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Introduction
Recall: The Flying Penguin Example

1. Tweety is a penguin
2. Penguins are birds —
3. Birds can fly
Formalized in PL1, the
knowledge base K B is: /\ =
penguin(tweety) F@{J )
penguin(x) = bird(x)
bird(z) = fly(x) oL

e

m [t can be derived (for example, by resolution): fly(twetty).

m If penguin(xz) = —fly(z) (= “Penguins cannot fly”) is added
to the knowledge base K B, then —fly(twelty) can also be
derived.
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Introduction
Recall: The Flying Penguin Example
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Hoang Anh Buic

= The knowledge base is inconsistent. (Because the logic is troduction
monotonic; i.e., new knowledge can not void old knowledge.)
= Require different kinds of logic!
m This example illustrates problems with traditional
(classical) logic.
m |t shows how standard logic struggles with exceptions and
uncertain knowledge.
m Key idea: Logic derives that a penguin can fly, which is
absurd!
m Leads to the need for probabilistic or non-monotonic logic.
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Introduction

Additionally, reasoning with uncertain or incomplete knowledge
is important
m In everyday situations and also in many technical
applications of Al, heuristic processes are very important.
m Example: Use heuristic techniques when looking for a
parking space in city traffic.
m Heuristics alone are often not enough, especially when a
quick decision is needed given incomplete knowledge.
¢ D
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Introduction

Reasoning with conditional probabilities

m Conditional probabilities instead of implication (as it is Ressoning wih
known in logic)

m Significantly better in modeling everyday causal reasoning.

m Subjective probabilities

m For example, if you are in the middle of the street and do not
know whether you should turn left or right. (That is, the
probabilities of turning left and turning right are unknown.)

m From mathematical viewpoint, if you don’'t know the
probabilities, you do nothing.

m From Al viewpoint, you need to make a decision. So (even if
you don’'t know anything) you “assume” that turning left and
right have the same probability 0.5 and make a decision
based on this “assumption”.

m The “assumption” you made may not be true but it is
subjective to you.

m Probability theory is well-founded.
m Reasoning with uncertain and incomplete knowledge.

m Maximum entropy method (MaxEnt) and the medical expert
system LEXMED.

m Bayesian networks. o

Hoang Anh Buic
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Computing with Probabilities

r-| Definition

m Sample space §): the finite set of all possible outcomes
for an experiment.

m Event: subset of Q.

m If the outcome of an experiment is included in an event E,
then event E has occurred.
m A and B are events = A U B is an event.

m Elementary event: subset of Q2 containing exactly one
element.

m Sure event: .
m /mpossible event: (.
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Computing with Probabilities

Reasoning with
Example 1 Uncertainty
m Experiment: Rolling a fair six-sided die. Hong Anh Bife

m Sample space: Q = {1,2,3,4,5,6}.
m Let E be the event “rolling an even number,” so E = {2,4,6} (a
subset of Q) Computing with
m If the die shows 4 (which is in E), then E has occurred. Probabilities
m Let A ={1,3,5} (odd numbers) and B = {4,5,6} (numbers
greater than 3).
m Then AU B = {1,3,4,5,6} (union of the subsets), which is also
an event meaning “rolling an odd number or a number greater
than 3.”
m Elementary event: The event “rolling a 3” is {3}. This is the
smallest possible non-empty event, representing a single
specific outcome.
m Sure event: Q. This is the entire sample space, {1,2,3,4,5,6},
which always occurs no matter what the die shows—you're
guaranteed to roll one of these numbers.
m Impossible event: () (the empty set). This represents
something that can never happen, like “rolling a 7" on a
six-sided die. The subset is empty because no outcome in §2
satisfies it.
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Computing with Probabilities

Reasoning with

We will use propositional logic notation for set operations. Uncertainty
Set notation | Propositional logic Description reano e
ANB AANB intersection / and
AUB AV B union / or Computng wih
A -A complement / negation Probabilies
Q t certain event / true
0 f impossible event / false

m A, B, etc.: random variables.
m We consider only discrete random variables with finite
value range.
m Example:
m The variable face_number for a dice roll is discrete with the
values 1,2, 3,4,5,6.
m The probability of rolling a five or a six is equal to 1/3.

