 6
The following equations are pairwise equivalent, which means
that each individual equation describes the conditional
independence for the variables A and B given C.

P(A, B | C) = P(A | C) · P(B | C) (1)
P(A | B, C) = P(A | C) (2)
P(B | A, C) = P(B | C) (3)
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Now we turn again to the alarm example and show how the
Bayesian network can be used for reasoning.

P (J | Bur) = P (J, Bur)
P (Bur) = P (J, Bur, Al) + P (J, Bur, ¬Al)

P (Bur)

P(J, Bur, Al) = P(J | Bur, Al)P(Al | Bur)P(Bur) Chain rule
= P(J | Al)P(Al | Bur)P(Bur) J and Bur

are independent
given Al

P (J | Bur) = P (J | Al)P (Al | Bur)P (Bur)
P (Bur)

+ P (J | ¬Al)P (¬Al | Bur)P (Bur)
P (Bur)

= P (J | Al)P (Al | Bur) + P (J | ¬Al)P (¬Al | Bur)
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P (Al | Bur) = P (Al, Bur)
P (Bur) = P (Al, Bur, Ear) + P (Al, Bur, ¬Ear)

P (Bur)

= P (Al | Bur, Ear)P (Bur, Ear)
P (Bur)

+ P (Al | Bur, ¬Ear)P (Bur, ¬Ear)
P (Bur)

= P (Al | Bur, Ear)P (Bur)P (Ear)
P (Bur)

+ P (Al | Bur, ¬Ear)P (Bur)P (¬Ear)
P (Bur)

= P (Al | Bur, Ear)P (Ear) + P (Al | Bur, ¬Ear)P (¬Ear)
= 0.95 · 0.002 + 0.94 · 0.998 = 0.94

Similarly, P (¬Al | Bur) = 0.06.
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Therefore,

P (J | Bur) = P (J | Al)P (Al | Bur) + P (J | ¬Al)P (¬Al | Bur)
= 0.9 · 0.94 + 0.05 · 0.06 = 0.849.

Analogously, P (M | Bur) = 0.659.

Similar to P (J | Bur), we can calculate

P (J, M | Bur) = P (J, M | Al)P (Al | Bur)
+ P (J, M | ¬Al)P (¬Al | Bur)
= P (J | Al)P (M | Al)P (Al | Bur)
+ P (J | ¬Al)P (M | ¬Al)P (¬Al | Bur)
= 0.9 · 0.7 · 0.94 + 0.05 · 0.01 · 0.06 = 0.5922.

John calls for about 85% of all break-ins and Mary for about
66% of all break-ins. Both of them call for about of 59% of all
break-ins.
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P (J ∨ M | Bur) = P (¬(¬J ∧ ¬M) | Bur)
= 1 − P (¬J, ¬M | Bur)

P (¬J, ¬M | Bur) = P (¬J | Al)P (¬M | Al)P (Al | Bur)
+ P (¬J | ¬Al)P (¬M | ¬Al)P (¬Al | Bur)
= 0.1 · 0.3 · 0.94 + 0.95 · 0.99 · 0.06 = 0.085.

P (J ∨ M | Bur) = 1 − P (¬J, ¬M | Bur)
= 1 − 0.085 = 0.915.

Bob thus receives a notification from either John or Mary for
about 92% of all burglaries
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P (Bur | J) = P (J | Bur)P (Bur)
P (J) = 0.849 · 0.001

0.052 = 0.016

P (Bur | M) = P (M | Bur)P (Bur)
P (M) = 0.659 · 0.001

0.0117 = 0.056

P (Bur | J, M) = P (J, M | Bur)P (Bur)
P (J, M)

= 0.5922 · 0.001
0.002086 = 0.284.

If John calls, the probability of a burglary is 1.6%. If Mary
calls, it is 5.6%, which is about five times higher than
John.
⇒ Significantly higher confidence given a call from Mary.
Bob should only be seriously concerned about his home
if both of them call, as the probability of a burglary in that
case is 28.4%.
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Construction of a Bayesian network

(1) Design of the network structure (usually performed
manually)

(2) Entering the probabilities in the CPTs (usually
automated)

Construction of the network in the alarm example.
Causes: burglary and earthquake
Symptoms: John and Mary
Alarm: hidden variable

Because John and Mary do not directly react to a burglar or
earthquake, rather only to the alarm, it is appropriate to add
this as an additional variable which is not observable by
Bob.

Considering causality: going from cause to effect
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Design of a Bayesian network structure

1. Nodes: Determine the set of random variables required to
model the domain and fix an ordering {X1, . . . , Xn}, where, if
possible, causes precede effects to obtain a more compact
network.

