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Additional Materials

Prof. Ertel’s Lectures at Ravensburg-Weingarten University in
2011

https://youtu.be/RRO9-QXR0ss&t=2210 (Introduction)
https://youtu.be/rwefoi__Fk4 (Uninformed Search:
Breadth-First Search, Depth-First Search, Iterative
Deepening)
https://youtu.be/THZ3YxHAwno (Heuristic Search:
Greedy Search, A*-Search, IDA*-Search)
https://youtu.be/IW-HI0Pqgsk (Games with
Opponents, Heuristic Evaluation Functions)

https://youtu.be/RRO9-QXR0ss&t=2210
https://youtu.be/rwefoi__Fk4
https://youtu.be/THZ3YxHAwno
https://youtu.be/IW-HI0Pqgsk
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Introduction

By the 1950s, as computers advanced to the point where
experimenting with practical AI algorithms became
feasible, games emerged as one of the most distinctive AI
challenges (aside from tasks like cracking Nazi codes).
Games offered a well-defined and constrained domain that
could be easily formalized and studied .
Board games such as checkers, chess, and more recently
the highly complex strategy game Go (originating in China
over 2500 years ago) have inspired countless researchers
and continue to drive advancements in AI.
Closely tied to games, search and planning techniques
became a major area of progress in AI during the 1960s.
Algorithms like the Minimax algorithm and Alpha-Beta
Pruning, developed during this period, remain foundational
for game-playing AI, though they have since been refined
and extended with more advanced variants.
We will explore the fundamental concepts of search,
games, and problem-solving.
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Introduction

Search Problems
A search problem is defined by the following values

State: Description of the state of the world in which
the search agent finds itself.

Starting state: The initial state in which the search agent is
started.

Goal state: If the agent reaches a goal state, then it
terminates and outputs a solution (if desired).

Actions: All of the agents allowed actions.
Solution: The path in the search tree from the starting

state to the goal state.
Cost function: Assigns a cost value to every action.

Necessary for finding a cost-optimal solution.
State space: Set of all states.
Search tree: States are nodes, actions are edges.
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Introduction

Example 2 (8-Puzzle, cont.)
Apply the definition to the 8-puzzle, we get

State: 3 × 3 matrix S with the values 1, 2, 3, 4, 5, 6, 7, 8
(once each) and one empty square.

Starting state: An arbitrary state.
Goal state: An arbitrary state.

Actions: Movement of the empty square Sij to the left (if
j ̸= 1), right (if j ̸= 3), up (if i ̸= 1), down (if i ̸= 3).

Solution: The path in the search tree from the starting
state to the goal state.

Cost function: The constant function 1, since all actions have
equal cost.

State space: The state space is degenerate in domains that
are mutually unreachable. (Thus there are
unsolvable 8-puzzle problems.)
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Introduction

Example 3 (8-Puzzle [Nilsson 1998]; [Russell and
Norvig 2010])

1 1

4 4

7 7

5

8

2

3

6

2

5

8

3

6

Figure: Possible starting and goal states of the 8-puzzle

Figure: Search tree for the 8-puzzle. Bottom right a goal state in depth
3 is represented. To save space the other nodes at this level have
been omitted
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Introduction

For analysis of the search algorithms, the following terms are
needed:

Branching factor

The number of successor states of a state s is called the
branching factor b(s), or b if the branching factor is constant.

Effective branching factor

The effective branching factor of a tree of depth d with n
total nodes is defined as the branching factor that a tree with
constant branching factor, equal depth, and equal n would
have.

Complete Search Algorithms

A search algorithm is called complete if it finds a solution
for every solvable problem. If a complete search algorithm
terminates without finding a solution, then the problem is
unsolvable.
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Introduction

The search for a solution in an extremely large search tree
presents a problem for nearly all inference systems.

From the starting state there are many possibilities for the
first inference step.
For each of these possibilities there are again many
possibilities in the next step, and so on.