P(face_number € {5,6})
= P(face_number =5V face_number = 6) = 1/3.
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Computing with Probabilities

»-| Definition

Let @ = {wi,wa,...,w,} be finite. There is no preferred
elementary event, which means that we assume a symmetry
related to the frequency of how often each elementary event
appears. The probability P(A) of the event A is then

P(4) = |A] _ Number of favorable cases for A
| Number of possible cases

Example 2

Throwing a die, the probability for an even number is

{2, 4,6} 3 _1
P(face_number € {2,4,6}) = M1.2.3.4.5.6]] =53
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Computing with Probabilities

m Any elementary event has the probability 1/|2| (Laplace
assumption).
m Applicable only at finite event sets.
m To describe events we use variables with the appropriate
number of values.
m Example: Variable eye_color can take on the values green,
blue, brown.
m eye_color = blue then describes an event because we are
dealing with a proposition with the truth values ¢ or f.
m Binary (boolean) variables (i.e., variables that can take on
the values t and f) are propositions themselves.
m Write P(JohnCalls) instead of P(JohnCalls = t).
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Computing with Probabilities

Reasoning with
Uncertainty

Theorem 1 Hoang Anh Burc

(1) P(Y) =1.

(2) P(0) =0, which means that the impossible event has a _
probability of 0. Probsbiltos

(3) For pairwise exclusive events A and B, it is true that
P(AvV B) = P(A)+ P(B).

(4) For two complementary events A and —A, it is true that
P(A)+ P(-A) =1.

(5) For arbitrary events A and B, it is true that
P(Av B)=P(A)+ P(B)— P(ANB).

(6) For A C B, itis true that P(A) < P(B).

(7) If Ay, As, ..., A, are the elementary events, then

> P(4;) = 1 (normalization condition).
i=1
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Computing with Probabilities

Reasoning with
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For binary variables A, B,
m P(A A B) = P(A, B) stands for the probability of the event

ANB. e
m Distribution or joint probability distribution P (A, B) of the o
variables A and B is the vector

(P(A’B)vP(AvﬁB)vP(_'A’B)vP(_'A’_'B))

m Distribution in matrix form

P(A4,B) B=t B=7
A=t P(A, B) P(A,-B)
A=§ P(-A, B) P(-A,-B)
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Computing with Probabilities

In general,
m d variables X1, X», ..., X4 with n values each

m The distribution contains the values
P(X1 :1'17...,Xd :{L‘d)

B z1,...,x4 €ach may have n different values

m The distribution can therefore be represented as a
d-dimensional matrix with a total of n¢ elements.

m By the normalization condition, one of these n? values is
redundant.

m Thus, the distribution is characterized by n? — 1 unique
values.
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Computing with
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Computing with Probabilities

Conditional Probability

Reasoning with

Uncertainty
Definition

Hoang Anh Buic

For two events A and B, the probability P(A | B) for A under
the condition B (conditional probability) is defined by

P(AAB)
P(B)

Conditional Probability

P(A|B) =

P(A | B) = probability of A regarding event B only, i.e.

|A A B

PAIB) =g

Indeed, this can be proved as follows.

P(AAB
PA1B) = (P(]/E\?)) 5 B
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Computing with Probabilities

Conditional Probability

Reasoning with
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Definition

If, for two events A and B, P(A | B) = P(A), then these | (i) cononaiprosesiiy
events are called independent. In other words, A and B are
independent if the probability of the event A is not influenced
by the event B.

Theorem 2
For independent events A and B, it follows from the definition
that P(A A B) = P(A) - P(B).
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Computing with Probabilities

Conditional Probability

Reasoning with
Uncertainty

m Product Rule: For two events A and B,
P(ANB)=P(A|B)-P(B). Hoang Anh B
m Chain Rule: For random variables X1, ..., X,

P(X1,...,Xn_1)

P(Xy,...,.Xn)=P(X, | X1,..., X51)
P(anl | Xl» ey Xn72 Conditional Probability

=P(X, | X1, ., Xn_1)
P(X1,.. ., Xnla)
=P(X, | X1, , Xp_1) P(Xpo1 | X1, Xnio)
P(Xy, . Xna) . P(X, | X1) - P(XY)

n
=[P | X1, Xiw).

i=1

(Because the chain rule holds for all values of the (random)
variables X1, ..., X, it has been formulated for the distribution

using the symbol P.)
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Computing with Probabilities

Conditional Probability

Reasoning with

m Since A <+ (AN B)V (A A —B) is true for binary variables neenany
A and B, we also have oang Anh Blic

P(A)=P(AAB)V(AAN-B))
=P(AANB)+ P(AAN-B). AABand AAN-B are ) oo _
pairwise exclusive

m In general,

O I,
:ZP(Xl :xla"'aXd—l :xd—th:xd)
T4

The application of this formula is called marginalization. Netior ‘

m Marginalization can also be applied to distribution
P(Xy,...,X4). The resulting distribution P(X,..., X4-1) e
is called the marginal distribution.
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Computing with Probabilities

Conditional Probability

Reasoning with
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P15 = P80 D aswelas piz | a) = PEEEL A
Theorem 3 (Bayes’ Theorem)
P(B | A)-P(A)

