
VNU-HUS MAT1206E/3508: Introduction to
AI

Logic Programming with PROLOG

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học
Đại học KHTN, ĐHQG Hà Nội

hoanganhduc@hus.edu.vn

mailto:hoanganhduc@hus.edu.vn

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Contents

Additional Materials

PROLOG Systems and Implementations

Basic of PROLOG

Simple Examples

Execution Control and Procedural Elements

Lists

Self-modifying Programs

A Planning Example

Constraint Logic Programming

57

Logic Programming
with PROLOG

Hoàng Anh Đức

2 Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Additional Materials

Learn Prolog Now!
https://www.let.rug.nl/bos/lpn/index.php

by Patrick Blackburn, Joost Bos, and Kristina
Striegnitz.

https://www.let.rug.nl/bos/lpn/index.php

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

3 PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

PROLOG Systems and Implementations

PROLOG = Programming in Logic
PROLOG is used in many projects, primarily in AI and
computational linguistics.
We will now give a short introduction to this language,
present the most important concepts, show its strengths,
and compare it with other programming languages and
theorem provers.
Those looking for a complete programming course are
directed to textbooks such as [Bratko 2011]; [Clocksin and
Mellish 2013] and the documentations at
https://www.swi-prolog.org/ and
http://www.gprolog.org/.
PROLOG systems interpret Warren Abstract Machine
code (WAM).
PROLOG source code is compiled into so-called WAM
code, which is then interpreted by the WAM.
Performance: up to 10 million logical inferences per
second (LIPS) on a 1 Gigahertz PC

https://www.swi-prolog.org/
http://www.gprolog.org/

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

4 PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

PROLOG Systems and Implementations

The syntax of the language PROLOG only allows Horn clauses
(i.e., clauses having at most one positive literal)

PL1 / clause normal
form

PROLOG Desc.

(¬A1 ∨ · · · ∨ ¬Am ∨ B) B:- A_1, ... , A_m. Rule
(A1 ∧ · · · ∧ Am) ⇒ B B:- A_1, ... , A_m. Rule

A A. Fact
(¬A1 ∨ · · · ∨ ¬Am) ?- A_1, ... , A_m. Query
¬(A1 ∧ · · · ∧ Am) ?- A_1, ... , A_m. Query

Here A1, . . . , Am, A, B are literals.
The literals are, as in PL1, constructed from predicate
symbols with terms as arguments.
As we can see in the above table, in PROLOG there are
no negations in the strict logical sense because the sign of
a literal is determined by its position in the clause.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

5 PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

PROLOG Systems and Implementations

A brief history
Kowalski: late 60’s Logician who showed logical proof can
support computation.
Colmerauer: early 70’s Developed early version of
PROLOG for natural language processing, mainly multiple
parses.
Warren: mid 70’s First version of PROLOG that was
efficient.
Japan: early 80’s The 5th Generation Computer Project
chose to use PROLOG as the computer language for the
AI programming.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

6 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

A PROLOG program consists of predicate definitions.
A predicate denotes a property or relationship between
objects.
Definitions consist of (Horn) clauses.
A clause has a head and a body (Rule) or just a head
(Fact).
A head consists of a predicate name and arguments.
A clause body consists of a conjunction of terms.
Terms can be constants, variables (with initial capital
letter), or compound terms.
We can set our program goals by typing a query, which is
a list of atomic formulas.
A goal unifies with clause heads in order (top down), and
the body of the clause becomes new subgoals.
Unification leads to the instantiation of variables to values.
If any variables in the initial goal become instantiated this
is reported back to the user.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

7 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Variables
Variables begin with a Capital letter, or “_”

For example, X, Tom, _result

“_” is a nameless variable.
A variable can have a value.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

8 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Atoms
An atom is a constant in terms; it just stands for itself.
Atoms do not begin with a capital letter

For example, x, tom

Atomic formulas are called structures in PROLOG.
You can make an atom containing any characters at all
by enclosing it in single quotes:

For example, ’C:\\My Documents\\examples.pl’
If you use double quotes, you will get a list of ASCII
values, which is probably not what you want

?- X = "Hello". results
X = [72, 101, 108, 108, 111].

In a quoted atom, a single quote must be doubled or
backslashed

For example, ’Can’’t, or won\’t?’
Backslashes in file names must also be doubled

For example, ’C:\\My Documents\\examples.pl’
Better yet, use forward slashes in paths; every OS,
including Windows, understands this

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

9 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Predicates
A predicate is a definition of a functor (predicate symbol), which
is collection of clauses with the same functor and arity (number
of arguments).

loves(john, mary).
loves(mary, bill).
loves(chuck, X) :- female(X), rich(X).