Some ideas about “large” numbers:
The age of our universe is about 1.4 × 1010 years
≈ 4.4 × 1017 seconds.
The number of cells in the human body (estimated at
3.72 × 1013, i.e., about 37.2 trillion)
The number of neuronal connections in the human brain
(estimated at 1014, i.e., about 100 trillion)
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Introduction

Example 4
The search tree for SLD resolution proof of a very simple
formula from [Ertel 1993] with three Horn clauses, each with at
most three literals:

The tree was cut off at a depth of 14 and has a solution in
the leaf node marked by ⋆.
It is only possible to represent it at all because of the small
branching factor (= number of children at each node) of at
most two and a cutoff at depth 14.

Exercise 1
(a) At most how many leaf nodes does the cut-off search tree

have?
(b) At most how many inference steps are there in total in the

cut-off search tree?



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

10 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

Exercise 2
Assume the branching factor is a constant equal to 30 and the
first solution is at depth 50. (These assumptions are completely
realistic. In chess for example, there are over 30 possible
moves for a typical situation, and a game lasting 50 half-turns
is relatively short. (Each player has 25 moves.) In Go, the
average branching factor is estimated to be about 250.)
(a) How many leaf nodes does the search tree have?
(b) How many inference steps are there in total in the search

tree?
(c) Assume we had 10, 000 computers which can each

perform a billion inferences per second, and that we could
distribute the work over all of the computers with no cost.
What would be the total computation time for all
inferences?
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Introduction

Questions
Why do good chess players exist – and nowadays also good
chess computers?
Why do mathematicians find proofs for propositions in which
the search space is even larger?

Evidently we humans use intelligent strategies which
dramatically reduce the search space.

The experienced chess player, just like the experienced
mathematician, will, by mere observation of the situation,
immediately rule out many actions as senseless. Through his
experience, he has the ability to evaluate various actions for their
utility in reaching the goal .
Often a person will go by feel . If one asks a mathematician how
he found a proof, he may answer that the intuition came to him in
a dream.

In everyday problems, intuition plays a big role. We will later
deal with this kind of heuristic search method and additionally
describe processes with which computers can, similarly to
humans, improve their heuristic search strategies by learning.
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Introduction

A tree with constant branching factor b and depth d has
total

n =
d∑

i=0
bi = bd+1 − 1

b − 1

nodes.

Theorem 1
For heavily branching finite search trees with a large constant
branching factor, almost all nodes are on the last level.
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Example 5 (Shortest Path from City A to City B)

Figure: The graph of southern Germany as an example of a search
task with a cost function.
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Introduction

Example 3 (cont.)
State: A city as the current location of the traveler.

Starting state: An arbitrary city A.
Goal state: An arbitrary city B.

Actions: Travel from the current city to a neighboring city.
Cost function: The distance between the cities. Each action

corresponds to an edge in the graph with the
distance as the weight.

State space: All cities, that is, nodes of the graph.

Optimal Search Algorithms

A search algorithm is called optimal if it always finds the
solution with the lowest cost , provided that at least one
solution exists.
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Introduction

Deterministic Problem
Every action leads from a state to a unique successor state.

Observable Problem
The agent always knows which state it is in.

Example 4
The 8-puzzle problem is deterministic and observable.
In route planning in real applications, both characteristics
are not always given.

The action “Drive from Munich to Ulm” may—for example
because of an accident—lead to the successor state
“Munich”.
It can also occur that the traveler no longer knows where he
is because he got lost.