P(A|B) = )
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Computing with Probabilities

Conditional Probability

Reasoning with
Uncertainty

Example 3 Hoang Ah Bile

Leuko Leukocyte value higher than 10000
App Patient has appendicitis (appendix inflammation)

| P(App, Leuko) | App | —App | Total | ©
Leuko 0.23 0.31 0.54
-Leuko 0.05 0.41 0.46
Total 0.28 | 0.72 1

For example, it holds:

P(Leuko) = P(App, Leuko) + P(—App, Leuko) = 0.54

P(Leuko, A 0.23
P(Leuko | App) = ( P(App)pp) =038~ 0.82.
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Computing with Probabilities

Conditional Probability

EX&mp'e 3 (Contlnued) Reasoning with

Uncertainty
P(Leuko | App) - P(App) ~0.82-0.28 Hoang Anh Biic

_ = ~ 0.43.
P(App | Leuko) P(Leuko) o052 04

m Assuming that appendicitis affects the biology of all
humans the same, regardless of ethnicity.

m P(Leuko | App) is a universal value that is valid worldwide.

m P(App | Leuko), on the other hand, is not universal,
because this value is influenced by the a priori probabilities
P(App) and P(Leuko). Each of these can vary according
to on’s life circumstances.

m For example, P(Leuko) is dependent on whether a
population has a high or low rate of exposure to infectious
diseases. In the tropics, this value can differ significantly
from that of cold regions.

m Bayes’ theorem, however, makes it easy for us to take the

universally valid value P(Leuko | App), and compute
P(App | Leuko) which is useful for diagnosis.

Conditional Probability
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Computing with Probabilities

Conditional Probability

Example 4 ReUa:;:r\tr;g‘;n\;\;/ith

m Sales representative: “Very reliable burglar alarm, reports Hodng A Biic
any burglar with 99% certainty”

m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!

Conditional Probability
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Computing with Probabilities

Conditional Probability

Example 4 ReUasomtng \;vith
. . ncertainty
m Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”

m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!
m No! Be careful!

m What does this mean when we hear the alarm go off?

m Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P(B) = 0.001.

m Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P(A) = 0.1.

m Thus, P(B| A) = (P(A| B)-P(B))/P(A) ~ 0.01 = There
will be too many false alarms!

Hoang Anh Buic

Conditional Probability
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Computing with Probabilities

Conditional Probability

Example 4 Reasoning with
. « . Uncertainty
m Sales representative: “Very reliable burglar alarm, reports Hoang Anh Bife

any burglar with 99% certainty”
m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!
m No! Be careful!
m What does this mean when we hear the alarm go off?
m Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P(53) = 0.001. e o
m Assume that the alarm system is triggered not only by e e
burglars, but also by animals, such as birds or cats in the )
yard, which results in P(A) = 0.1.
m Thus, P(B| A) = (P(A | B) - P(B))/P(A) ~ 0.01 = There
will be too many false alarms! Bayesian Network
m Additionally, we have P(A) = P(A | B) - P(B) + P(A | -
-B) - P(B) =0.00099 + P(A | -B)-0.999 = 0.1, which ;
implies P(A | =B) ~ 0.1 = The alarm will be triggered
roughly every tenth day that there is not a break-in 6

Conditional Probability




The Principle of Maximum Entropy

Reasoning with

m A calculus for reasoning under uncertainty can be realized Uncertainty
using probability theory. Hoang Anh Bite
m Often too little knowledge for solving the necessary
equations = new ideas are needed.
m Idea from E.T. Jaynes (Physicist): Given missing
knowledge, one can maximize the entropy of the desired
probability distribution. Miasimam Envopy
m More precisely,
B Take the precisely stated prior data or testable information
about a probability distribution. [What you already know.]
B Consider the set of all candidate probability distributions that
satisfy those constraints. [What are the possibilities given
what you know?]
B Choose the distribution from this set that maximizes the
(information) entropy.  [What is the least biased choice given
what you know?]
m Intuition: MaxEnt picks the distribution that agrees with what
you know and is otherwise as uniform as possible — it does
not introduce any extra (unjustified) structure.

m Application to the LEXMED project.
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The Principle of Maximum Entropy

Let X be a discrete random variable with possible values
x1,Za,...,x, and probability distribution P(X) = (p1,p2,...,Pn),
where p; = P(X = z;).

Definition
The (information) entropy H of the distribution P(X) is defined as

H(P) = - pilogp,
i=1

m Entropy is a measure of the uncertainty associated with a random
variable.
m The higher the entropy, the more uncertain or unpredictable the
variable is.
m |f one outcome has probability 1 and all others 0, then the entropy is
0 (no uncertainty).
m If all outcomes are equally likely, then the entropy is maximized
(maximum uncertainty).
m Entropy is measured in nats when using the natural logarithm (In)
and in bits when using the base-2 logarithm (log,). (The choice of
base for log depends on the context and application.)