These clauses should stay together.
The scope of a variable (such as X) is the single clause in which
it occurs.
A PROLOG program is just a collection of predicates.

Common Problems
Capitalization is meaningful !
No space is allowed between a functor and its argument list:

man(tom), not man (tom).

Double quotes indicate a list of ASCII character values, not a
string
Don’t forget the period! (But if you do, you can put it on the next
line.)

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

10 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Central Ideas of PROLOG
SUCCESS (true) / FAILURE (false)

any computation can “succeed” or “fail”, and this is used
as a ‘test’ mechanism.

UNIFICATION (2-WAY MATCHING)
any two data items can be compared for similarity, and
values can be bound to variables in order to allow a
match to succeed.

SEARCHING
the whole activity of the PROLOG system is to search
through various options to find a combination that
succeeds.

BACKTRACKING
when the system fails during its search, it returns to
previous choices to see if making a different choice would
allow success.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

11 Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Basic of PROLOG

Running PROLOG Program

Program is facts + rules. (horn clauses).
Feed Query to PROLOG after “?-”
A Query is a conjunct of atomic formulas Q1, Q2, . . . , Qn,
written as (“?-” as “¬”)

?- Q1, Q2, . . . , Qn.
It denotes ¬Q1 ∨ ¬Q2 ∨ · · · ∨ ¬Qn, a negative clause.
Substitutions for variables that solve the query are reported;
if no variables, then PROLOG returns yes.
Use “;” to get other solutions.

Note
PROLOG programs can be prepared in a text file and loaded into
PROLOG by

[filename].

or added on a terminal using [user]. and Ctrl-D.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

12 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

A brief recall from Example 5, Lecture “First-order Predicate
Logic”

child(x, y, z) means “x is a child of y and z”
descendant(x, y) means “x is a descendant of y”

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

13 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

The knowledge base KB of family relationships

KB ≡ child(oscar, karen, frank)∧
child(mary, karen, frank) ∧ child(eve, anne, oscar)∧
child(henry, anne, oscar) ∧ child(isabelle, anne, oscar)∧
child(clyde, mary, oscarb) ∧ (∀x ∀y ∀z child(x, y, z) ⇒ child(x, z, y))
∧ (∀x ∀y descendant(x, y) ⇔ ∃z child(x, y, z)
∨ (∃u ∃v child(x, u, v) ∧ descendant(u, y)))

is coded as a PROLOG program
rel.pl

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child(X,Y,Z).
9

10 descendant(X,Y) :- child(X,Y,Z).
11 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

?- [rel]. % load and compile rel.pl
true .

?- child(eve,oscar,anne). % initial query
true .

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

14 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

How does the answer of the initial query come?
For the query

?- child(eve,oscar,anne).

there are six facts (lines 1-6) and one rule (line 8) with the
same predicate in its clause head.
Now unification is attempted between the query and each
of the complementary literals in the input data in order of
occurrence.
If one of the alternatives fails, this results in backtracking to
the last branching point, and the next alternative is tested.
Because unification fails with every fact, the query is
unified with the recursive rule in line 8. (X/eve, Z/oscar,
Y/anne.)
Now the system attempts to solve the subgoal
child(eve,anne,oscar), which succeeds with the third
alternative.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

15 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

The next queries are answered with the first solutions found.
rel.pl

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child(X,Y,Z).
9

10 descendant(X,Y) :- child(X,Y,Z).
11 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

?- descendant(X,Y).
X = oscar,
Y = karen

?- descendant(clyde,Y).
Y = mary

However, the query

?- descendant(clyde,karen).

is not answered. This is because of the clause in line 8, which
specifies symmetry of the child predicate. This clause calls
itself recursively without the possibility of termination.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

16 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

This problem can be solved with the following new program.
rel01.pl

1 child(oscar, karen, frank).
2 child(mary, karen, frank).
3 child(eve, anne, oscar).
4 child(henry, anne, oscar).
5 child(isolde, anne, oscar).
6 child(clyde, mary, oscarb).
7

8 descendant(X,Y) :- child(X,Y,Z).
9 descendant(X,Y) :- child(X,Z,Y).

10 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

?- descendant(clyde, karen).
true .

?- child(eve,oscar,anne).
false .