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

16 Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Introduction

We want to ignore all kinds of complications similar to
those in the route planning problems. Therefore, we will
only look at problems that are deterministic and
observable.
Deterministic and observable problems make action
planning relatively simple because, due to having an
abstract model , it is possible to find action sequences for
the solution of the problem without actually carrying out
the actions in the real world . ⇒ Offline algorithms.
One faces much different challenges when, for example,
building robots that are supposed to play soccer . Here
there will never be an exact abstract model of the actions.
⇒ Online algorithms (which make decisions based on
sensor signals in every situation). (Reinforcement learning
works toward optimization of these decisions based on
experience.)
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Uninformed Search
Breadth-First Search

BREADTHFIRSTSEARCH(NodeList, Goal)

1 NewNodes = ∅
2 for all Node ∈ NodeList
3 if GoalReached(Node, Goal)
4 return (“Solution found”, Node)
5 NewNodes = append(NewNodes, Successors(Node))
6 if NewNodes ̸= ∅
7 return BREADTHFIRSTSEARCH(NewNodes, Goal)
8 else
9 return (“No solution”)
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Uninformed Search
Breadth-First Search

Key Concepts:
Breadth-First Search (BFS) explores the search tree level
by level.
Uses a First-In-First-Out (FIFO) strategy for node
expansion.
The algorithm stops as soon as the goal node is found or
all nodes are exhausted.

Algorithm Steps:
1. Initialize an empty list for new nodes.
2. For each node in the current list:

Check if it is the goal node.
If not, generate its successors and add them to the new list.

3. Recursively call BFS on the new list of nodes.
4. If no new nodes are generated, return “No solution.”

Important Functions:
GoalReached(Node, Goal): Checks if the current node
matches the goal.
Successors(Node): Generates all possible child nodes of
the current node.
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Uninformed Search
Breadth-First Search

Characteristics:
Complete: Will find a solution if one exists.
Optimal: Guarantees the optimal (lowest cost) solution
when all step costs are equal.

Otherwise, BFS may not find an optimal solution.

Time Complexity: O(bd), where b is the branching factor
and d is the depth of the solution.
Space Complexity: O(bd), as all nodes at the current
depth are stored in memory.

When all costs are not the same, we use a variant of BFS.

Uniform Cost Search
= BFS + The node with the lowest cost from the list of nodes
(which is sorted ascendingly by cost) is always expanded, and
the new nodes sorted in. ⇒ Always optimal!
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Uninformed Search
Depth-First Search

DEPTHFIRSTSEARCH(Node, Goal)

1 if GoalReached(Node, Goal)
2 return (“Solution found”)
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅
5 Result = DEPTHFIRSTSEARCH(First(NewNodes), Goal)
6 if Result = “Solution found”
7 return (“Solution found”)
8 NewNodes = Rest(NewNodes)
9 return (“No solution”)



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

21 Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Uninformed Search
Depth-First Search

Key Concepts:
Depth-First Search (DFS) explores as far as possible along
each branch before backtracking.
Uses a Last-In-First-Out (LIFO) strategy for node expansion.
Only the successors of the current node are stored in memory.

Algorithm Steps:
1. Check if the current node is the goal node.
2. If not, generate its successors.
3. Recursively expand the first successor node.
4. If no solution is found, backtrack to the last branch and

expand the next successor.
Important Functions:

GoalReached(Node, Goal): Checks if the current node
matches the goal.
First: Retrieves the first element of a list.
Rest: Retrieves the remaining elements of a list.
Successors(Node): Generates all possible child nodes of the
current node.
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Characteristics:
Incomplete: May enter infinite loops in infinite-depth trees.
Non-optimal: Does not guarantee the optimal solution
(e.g., when there is no solution in the far left branch and
the tree has infinite depth).
Time Complexity: O(bd), where b is the branching factor
and d is the depth of the solution.
Space Complexity: O(bd), as only the current path and its
successors are stored in memory.