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability
The Principle of
Maximum Entropy

n Inference Rule for
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

m Modus Ponens

A A= B
B
m Generalization to probability rules
P(A)=a,P(B[A) =5
P(B)="7
Given: two probability values «, 3, Find: P(B).
m Marginalization
P(B) = P(A,B) + P(-A,B)
=P(B|A)-P(A)+ P(B|-A)-P(-A)

The values of P(A), P(—A), and P(B | A) are known. But
P(B | =A) is unknown.
m We cannot make an exact statement about P(B) with

classical probability theory, but at the most we can
estimate P(B) > P(B | A) - P(A).
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

m Distribution

m Abbreviation

p1 = P(A, B)
p2 = P(A,-B)
ps = P(=A, B)
pa = P(=A,-B)

m These four parameters (unknowns) py, ..., ps define the
distribution.

m Out of it, any probability for A and B can be calculated.
m Four equations are required to calculate these unknowns.
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

m Normalization condition: p; + p2 + p3 +ps = 1. Mmooty
m From the given values P(A) = aand P(B | A) = g we Hoang Anh Do
calculate

P(A,B)=P(B|A)-P(A) =ap
P(A) = P(A,B) + P(A,-B).
m So far, we have the following system of three equations

An Inference Rule for

pL+p2tpstpi=1 s ey W

P = O[/B :;,‘\ ftiof '\: ‘ i
p] +p2 =« MaxEnt-System
m Solve it as far as is possible, we get

p1=af
p2 = a(l - f)
pstpa=1—-a
One equation is missing!
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

m To come to a definite solution despite this missing knowledge, Uncertainty
we change our point of view. We use the given equation as a Hoang Anh Blie
constraint for the solution of an optimization problem.

m Find: Distribution p = (p3, p4) which maximizes the entropy

n
H(p) = — Z i lnpi = —p3 lnp3 —pa lnp4 Conditional Probability
i=1
. An Infe!?nce Rule for
under the constraint p3 +py = 1 — a. Probabiltes

Without

Maximum Entre
Explicit Co

m Why should the entropy function be maximized?

m The entropy measures the uncertainty of a distribution up to a
constant factor.

m Negative entropy is then a measure of the amount of
information a distribution contains.

m Maximizing the entropy minimizes the information content of the
distribution.

m Because we are missing information about the distribution, it
must somehow be added in. We could fix an ad hoc value, for
example p3 = 0.1. Yet it is better to determine the values p; and
p4 Such that the information added is minimal.
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

m Problem: Maximizing H (p) = —p3 Inps — ps Inpy w.r.t the Uncertainty
Constraint P3 + P4 — 1+a=0. Hoang Anh Bic

m Method of Lagrange multipliers.
m Lagrange function:

L=H{p)+Aps+ps—1+a)
= —pslnps —pslnps + A(ps +ps — 1 + @)

An Inference Rule for
Probabilities

m Taking the partial derivatives with respect to p3 and py

L
a—:—lnpg—l—k)\zo
Ips3

L
8—:—1r1p4—1—|—)\=0
Op4

m These two equations along with the constraint give us a
system of three equations and three unknowns ps, p4, A.
Solving it, we have p3 = p, = (1 — a)/2.
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

A set of probabilistic equations is called consistent if there is at
least one solution, that is, one distribution which satisfies all
equations.

Theorem 4

Let there be a consistent set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function
with the given equations as constraints. The MaxEnt
distribution thereby defined has minimum information content
under the constraints.

m It follows from this theorem that there is no distribution
which satisfies the constraints and has higher entropy than
the MaxEnt distribution.

m A calculus, which leads to distributions with a higher
entropy is adding informations ad hoc, which again is not
justified.

Reasoning with
Uncertainty

Hoang Anh Buic

An Inference Rule for
Probabilities
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with
Uncertainty

Hoang Anh Buic
m p; and p, always occur symmetrically.
m Therefore, ps = p4 (indifference).

Definition Gonditonal Probabilty

If an arbitrary exchange of two or more variables in the T
Lagrange equations results in equivalent equations, these proatites
variables are called indifferent. o

Theorem 5

If a set of variables {pi, ,pi,,- - ., pi, } is indifferent, then the
maximum of the entropy under the given constraints is at the
point where p;, = p;, = -+ = p;,.
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The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Reasoning with
Uncertainty

Hoang Anh Buic

m No knowledge given = All varibles are indifferent.