But now the query

?- child(eve,oscar,anne).

is no longer correctly answered because the symmetry of
child in the last two variables is no longer given.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

17 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

A solution to both problems is found in the program.
rel02.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 descendant(X,Y) :- child(X,Y,Z).
12 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

The PROLOG
programmer must pay
attention to processing
and avoid infinite loops

The program is no
longer as elegant and
simple as the—logically
correct—first variant

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

17 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

A solution to both problems is found in the program.
rel02.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 descendant(X,Y) :- child(X,Y,Z).
12 descendant(X,Y) :- child(X,U,V), descendant(U,Y).

The PROLOG
programmer must pay
attention to processing
and avoid infinite loops

The program is no
longer as elegant and
simple as the—logically
correct—first variant

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

18 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

Exercise 1 ([Ertel 2025], Exercise 5.4, p. 88)
1. Show by testing out that the theorem prover E (in contrast

to PROLOG), given the knowledge base as in rel.pl,
answers the query ?- descendant(clyde, karen).
correctly. Why is that?

2. Compare the answers of PROLOG and E for the query
?- descendant (X, Y)..

Semantics of PROLOG programs
Declarative semantics: logical interpretation of the Horn
clauses
Procedural semantics: processing of the PROLOG
program

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

18 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

Exercise 1 ([Ertel 2025], Exercise 5.4, p. 88)
1. Show by testing out that the theorem prover E (in contrast

to PROLOG), given the knowledge base as in rel.pl,
answers the query ?- descendant(clyde, karen).
correctly. Why is that?

2. Compare the answers of PROLOG and E for the query
?- descendant (X, Y)..

Semantics of PROLOG programs
Declarative semantics: logical interpretation of the Horn
clauses
Procedural semantics: processing of the PROLOG
program

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

19 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

Execution begins at the top left with the query.
Each edge represents a possible SLD resolution step with
a complementary unifiable literal.
While the search tree becomes infinitely deep by the
recursive rule, the PROLOG execution terminates because
the facts occur before the rule in the input data.

Figure: PROLOG search tree for the execution of the program rel.pl
with the query child(eve,oscar,anne). The constants have been
abbreviated to save space.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

20 Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Simple Examples
Family Relationships

The PROLOG execution does not terminate
The branches lead from the head (= positive literal) of a (Horn)
clause to the subgoals. Because all subgoals of a clause must be
solved, these are “and branches” . All other branches are “or
branches” , of which at least one must be unifiable with its parent
nodes.

Remind: In SLD resolution, the literals of the current clause are
called subgoals and the literals of the negated query are the goals.

The two outlined facts
represent the solution
to the query.
The PROLOG
interpreter does not
terminate here,
however, because it
works by using a
depth-first search with
backtracking and thus
first chooses the
infinitely deep path to
the far left.

Figure: The and-or tree for the execution of the
program rel.pl with the query
desc(clyde,karen)

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

21 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Note
As we have seen in the family relationship example, it is
important to control the execution of PROLOG.

Avoiding unnecessary backtracking especially can lead to
large increases in efficiency. One means to this end is the
cut operator. By inserting an exclamation mark into a
clause, we can prevent backtracking over this point.
Another possibility for execution control is the built-in
predicate fail, which is never true.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

22 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 1 (Cut operator in PROLOG)
max(X, Y, Max) means “the maximum of two numbers X and
Y is Max”

max.pl

1 max(X,Y,X) :- X >= Y.
2 max(X,Y,Y) :- X < Y.

Without cut.
In query ?- max(2,3,Z),
Z > 10., backtracking is
employed because Z = 3
and the second clause is
tested for max, which is
doomed to failure

maxwCut.pl

1 max(X,Y,X) :- X >= Y, !.
2 max(X,Y,Y).

With cut.
The second clause is only
called if it is really
necessary, that is, if the
first clause fails.
However, this optimization
makes the program harder
to understand.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

23 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 2 (Predicate fail in PROLOG)
In the family relationship example we can quite simply print out all
children and their parents with the query

?- child_fact(X,Y,Z), write(X),
write(’ is a child of ’), write(Y),
write(’ and ’), write(Z), write(’.’),
nl, fail.

The corresponding output is

oscar is a child of karen and frank.
mary is a child of karen and frank.
eve is a child of anne and oscar.
henry is a child of anne and oscar.
isolde is a child of anne and oscar.
clyde is a child of mary and oscarb.
false.

where the predicate nl causes a line break in the output. What
would be the output in the end without use of the fail predicate?