To address the limitations of DFS:

Depth-Limited Search

A variant of DFS with a depth limit (⇒ Pruned search tree). It
avoids infinite loops but may miss solutions beyond the limit.
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Uninformed Search
Iterative Deepening

Iterative Deepening

We begin the depth-first search with a depth limit of 1. If no
solution is found, we raise the limit by 1 and start searching
from the beginning, and so on.
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Uninformed Search
Iterative Deepening

ITERATIVEDEEPENING(Node, Goal)

1 DepthLimit = 0
2 repeat
3 Result = DEPTHFIRSTSEARCH-B(Node, Goal, 0, DepthLimit)
4 DepthLimit = DepthLimit + 1
5 until Result = “Solution found”

DEPTHFIRSTSEARCH-B(Node, Goal, Depth, Limit)

1 if GoalReached(Node, Goal)
2 return (“Solution found”)
3 NewNodes = Successors(Node)
4 while NewNodes ̸= ∅ and Depth < Limit
5 Result = DEPTHFIRSTSEARCH-B(First(NewNodes),

Goal, Depth+1, Limit)
6 if Result = “Solution found”
7 return (“Solution found”)
8 NewNodes = Rest(NewNodes)
9 return (“No solution”)
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Uninformed Search
Iterative Deepening

Analysis:
complete.
optimal, if costs are constant and increment = 1
Computation time = O(bd)
Memory requirement = O(bd).
One could argue that repeatedly re-starting depth-first
search at depth zero causes a lot of redundant work . For
large branching factors this is not the case. Indeed, the
computation time for all iterations besides the last can be
ignored . [Why?]
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Uninformed Search
Comparison

Breadth-
first

search

Uniform
cost

search

Depth-
first

search

Iterative
deepening

Completeness Yes Yes No Yes
Optimal
solution

Yes (*) Yes No Yes (*)

Computation
time

bd bd ∞ or bds bd

Memory use
bd bd bd bd

(*): only true with constant action cost.
ds is the maximal depth for a finite search tree.
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Uninformed Search
Cycle Check

Exercise 3
Nodes may be repeatedly visited during a search. Such cycles
can be prevented by recording within each node all of its
predecessors and, when expanding a node, comparing the
newly created successor nodes with the predecessor nodes.
All of the duplicates found can be removed from the list of
successor nodes.
How would a check on cycles of arbitrary length affect the
search performance?
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Heuristic Search

Heuristics are problem-solving strategies which in many
cases find a solution faster than uninformed search.
There is no guarantee!
In everyday life, heuristic methods are important.
Realtime-decisions under limited resources.
A good solution found quickly is preferred over a solution
that is optimal, but very expensive to derive.

Mathematical Modeling:
Heuristic evalutation function f(s) for states
Goal: Find, with little effort, a solution to the stated search
problem with minimal total cost .
Node = state + heuristic evaluation + ...
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Heuristic Search

HEURISTICSEARCH(Start, Goal)

1 NodeList = [Start]
2 while True
3 if NodeList = ∅
4 return (“No solution”)
5 Node = First(NodeList)
6 NodeList = Rest(NodeList)
7 if GoalReached(Node, Goal)
8 return (“Solution found”, Node)
9 NodeList = SortIn(Successors(Node), NodeList)

SortIn(X,Y) inserts the elements from the unsorted list X
into the ascendingly sorted list Y.

The heuristic rating is used as the sorting key . Thus it is
guaranteed that the best node (that is, the one with the
lowest heuristic value) is always at the beginning of the list .
When sorting in a new node from the node list, it may be
advantageous to check whether the node is already
available and, if so, to delete the duplicate.

With appropriate evaluation
functions, one can generate
BFS and DFS from
HEURISTICSEARCH
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Heuristic Search

Ideally, the best heuristic would be a function that calculates
the actual costs from each node to the goal .

Question

How do we find a heuristic that is fast and simple to compute?

An idea for finding a heuristic simplification of the problem.
The original task is simplified enough that it can be solved
with little computational cost .
The costs from a state to the goal in the simplified problem
then serve as an estimate for the actual problem.
⇒ cost estimate function h.
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Example 5 (Shortest Path from City A to City B)
Simplified Task: finding the straight line path from city to
city (that is, the flying distance).
Cost estimate function h(s) = flying distance from city s to
Ulm (given in the figure below).

Figure: City graph with flying distances from all cities to Ulm
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Example 5 (cont.)
We use the cost estimate function h(s) directly as the
evaluation function in the HEURISTICSEARCH, i.e., we set
f(s) = h(s).