(Indifference Principle.) Corditonal Probabily
m No constraints beside the normalization condition
pr+p2t-+pp=1 s
1 Evpich Gonstra
m Wecansetp, =---=p, = —. o
n Versus Material Implicatio

MaxEnt-S

m Given a complete lack of knowledge, all worlds are equally
probable. That is, the distribution is uniform.
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The Principle of Maximum Entropy

Conditional Probability Versus Material Implication

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability

Exercise 1

Do your own research on the relationship between conditional
probability and material implication in the context of modeling
reasoning.

Conditional Probability
Versus Material Implication

MaxEnt-Systems
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The Principle of Maximum Entropy

MaxEnt-Systems

Reasoning with
Uncertainty

Hoang Anh Buic

m Often, MaxEnt optimization has no symbolic solution.

m Therefore: numerical entropy maximization.

m SPIRIT (Symmetrical Probabilistic Intensional Reasoning
in Inference Networks in Transition, www.xspirit.de):
Fernuniversitat Hagen.

m PIT (Probability Induction Tool, http://www.maxent .de):
Munich Technical University.

@ MaxEnt-Systems

Exercise 2
Do your own research on the application of MaxEnt systems in
the medical expert system LEXMED.
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Reasoning with Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic

m d variables X, ..., Xy with n values each
m Probability distribution has n? — 1 values.

m In practice the distribution contains many redundancies.
= It can be heavily reduced with the appropriate methods.

m Bayesian networks utilize knowledge about the
independence of variables to simplify the model.

Reasoning with
Bayesian Networks
lependent Variable
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Reasoning with Bayesian Networks

Independent Variables

Reasoning with
Uncertainty

Hoang Anh Buic

m Simplest case: all variables are pairwise independent
P(X1,Xs,...,Xq) =P(X1) -P(X3) - P(Xy)
m Conditional probabilities become trivial:

pa|B) =L ](;?5) _r (?)(ggB) = P(A).

m The situation becomes more interesting when only a
portion of the variables are independent or independent
under certain conditions. For reasoning in Al, the (26) inoepencent varaes
dependencies between variables happen to be important
and must be utilized.

"In the naive Bayes method, the independence of all attributes is assumed,
and this method has been successfully applied to text classification. 61



Reasoning with Bayesian Networks

Independent Variables

Example 5 (Alarm-Example, [Pearl 1988]; [Russell and Ressoning wih
NOFVIg 201 0]) Hoang Anh Buic

m Bob: single, has an alarm system in his house.
m John and Mary: neighbors of Bob in the houses next door to
the left and right, respectively.
m Bob asks John and Mary to call him at his office if they hear the
alarm. Conditional Probabilty
m Knowledge Base:
m Variables: J = “John calls”, M = “Mary calls”, Al = “Alarm siren An Iference Rul for
sounds”, Bur = “Burglary”, Ear = “Earthquake” B
m Calling behaviors of John and Mary
P(J | A) =0.90 P(M | Al) =0.70
P(J | ~Al) = 0.05 P(M | -Al) = 0.01
m The alarm is triggered by a burglary, but can also be triggered by
a (weak) earthquake, which can lead to a false alarm. poependent variavles |
P(Al| Bur, Ear) = 0.95 P(Al| =Bur, Ear) = 0.29
P(Al| Bur,—Ear) = 0.94 P(Al| =Bur,—Ear) = 0.001
m A priori probabilities: P(Bur) = 0.001, P(Ear) = 0.002. (Bur and
Ear are independent.)
®m Requests: P(Bur| JV M), P(J | Bur), P(M | Bur)
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Graphical Representation of Knowledge as a Bayesian Network

m A Bayesian network is a directed acyclic graph (DAG) in Ressoning wih
which Hoang Anh Burc
m each node represents a random variable,
m each edge X; — X represents a direct influence of
variable X; on variable X, and
m each node is associated with a conditional probability table
(CPT) that quantifies the effects that the parents have on
the node.
m The structure of the graph encodes conditional
independence assumptions that can be exploited to
simplify the representation of the joint probability
distribution.
m The joint probability distribution over all variables

Xl’ Tt Xd can be expressed as @ Graphical Representation

of Knowledge as a
Bayesian Network

d
P(X1, Xa,..., Xa) = [[P(X; | Parents(X;)),
=1
where Parents(X;) denotes the set of parent nodes of X;
in the graph. ot
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Graphical Representation of Knowledge as a Bayesian Network

Reasoning with

P( Ear) Uncertainty
0002 Hoang Anh Buic

Burglary Earthquake

POAT
0.95
0.94
0.29

0.001

Al | P(M)
t 0.70
f 0 . 0 1 @ Graphical Representation

of Knowledge as a
Bayesian Network

Figure: Bayesian network for the alarm example with the associated
CPTs (conditional probability tables). The CPT of a node lists all the
conditional probabilities of the node’s variable conditioned on all the
nodes connected by incoming edges. ot
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Conditional Independence

A Definition N Foncrtanty
Two variables A and B are called conditionally independent, Fosng Anm e
given C'if

P(A,B|C)=P(A|C)-P(B|C).
(This equation is true for all combinations of values for all three
kvariables (that is, for the distribution).)