2. Links: For each i = 1, . . . , n do:
(a) Select a minimal parent set Parents(Xi) ⊆ {X1, . . . , Xi−1} such

that the conditional independence constraint holds:

P
(
Xi | X1, . . . , Xi−1

)
= P

(
Xi | Parents(Xi)

)
.

Minimality means no proper subset of Parents(Xi) satisfies the
equality.

(b) For each Xj ∈ Parents(Xi) insert the directed edge Xj → Xi.
(c) Specify the conditional probability table (CPT) for Xi:

P
(
Xi | Parents(Xi)

)
,

i.e., list P (Xi = x | Parents(Xi) = p) for every value x of Xi and
every combination p of values of Parents(Xi).
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A

C

B C

A B

A

C

B

A and B are
independent

A and B are
independent given C

Figure: There is no edge between A and B if they are independent
(left) or conditionally independent (middle, right).
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Burglary Earthquake

John Mary

Cause

Effect

AlarmHidden

Figure: Stepwise construction of the alarm network considering
causality
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A Bayesian network is often far more compact than the full joint
distribution. This compactness makes it feasible to handle domains
with many variables.
Locally structured (sparse) systems: each subcomponent interacts
directly with only a bounded number of other components,
independent of the total number of components. This typically yields
linear rather than exponential growth in complexity.
If each random variable is directly influenced by at most k others (for
some constant k) and we assume n Boolean variables, then:

each conditional probability table (CPT) needs at most 2k numbers,
the whole network can be specified by at most n2k numbers,
whereas the full joint distribution requires 2n numbers.
Concrete example: n = 30, k = 5:

n2k = 30 · 25 = 30 · 32 = 960, 2n = 230 ≈ 1.07 × 109.

If a network is fully connected (every variable directly influenced by all
others) the CPT specification cost approaches that of the joint
distribution.
Practical tradeoff: small, tenuous dependencies can be omitted to
avoid large increases in model complexity. Example: one might add
edges Ear → J and Ear → M, but only if the gain in accuracy justifies
the extra parameters.
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The structure of the Bayesian network heavily depends on
the chosen variable ordering.
If the order of variables is chosen to reflect the causal
relationship beginning with the causes and proceeding to
the diagnosis variables, then the result will be a simple
network .
Otherwise the network may contain significantly more
edges. Such non-causal networks are often very difficult to
understand and have a higher complexity for reasoning.
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Requirements

Bayesian network has no cycles.
The variables are numbered such that no variable has a
lower index than any variable that predecessor .

It holds

P(Xn | X1, . . . , Xn−1) = P(Xn | Parent(Xn))

⇔ An arbitrary variable Xi in a Bayesian network is
conditionally independent of its ancestors, given its parents.
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More generally,

Theorem 7
A node in a Bayesian network is conditionally independent from
all non-successor nodes, given its parents.

Example of conditional
independence in a Bayesian
network. If the parent nodes
E1 and E2 are given, then
all non-successor nodes
B1, . . . , B8 are independent
of A.
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Chain rule for Bayesian network

P(X1, . . . , Xn) =
n∏

i=1
P(Xi | X1, . . . , Xi−1)

=
n∏

i=1
P(Xi | Parent(Xi))

Using this rule in the alarm example,

P(J, Bur, Al) = P(J | Al)P(Al | Bur)P(Bur)
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Basics of Bayesian Networks

A Bayesian network is defined by:
A set of variables and a set of directed edges between
these variables.
Each variable has finitely many possible values.
The variables together with the edges form a directed
acyclic graph (DAG). A DAG is a graph without cycles,
that is, without paths of the form (A, . . . , A).
For every variable A the CPT (that is, the table of
conditional probabilities P (A | Parents(A))) is given.

Two variables A and B are called conditionally
independent given C if P(A, B | C) = P(A | C)P(B | C)
or, equivalently, if P(A | B, C) = P(A | C).
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Basics of Bayesian Networks (cont.)

Besides the foundational rules of computation for
probabilities, the following rules are also true:

Bayes’ Theorem P (A | B) = P (B | A)P (A)
P (B) .

Marginalization P (B) = P (A, B) + P (¬A, B) = P (B |
A)P (A) + P (B | ¬A)P (¬A).

Conditioning P (A | B) =
∑

c

P (A | B, C = c)P (C = c |

B).
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Basics of Bayesian Networks (cont.)

A variable in a Bayesian network is conditionally
independent of all non-successor variables given its
parent variables. If X1, . . . , Xn−1 are no successors of
Xn, we have
P (Xn | X1, . . . , Xn−1) = P (Xn | Parents(Xn)). This
condition must be honored during the construction of a
network.
During construction of a Bayesian network the variables
should be ordered according to causality . First the
causes, then the hidden variables, and the diagnosis
variables last.

Chain rule: P(X1, . . . , Xn) =
n∏

i=1
P(Xi | Parent(Xi)).
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