Figure: Greedy search: from Linz to Ulm (left) and from Mannheim to
Ulm (right).

Not always find the optimal
solution

Mannheim–Nürnberg–Ulm:
401 km
Mannheim–Karlsruhe–
Stuttgart–Ulm: 323 km



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
32 Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Heuristic Search
Greedy Search

Example 5 (cont.)
We use the cost estimate function h(s) directly as the
evaluation function in the HEURISTICSEARCH, i.e., we set
f(s) = h(s).

Figure: Greedy search: from Linz to Ulm (left) and from Mannheim to
Ulm (right).

Not always find the optimal
solution

Mannheim–Nürnberg–Ulm:
401 km
Mannheim–Karlsruhe–
Stuttgart–Ulm: 323 km
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A*-Search

Cost function g(s) = Sum of accrued costs from root to
current node s.
Heuristic cost estimate h(s) = Estimated cost from current
node s to goal.
Heuristic evaluation function f(s) = g(s) + h(s).

Admissible heuristic cost estimate function
A heuristic cost estimate function h(s) that never
overestimates the actual cost from state s to the goal is
called admissible.

A*-algorithm

= HEURISTICSEARCH + f(s) = g(s) + h(s) + admissible h
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Example 5 (cont.)

Figure: Two snapshots of the A* search tree for the optimal route from
Frankfurt to Ulm. In the boxes below the name of the city s we show
g(s), h(s), f(s). Numbers in parentheses after the city names show the
order in which the nodes have been generated by the Successors
function
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Theorem 2
The A* algorithm is optimal. That is, it always finds the solution
with lowest total cost if the heuristic h is admissible.
Proof.
The first solution node l found by A* never has a higher cost
than another arbitrary solution node l′, i.e., g(l) ≤ g(l′).

Definition of f f(s) = estimated cost
from start to goal via s

][

in ascending order of f
list of open nodes is sorted the heuristic is admissible

estimated cost
to the goal to the goal

actual cost≤
( )l is a solution node

⇔ h(l) = 0
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Weaknesses of A*:
High memory requirements
List of open nodes must be sorted ⇒ Heapsort (logarithmic
time complexity for insertion and removal of nodes)

Solution: IDA*-algorithm [Korf 1985]
Iterative Deepening
The same as depth-first search, but limit for heuristic
evaluation f(s) (instead of depth limit).

Perform a DFS, cut off a branch when f(s) exceeds a given
threshold
This threshold starts at the estimate of the cost at the initial
state, and increases for each iteration of the algorithm.
At each iteration, the threshold used for the next iteration is
the minimum cost of all values that exceeded the current
threshold.
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Heuristic Search
Summary

Of the various search algorithms for uninformed search,
iterative deepening is the only practical one because it is
complete and can get by with very little memory.
IDA* is complete, fast and memory efficient.
Good heuristics greatly reduce the effective branching
factor.
Heuristics have no performance advantage for unsolvable
problems because the unsolvability of a problem can only
be established when the complete search tree has been
searched through.

For solvable problems, heuristics often reduce computation
time dramatically, but for unsolvable problems the cost can
even be higher with heuristics.
For example, in the proof of PL1 formulas (which is
undecidable), the search tree can be infinitely deep. This
means that, in the unsolvable case, the search potentially
never ends.
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Question

How to find good heuristics?

Manually, e.g. by simplification of the problem.
Simplify the original problem.
Solve the simplified (easier) version.
Optimal solutions from the simplified version ⇒ heuristic
functions.

Automatic generation of heuristics by machine-learning
techniques.
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Games with Opponents

Games for two players
Chess, Checkers, Othello, Go
deterministic (= every action (a move) results in the same
child state given the same parent state), observable (=
every player always knows the complete game state)
Card games: only partially observable.

The player does not know the other players’ cards, or only
has partial knowledge about them.