'-| Remark

m independent 4 conditional independent.
m conditional independent % independent.

J

m A and B are independent events means knowing that A
happened would not tell you anything about whether B
happened (or vice versa). Sayosian Nomork

m A and B are conditionally independent events, given C means ®) Sordtonal ndepenence
that if you already knew that C' happened, then knowing that Dovelopment of Bayesian
A happened would not tell you further information about sof8
whether B happened.

61



Reasoning with Bayesian Networks

Conditional Independence

Example 6 (Alarm-Example (cont.)) A
m John and Mary independently react to an alarm. Hoang Anh Biie
P M |A)=P(J|A)-P(M | Al.
m Thus, given an alarm, two variables J and M are
independent.
m (Without any condition,) J and M are not independent, that is,
P(J, M) #P(J)-P(M). [Why?]
m Hint: It suffices to show that the equation does not hold for one
combination of values of J and M, say P(J, M) # P(J)- P(M).
(More precisely, P(J =t,M =t) # P(J =t)- P(M =1t).)
m Calculate P(Al) using the given probabilities, marginalization,
and independence of Burand Ear.
(Result: P(Al) = 0.00252.)
m Then calculate P(J) and P(M) using conditional probabilities
and the computed P(A).
(Result: P(J) = 0.052 and P(M) = 0.0117.)
m Similarly, calculate P(J, M) using conditional probabilities, (4) conators ssncree
conditional independence of J and M given Al.
(Result: P(J, M) ~ 0.002086.)
m Compare P(J, M) and P(J) - P(M).
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Conditional Independence

Reasoning with
Uncertainty

Hoang Anh Buic

Example 7 (Alarm-Example (cont.))

m John react to an alarm, but does not react to a burglary.
(This could be, for example, because of a high wall that
blocks his view on Bob’s property, but he can still hear the
alarm.)

P(J, Bur| Al) = P(J | Al) - P(Bur| Al.

m Given an alarm, the variables J and Ear, M and Bur, as
well as M and Ear are also independent.

P(J, Ear| Al) =P(J | Al) - P(Ear| Al
P(M,Bur| Al)=P(M | Al) - P(Bur| Al
P(M, Ear| A) =P (M | Al)-P(Ear| Al

Conditional Independence
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Theorem 6

The following equations are pairwise equivalent, which means
that each individual equation describes the conditional
independence for the variables A and B given C.

P(A,B|C)=P(A|C)-P(B|C) (1)
P(A|B,C)=P(A|C) (2)
P(B[A,C)=P(B|C) 3)
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Practical Application

Now we turn again to the alarm example and show how the
Bayesian network can be used for reasoning.

P(J,Bur)  P(J,Bur, Al) + P(J, Bur,-Al)

P(T| Bun = P(Bur) - P(Bur)

P(J, Bur, Al) = P(J | Bur, AP (Al | Bur)P(Bur) Chain rule
=P(J | A)P(Al| Bur)P(Bur) J and Bur
are independent
given Al

P(J | Al)P(Al| Bur)P(Bur

P | Bun = P 015(31”) )P(Bun)

. P(J | ~AlP(-Al| Bur)P(Bur)
P(Bur)

— P(J | AP(Al| Bur) + P(J | =Al)P(-Al | Bur)

Reasoning with
Uncertainty

Hoang Anh Buic

n Ne
nal Indep:

| Application
t of Bayesian
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Practical Application

Reasoning with
Uncertainty

P(Al,Bur)  P(Al,Bur, Ear) + P(Al, Bur,—-Ear) Hoang Anh D
P(Bur) - P(Bur)
P(Al| Bur, Earn)P(Bur, Ear)
- P(Bun)
P(Al| Bur,—~Ear)P(Bur,-Ear)
+ P(Bur)
P(Al| Bur, Ear)P(Bur)P(Ear)
- P(Bur)
P(Al| Bur,—~Ear)P(Bur)P(—Ear)
+ P(Bur)
= P(Al| Bur, Ear)P(Ear) + P(Al| Bur,—Ear)P(—Ear)
=0.95-0.002 4 0.94 - 0.998 = 0.94 () oo

P(Al| Bur) =

Similarly, P(—Al| Bur) = 0.06.
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Practical Application

Therefore, Reasoning with

Uncertainty
P(J | Bur) = P(J | A)P(Al| Bur) + P(J | =Al\P(-Al| Bur) peinofan ote
=0.9-0.94 + 0.05- 0.06 = 0.849.
Analogously, P(M | Bur) = 0.659.

