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The Search Space Problem

In the search for a proof, depending on the calculus,
potentially there are (infinitely) many ways to apply
inference rules at each step
This is the main reason for the explosive growth of the
search space

Because of the search space problem, automated provers
today can only prove relatively simple theorems in special
domains with few axioms
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The Search Space Problem

Automated
Provers

Human
Experts

Number of inferences
performed per second

20000 1

Solve difficult problems slow fast

Reasons
Humans use intuitive calculi that work on a higher level

This intuitive calculi often carry out many of the simple
inferences of an automated prover in one step

Humans work with lemmas
We already know the lemmas are true and do not need to
re-prove them each time

Humans use intuitive meta knowledge (informal!)
Intuition is an important advantage of humans. Without it, we
could not solve any difficult problems

Humans use heuristics
In many cases, heuristics can greatly simplify or shorten the
way to the goal
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The Search Space Problem

Problems
Often humans are unable to formulate intuitive
meta-knowledge verbally !
Humans learn heuristics by experience

Solution 1
Try to “copy nature”

Learn heuristics by the application of machine learning
techniques

Solution 2
Design interactive systems that operate under the control of
the user

For example, computer algebra programs such as
Mathematica, Maple, or Maxima can automatically carry
out difficult symbolic mathematical manipulations
The search for the proof is left fully to the human
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The Search Space Problem

Example 1 (Resolution + Machine Learning Techniques)
A resolution prover has, during the search for a proof, hundreds or
more possibilities for resolution steps at each step, but only a few
lead to the goal . It would be ideal if the prover could ask an oracle
which two clauses it should use in the next step to quickly find the
proof
(1) A proof-directing module evaluates the different alternatives for

the next step heuristically and chooses the alternative with the
best rating

Rating the available clauses by a function that calculates a value
based on the number of literals, the number of positive literals, the
complexity of the terms, etc. for every pair of resolvable clauses

(2) How to compute such a function?
Use machine learning algorithms to learn from successful proofs
Successful resolution steps are stored as positive
Unsuccessful resolution steps are stored as negative
Machine learning system generates a program for the evaluation
of clauses
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Decidability and Incompleteness

There are correct and complete calculi and theorem
provers
Any theorem (i.e., a true statement) can be proved in a
finite amount of time
What if the statement is not true?

There is no process that can prove or refute any formula
from PL1 in finite time

Theorem 1
The set of valid formulas in first-order predicate logic is
semidecidable

This theorem implies that there are programs (theorem
provers) which, given a true (valid) formula as input,
determine its truth in finite time
If the formula is not valid, however, it may happen that the
prover never halts
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Decidability and Incompleteness

Note
Propositional logic decidable because the truth table method
provides all models of a formula in finite time
Evidently predicate logic with quantifiers and nested function
symbols is a language somewhat too powerful to be
decidable

Exercise 1 ([Ertel 2025], Exercise 4.1, p. 73)
(a) With the following (false) argument, one could claim that PL1 is

decidable: “We take a complete proof calculus for PL1. With it
we can find a proof for any true formula in finite time. For every
other formula ϕ I proceed as follows: I apply the calculus to ¬ϕ
and show that ¬ϕ is true. Thus ϕ is false. Thus I can prove or
refute every formula in PL1.” Find the mistake in the argument
and change it so it becomes correct (Hint: There are three
types of formulas: satisfiable, valid, and unsatisfiable. Can the
above process be applied for all of these types?)

(b) Construct a decision process for the set of true and
unsatisfiable formulas in PL1
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Decidability and Incompleteness

Higher-order Logic

A first-order logic can only quantify over variables
A second-order logic can also quantify over formulas of
the first order
A third-order logic can quantify over formulas of the
second order
and so on

Example 2 (Second-order Logic Formula)
If a predicate p(n) holds for n, then p(n + 1) also holds
∀p p(n) ⇒ p(n + 1)
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Decidability and Incompleteness

Theorem 2 (Gödel incompleteness theorem)
Every axiom system for the natural numbers with addition and
multiplication (arithmetic) is incomplete. That is, there are true
statements in arithmetic that are not provable.

Proof Idea.
Gödel’s proof works with what is called Gödelization.
Every arithmetic formula is encoded as a number (Gödel
number).
Gödelization is now used to formulate the proposition F =
“I am not provable.” in the language of arithmetic.
F is true and not provable.

Assume F is false. Then we can prove F and therefore
show that F is not provable. This is a contradiction.
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Decidability and Incompleteness

Note
The deeper background of Theorem 2 is that mathematical theories
(axiom systems) and, more generally, languages become incomplete
if the language becomes too powerful (e.g., PL1).

Example 3 (“Too powerful language”)
Set theory is so powerful that one can formulate paradoxes (=
statements that contradict themselves) with it.
For example, a paradox in set theory: “The set of all the barbers
who all shave those who do not shave themselves”

Exercise 2 ([Ertel 2025], Exercise 4.2, p. 73)
(a) Given the statement “There is a barber who shaves every person

who does not shave himself.” Consider whether this barber
shaves himself.

(b) Let M = {x | x /∈ x}. Describe this set and consider whether M
contains itself.

Dilemma: Languages which are powerful enough to describe
mathematics and interesting applications also contain contradictions
and incompletenesses
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Example: The Flying Penguin

Goal
We present an example to demonstrate a fundamental
problem of logic and possible solution approaches.