Zero-sum games: Win + Loss = 0
Every gain one player makes means a loss of the same
value for the opponent.
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Characteristics of games:
The effective branching factor in chess is around 30 to 35.
50 moves per player: 30100 ≈ 10148 leaf nodes ⇒ no chance to
fully explore the search tree.
Real-time requirement (chess is often played with a time limit)
⇒ Limited search depth.
Among the leaf nodes of this depth-limited tree there are
normally no solution nodes (that is, nodes which terminate the
game) ⇒ heuristic evaluation function B for board positions.

The level of play strongly depends on the quality of the function
B.

Player: Max, Opponent: Min.
Assumption: Opponent Min always makes the best move he
can.
The higher the evaluation B(s) for position s, the better
position s is for the player Max and the worse it is for his
opponent Min.

Max maximizes the evaluation of his moves.
Min minimizes evaluation of his moves.
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Games with Opponents
Minimax Search: Tic-Tac-Toe Example

Game Setup: A 3x3 Tic-Tac-Toe board with two players:
Max (X) and Min (O). Players alternate turns, with Max
going first
Objective: Max aims to win (+1), Min aims to win (-1), and
a draw results in 0. A play wins by placing three of their
marks in a horizontal, vertical, or diagonal row.
Minimax Algorithm:

Max chooses the move with the highest score (= evaluation
function B(s) for position s).
Min chooses the move with the lowest score (= evaluation
function B(s) for position s).
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max

−1 −1 −1 −1

1 1
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max

−1 −1 −1 −1

1 1−1 −1 −1 −1
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max

−1 −1 −1 −1

1 1−1 −1 −1 −1

1 −1 1
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max

−1 −1 −1 −1

1 1−1 −1 −1 −1

1 −1 1

−1
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Minimax Search: Tic-Tac-Toe Example

Example: A partial game tree starting with Min’s turn. The tree
alternates between Min placing and Max placing , with the
current player shown on the left.

Min

Max

Min

Max

−1 −1 −1 −1

1 1−1 −1 −1 −1

1 −1 1

−1

Min wins
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Exercise 4
The minimax evaluation of a game tree is shown in the figure
below [Ertel 2025], Fig. 6.19, p. 117. The look-ahead is four
half-moves, and the evaluations of all leaves are given. Explain
how the evaluations of the inner nodes are derived.
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Key Idea: Alpha-Beta Pruning avoids evaluating branches
of the game tree that cannot influence the final decision
based on the values already discovered during the search.
It uses two values: Alpha α and Beta β.

Alpha and Beta Values

Alpha: Represents the best (highest-value) score that
the maximizing player (usually the AI) can guarantee so
far. It acts as a lower bound . The initial value of Alpha is
−∞.
Beta: Represents the best (lowest-value) score that the
minimizing player (the opponent) can guarantee so far. It
acts as an upper bound . The initial value of Beta is +∞.
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As the tree is explored, the Alpha and Beta values are
updated.
When exploring a node, the algorithm compares the
node’s value against these bounds:

If Alpha ≥ Beta, the current branch will not affect the final
decision.
This is because the opponent will avoid this path in favor of
a better one.

When this condition is met, the branch is pruned , and the
algorithm moves on to the next branch.

Benefits of Alpha-Beta Pruning

Skips large parts of the tree.
Significantly reduces the number of nodes to be
evaluated.
Maintains the same optimal decision as the full Minimax
algorithm.
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The alpha-beta minimax evaluation of a game tree is shown in
the figure below [Ertel 2025], Fig. 6.20, p. 118. The look-ahead
is four half-moves, and the evaluations of all leaves are given.
Explain how the evaluations of the inner nodes are derived and
how to decide which branch to prune.
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Analysis: (see [Pearl 1984])
Computation time heavily depends on the order in which
child nodes are traversed
Worst-Case: does not offer any advantage.

Successors of maximum nodes are sorted in ascending
order, successors of minimum nodes are sorted in
descending order .
With constant branching factor b, the number nd of leaf
nodes to evaluate at depth d is nd = bd.