Similar to P(J | Bur), we can calculate
P(J,M | Bur) = P(J,M | A)P(Al| Bur)
P(J,M | ~A)P(-Al| Bur)
P(J | AhP(M | A)P(Al| Bur)
+ P(J | ~A)P(M | ~AlP(-Al| Bur)
0.9-0.7-0.9440.05-0.01-0.06 = 0.5922.

_|_

John calls for about 85% of all break-ins and Mary for about | () rractea sssicaon
66% of all break-ins. Both of them call for about of 59% of all
break-ins.
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P(JV M | Bur) = P(~(=J A—M) | Bur)
=1— P(~J,-M | Bur)

P(=J,—~M | Bur) = P(~J | A))P(~M | A)P(Al| Bur)
+ P(—J | ~A)P(—~M | -Al)P(-Al| Bur) A o e
=0.1-0.3-0.94 +0.95-0.99 - 0.06 = 0.085. Mo Envcpy vinos

P(JV M | Bur)=1— P(~J,~M | Bur) Vs s
—1-0.085 = 0.915. o

Bob thus receives a naotification from either John or Mary for dioveraes
about 92% of all burglaries
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Practical Application

J | Bur)P(Bur) — 0.849 -0.001

P
P(Bur| J) = ( P = 0.052 = 0.016
P(M | Bur)P(Bur)  0.659 - 0.001
P B = = = .
(Bur| M) P(M) ooty 090
P(J, M | Bur)P(Bur
P(Bur| J,M) = ( P|(J M)) (Bur)
_ 0.5922 - 0.001 — 0.984.
0.002086

m If John calls, the probability of a burglary is 1.6%. If Mary
calls, it is 5.6%, which is about five times higher than
John.
= Significantly higher confidence given a call from Mary.

m Bob should only be seriously concerned about his home
if both of them call, as the probability of a burglary in that
case is 28.4%.

N\

Reasoning with
Uncertainty

Hoang Anh Buic

@ Practical Application
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Development of Bayesian Networks

Reasoning with

Uncertainty
Construction of a Bayesian network } Hoang Anh Bite
(1) Design of the network structure (usually performed
manually)
(2) Entering the probabilities in the CPTs (usually Conetonat by
automated)

Construction of the network in the alarm example.
m Causes: burglary and earthquake
m Symptoms: John and Mary

m Alarm: hidden variable

m Because John and Mary do not directly react to a burglar or
earthquake, rather only to the alarm, it is appropriate to add
this as an additional variable which is not observable by B

Bob. @ Development of Bayesian
Networks

m Considering causality: going from cause to effect N e
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Graphical Representation of Knowledge as a Bayesian Network

Reasoning with

,{ Design of a Bayesian network structure } Uncertainty

1. Nodes: Determine the set of random variables required to Hong Anh Bife
model the domain and fix an ordering { X1, ..., X, }, where, if
possible, causes precede effects to obtain a more compact
network.

2. Links: Foreachi=1,...,ndo: S

(a) Select a minimal parent set Parents(X;) C {X1,...,X;—1} such
that the conditional independence constraint holds:

P(Xi| X1,...,Xi1) = P(X; | Parents(X;)).

Minimality means no proper subset of Parents(X;) satisfies the
equality.
(b) Foreach X; € Parents(X;) insert the directed edge X; — X;.
(c) Specify the conditional probability table (CPT) for X;:

P(X; | Parents(X;)),

Conditional Independence

Practical Applicatior

i.e., list P(X; = z | Parents(X;) = p) for every value z of X; and (50) Development of Bayesan
every combination p of values of Parents(X;). Netorks
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Development of Bayesian Networks

()
0. (5) ()
v )
©) @)
O C
A and B are A and B are

independent independent given C'

Figure: There is no edge between A and B if they are independent
(left) or conditionally independent (middle, right).