1. Tweety is a penguin
2. Penguins are birds
3. Birds can fly

Formalized in PL1, the
knowledge base KB is:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ⇒ fly(x)
Exercise 3
(a) Show that KB ⊢ fly(twetty) (for example, with resolution)
(b) Show that if we add penguin(x) ⇒ ¬fly(x) to the

knowledge base KB, then KB ⊢ ¬fly(twetty)
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Example: The Flying Penguin

From Exercise 3, both fly(twetty) and ¬fly(twetty) can be
derived ⇒ The knowledge base is inconsistent
Although we explicitly state that penguins cannot fly, the
opposite can still be derived. This is because of the
monotony of PL1.

Monotonic Logic

A logic is called monotonic if, for an arbitrary knowledge base
KB and an arbitrary formula ϕ, the set of formulas derivable
from KB is a subset of the formulas derivable from KB ∪ ϕ.

Recap

Evidently the formalization of the flight attributes of
penguins is insufficient
To prevent the formula fly(twetty) from being derived, our
first attempt is to add new formulas to the KB. This does
not work
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Example: The Flying Penguin

We continue by replacing the obviously false statement
“(all) birds can fly” in KB with the more exact statement
“(all) birds except penguins can fly” and obtain as KB2 the
following clauses:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ∧ ¬penguin(x) ⇒ fly(x)
penguin(x) ⇒ ¬fly(x)

Problem solved! We can now derive ¬fly(tweety) but not
fly(tweety), because to derive fly(tweety) we would need
¬penguin(x), which is not derivable



21

Limitations of Logic

Hoàng Anh Đức

The Search Space
Problem

Decidability and
Incompleteness

14 Example: The Flying
Penguin

Modelling Uncertainty

References

Example: The Flying Penguin

A problem arises when we
want to add a new bird,
say the raven Abraxas
(from the German book
“The Little Witch”), and
obtain KB3

raven(abraxas)
raven(x) ⇒ bird(x)

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ∧ ¬penguin(x) ⇒ fly(x)
penguin(x) ⇒ ¬fly(x)

At the moment, we cannot
say anything about the
flight attributes of Abraxas
because we forgot to
formulate that ravens are
not penguins. Thus we
extend KB3 to KB4

raven(abraxas)
raven(x) ⇒ bird(x)

raven(x) ⇒ ¬penguin(x)
penguin(tweety)

penguin(x) ⇒ bird(x)
bird(x) ∧ ¬penguin(x) ⇒ fly(x)

penguin(x) ⇒ ¬fly(x)
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Example: The Flying Penguin

The fact that ravens are not penguins, which is
self-evident to humans, must be explicitly added here
For the construction of a knowledge base with all 9800 or
so types of birds worldwide, it must therefore be specified
for every type of bird (except for penguins) that it is not a
member of penguins
In general, for every object in the knowledge base, in
addition to its attributes, all of the attributes it does not
have must be listed.

Exercise 4 ([Ertel 2025], Exercise 4.3, p. 73)
Use an automated theorem prover (for example E [Schulz
2002]) and apply it to all five different axiomatizations of the
Tweety example mentioned above. Validate the example’s
statements.
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Example: The Flying Penguin

Another problem caused by the monotony is the so-called
frame problem. This happens in complex planning problems in
which the world can change

Example 4 (An example of the frame problem)
A blue house is painted red, then afterwards it is red
However, with the knowledge base

color(house, blue)
paint(house, red)

paint(x, y) ⇒ color(x, y)

one can derive color(house, red)
Additionally, color(house, blue) is already in the knowledge
base, which leads to the conclusion that, after painting, the
house is both blue and red
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Example: The Flying Penguin

To solve this problem, non-monotonic logics have been
developed.

Knowledge (formulas) can be removed from the knowledge
base.

Despite great effort, these logics have at present, due to
semantic and practical problems, not succeeded.
Another interesting approach for modeling problems such
as the Tweety example is probability theory .

The statement “all birds can fly” is false.
A statement something like “almost all birds can fly” is
correct.
This statement becomes more exact if we give a probability
for “birds can fly”.



21

Limitations of Logic

Hoàng Anh Đức

The Search Space
Problem

Decidability and
Incompleteness

Example: The Flying
Penguin

18 Modelling Uncertainty

References

Modelling Uncertainty

Two-valued logic can and should only model
circumstances in which there is true, false, and no other
truth values.
For many tasks in everyday reasoning, two-valued logic is
therefore not expressive enough.

For example, the rule bird(x) ⇒ fly(x) is true for almost all
birds, but for some it is false.

As we already mentioned, to formulate uncertainty, we can
use probability theory .

For example, we give a probability for “birds can fly” :
P (bird(x) ⇒ fly(x)) = 0.99 (i.e., “99% of all birds can fly”)
Later, we will see that here it is better to work with
conditional probabilities such as P (fly|bird) = 0.99. With the
help of Bayesian networks, complex applications with many
variables can also be modelled.
Fuzzy logic is required for “The weather is nice” . Here it
makes no sense to speak in terms of true and false.
The variable weather_is_nice is continuous with values in
[0, 1]. weather_is_nice = 0.7 then means “The weather is
fairly nice” .
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Modelling Uncertainty

Probability theory also offers the possibility of making
statements about the probability of continuous variables.

“There is a high probability that there will be some rain”
P (rainfall = X) = Y

Note
This very general and even visualizable representation of
both types of uncertainty we have discussed, together with
inductive statistics and the theory of Bayesian networks,
makes it possible, in principle, to answer arbitrary probabilistic
queries.

It is very likely between
10 and 20mm rain
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Comparison of different formalisms for the modelling of
uncertain knowledge

Formalism Number of
truth

values

Probabilities
expressible

Propositional logic 2 —
Fuzzy logic ∞ —
Discrete probabilistic logic n yes
Continuous probabilistic logic ∞ yes
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