Best-Case:
Successors of maximum nodes are sorted in descending
order, successors of minimum nodes are sorted in
ascending order .
Effective branching factor ≈

√
b ⇒ nd ≈

√
b

d = bd/2 leaf
nodes. ⇒ Search horizon is doubled. (E.g., if you have
computational resources to do a full search with depth d1
then in the best case, with that same resources, you can
search with depth 2d1 using alpha-beta pruning.)
In chess, this means effective branching factor reduces
from 35 to about 6 ≈

√
35.
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Analysis (cont.): (see [Pearl 1984])
Average-Case:

The child nodes are randomly sorted .
Effective branching factor ≈ b3/4 ⇒ nd ≈ b3d/4 leaf nodes.
In chess, this means effective branching factor reduces
from 35 to about 14.

Heuristic node order:
Connect alpha-beta pruning with iterative deepening over
the depth limit ⇒ At every new depth limit we can access
the ratings of all nodes of previous levels and order the
successors at every branch.
Effective branching factor of roughly 7 to 8, which is close to
the optimal value

√
35 ≈ 6.



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

50 Non-deterministic Games

Heuristic Evaluation
Functions

Latest Research

References

Games with Opponents
Non-deterministic Games

e.g. dice games
In the game tree, there are three types of levels in the
sequence Max, dice, Min, dice, ..., where each dice roll
node branches six ways.
Average the values of all rolls



55

Search, Games and
Problem Solving

Hoàng Anh Đức

Additional Materials

Introduction

Uninformed Search
Breadth-First Search

Depth-First Search

Iterative Deepening

Comparison

Cycle Check

Heuristic Search
Greedy Search

A*-Search

IDA*-Search

Summary

Games with
Opponents
Minimax Search

Alpha-Beta-Pruning

Non-deterministic Games

51 Heuristic Evaluation
Functions

Latest Research

References

Heuristic Evaluation Functions

The following example illustrates how to find good heuristic evaluation
functions using the knowledge of human experts in a chess
program [Frayn 2005].
Example 6

Experts are questioned about the most important factors in the
selection of a move ⇒ these factors are quantified ⇒ list of relevant
features or attributes.
These are then (in the simplest case) combined into a linear
evaluation function B(s) for positions, which could look like

B(s) = a1 · material + a2 · pawn_structure+
+ a3 · king_safety + a4 · knight_in_center+
+ a5 · bishop_diagonal_coverage + · · ·

material = material(own_team) − material(opponent)
material(team) = num_pawns(team) · 100 + num_knights(team) · 300+

+ num_bishops(team) · 300 + num_rooks(team) · 500+
+ num_queens(team) · 900

Weights ai are set intuitively after discussion with experts + changed
after each game based on positive and negative experience. Better:
optimizing weights by machine-learning methods.
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Example 7 (cont.)
Optimizing weights by machine-learning methods.

Expert is only asked about relevant features f1(s), f2(s), . . .
A machine learning process is used to find an evaluation function
that is as close to optimal as possible.

Start with an initial pre-set evaluation function (determined by the
learning process).
Let the chess program play.
At the end of the game a rating is derived from the result (victory,
defeat, or draw).
Based on this rating, the evaluation function is changed with the
goal of making fewer mistakes next time.

Problems:
Credit Assignment
positive or negative feedback only at the end
no ratings for individual moves
Feedback for actions of the past? ⇒ Reinforcement Learning

Most of the world-best chess computers still work without
machine-learning techniques. Reasons:

Reinforcement learning has large computation times
Manually created heuristics are already heavily optimized.
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Exercise 5
Do your own research on the latest developments in computer
chess. You may consider the following aspects:

Historical milestones in computer chess (e.g., Deep Blue
vs. Kasparov).
Current state-of-the-art chess engines (e.g., Stockfish,
AlphaZero).
Techniques used in modern chess engines (e.g., neural
networks, reinforcement learning).
Impact of AI on human chess players and the chess
community.
Future trends and potential developments in computer
chess.
Include references to relevant articles, papers, or websites.
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