61
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Conditional Probability

Practical Applicatior

Development of Bayesian
Networks
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Development of Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic
Cause Burglary Earthquake
Hidden

Effect

Figure: Stepwise construction of the alarm network considering Development of Bayesian
causality . e

Conditional Independence
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Development of Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic
Cause Burglary Earthquake
Hidden

Effect

Figure: Stepwise construction of the alarm network considering Development of Bayesian

Networks

causality SemaicsofBaysian

Conditional Independence
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Development of Bayesian Networks

Cause Burglary

Hidden

Effect

Figure: Stepwise construction of the alarm network considering
causality
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Development of Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic

Cause Burglary

Hidden

Effect

Figure: Stepwise construction of the alarm network considering Development of Bayesian
causality
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Development of Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic

Cause Burglary

Hidden

Effect

Figure: Stepwise construction of the alarm network considering Development of Bayesian
causality
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Development of Bayesian Networks

m A Bayesian network is often far more compact than the full joint
distribution. This compactness makes it feasible to handle domains
with many variables.
Locally structured (sparse) systems: each subcomponent interacts
directly with only a bounded number of other components,
independent of the total number of components. This typically yields
linear rather than exponential growth in complexity.
If each random variable is directly influenced by at most k. others (for
some constant k) and we assume n Boolean variables, then:

m each conditional probability table (CPT) needs at most 2* numbers,

m the whole network can be specified by at most n2* numbers,

m whereas the full joint distribution requires 2" numbers.

m Concrete example: n = 30, k = 5:

n2" =30-2°=30-32=960, 2" =2% ~1.07 x 10°.

If a network is fully connected (every variable directly influenced by all
others) the CPT specification cost approaches that of the joint
distribution.

Practical tradeoff: small, tenuous dependencies can be omitted to
avoid large increases in model complexity. Example: one might add
edges Ear — J and Ear — M, but only if the gain in accuracy justifies
the extra parameters.
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Development of Bayesian Networks

Reasoning with
Uncertainty
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m The structure of the Bayesian network heavily depends on
the chosen variable ordering.

m [f the order of variables is chosen to reflect the causal
relationship beginning with the causes and proceeding to
the diagnosis variables, then the result will be a simple
network.

m Otherwise the network may contain significantly more
edges. Such non-causal networks are often very difficult to
understand and have a higher complexity for reasoning. e

Practical Applicatior

Development of Bayesian
Networks

Semantics
Networks
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Semantics of Bayesian Networks

Requirements }

m Bayesian network has no cycles.

m The variables are numbered such that no variable has a
lower index than any variable that predecessor.

It holds
P(Xn | X1,.. ~aXn71) = P(Xn | Parent(Xn))

< An arbitrary variable X; in a Bayesian network is
conditionally independent of its ancestors, given its parents.
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Semantics of Bayesian Networks

Reasoning with

More generally, Uncertainty

Theorem 7 Hoang Anh Buic
A node in a Bayesian network is conditionally independent from
all non-successor nodes, given its parents.

Example of conditional
independence in a Bayesian
network. If the parent nodes
E; and E, are given, then
all non-successor nodes
By, ..., Bg are independent
of A.

Semantics of Bayesian
Networks
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m Chain rule for Bayesian network

—-

«
Il
i

P(Xl,...,Xn) = P(Xz | Xla"'7Xi—1) CondionaFrobabily

P(X; | Parent(X;))

Il
=

.
Il
_

m Using this rule in the alarm example,

P(J, Bur, Al) = P(J | AhP(Al | Bur)P(Bur)

Netw

Semantics of Bayesian
Networks
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Semantics of Bayesian Networks

A Basics of Bayesian Networks |

m A Bayesian network is defined by:

m A set of variables and a set of directed edges between
these variables.

m Each variable has finitely many possible values.

m The variables together with the edges form a directed
acyclic graph (DAG). A DAG is a graph without cycles,
that is, without paths of the form (A, ..., A).

m For every variable A the CPT (that is, the table of
conditional probabilities P(A | Parents(A))) is given.

m Two variables A and B are called conditionally
independent given C if P(A,B | C)=P(A| C)P(B | C)
or, equivalently, if P(A | B,C) =P(A | C).
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,-[ Basics of Bayesian Networks (cont.) }

m Besides the foundational rules of computation for
probabilities, the following rules are also true:
Bayes’ Theorem P(A | B) = —P(BILS};;D(A).
Marginalization P(B) = P(A,B)+ P(—A,B) = P(B |
A)P(A) + P(B | —A)P(=A).
Conditioning P(A | B) =Y P(A| B,C =¢)P(C =c|

B).

Semantics of Bayesian
Networks
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Semantics of Bayesian Networks

Reasoning with
Uncertainty

,-[ Basics of Bayesian Networks (cont.) } Hoang Anh Bic

m A variable in a Bayesian network is conditionally
independent of all non-successor variables given its
parent variables. If X5, ..., X,_1 are no successors of
X,,, we have
P(X, | Xiy,...,X,_1) = P(X, | Parents(X,,)). This
condition must be honored during the construction of a
network.

m During construction of a Bayesian network the variables
should be ordered according to causality. First the
causes, then the hidden variables, and the diagnosis
variables last.

m Chain rule: P(X,...,X,) = [[ P(X: | Parent(X;)).

i=1

Semantics of Bayesian
Networks
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