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

24 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Example 3 (Negation as Failure)
In the family relationship example, the query

?- child_fact(ulla,X,Y).

would result false. because there are no facts about
ulla.
This answer is not logically correct . Specifically, it is not
possible to prove that there is no object with the name
ulla. Here the prover E would correctly answer
“No proof found.”
Thus if PROLOG answers false., this only means that
the query Q cannot be proved . For this, however, ¬Q must
not necessarily be proved .

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

25 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Note
Restriction to Horn clauses is important for the procedural
processing using SLD resolution.

Through the singly determined positive literal per clause, SLD
resolution, and therefore the execution of PROLOG programs,
have a unique entry point into the clause.
This is the only way it is possible to have reproducible execution
of logic programs and, therefore, well-defined procedural
semantics.

Example 4 (Statements that cannot be described by Horn
clauses)

Russell’s paradox: There is a barber who shaves everyone who
does not shave himself
Q ≡ ∀x shaves(baber, x) ⇔ ¬shaves(x, x) ≡
∀x (¬shaves(baber, x) ∨ ¬shaves(x, x)) ∧ ∀x (shaves(x, x) ∨
shaves(baber, x))
Q contains the non-Horn clause shaves(x, x) ∨ shaves(baber, x)

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

26 Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Execution Control and Procedural Elements

Exercise 2 ([Ertel 2025], Exercise 5.1, p. 88)
Try to prove the theorem from Sect. 3.7 about the equality of
left- and right-neutral elements of semi-groups with PROLOG.
Which problems come up? What is the cause of this?

Exercise 3 ([Ertel 2025], Exercise 5.5, p. 88)
Write as short a PROLOG program as possible that outputs
1024 ones.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

27 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

A collection of ordered data.
Has zero or more elements enclosed by square brackets
and separated by commas (‘,’).

Example Description
[A] A list with one element
[] An empty list
[34,tom,[2,3]] A list with three elements

where the third element is
a list of two elements

[mia, love(honey), mia] A list with three elements
where the first and last
elements are identical

Like any object, a list can be unified with a variable

?- X = [Any, list, ’of elements’].
X = [Any, list, ’of elements’].

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

28 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

The construct [Head|Tail] separates the first element
(Head) from the rest (Tail) of the list. (Thus, Head is
always an atom and Tail is always a list.)

?- [H|T] = [A,2,2,B,3,4,5].
H = A,
T = [2, 2, B, 3, 4, 5].

?- [H|T] = [].
false.

?- X = [1|[2, 3]].
X = [1, 2, 3].

?- [1|2] = [1,2].
false.

By using nested lists, we can create arbitrary tree
structures. Basically, in the trees where the inner nodes
contain symbols, the symbol is the head of the list and the
child nodes are the tail.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

29 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 5 (Tree Structures by Nested Lists)

e f g

d

h

cb

cb

a

e f g

d

h

a

b c

Tree (Nested) Lists

[b, c]

[a, b, c]

[[e, f, g], [h], d]

[a, [b, e, f, g], [c, h], d]

Exercise 4 ([Ertel 2025], Exercise 5.7, p. 89)
Use function symbols instead of lists to represent the trees in
Example 5.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

30 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 6 (List Processing)
append(X, Y, Z) means “appending list Y to the list X and
saving the result in Z”.

The following program contains a declarative (recursive) logical
description of the fact that L3 results from appending L2 to L1.

append.pl

1 append([],L,L).
2 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

As long as L (= [X|L1]) is not empty, “appending L2 to L”
reduces to “appending L2 to the tail L1 of L” (and putting
the head X of L as the first element of the result).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

30 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 6 (List Processing)
append(X, Y, Z) means “appending list Y to the list X and
saving the result in Z”.
The following program contains a declarative (recursive) logical
description of the fact that L3 results from appending L2 to L1.

append.pl

1 append([],L,L).
2 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

As long as L (= [X|L1]) is not empty, “appending L2 to L”
reduces to “appending L2 to the tail L1 of L” (and putting
the head X of L as the first element of the result).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

31 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 6 (List Processing)
append.pl

1 append([],L,L).
2 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

[trace] ?- append([1],[2],Z). % query
Call: (12) append([1], [2], _272) ? creep
Call: (13) append([], [2], _1612) ? creep
Exit: (13) append([], [2], [2]) ? creep
Exit: (12) append([1], [2], [1, 2]) ? creep
Z = [1, 2].

Goal: append([1], [2], _272). (Z = _272: a variable whose value
is not defined.)
[1] is not empty ⇒ Unify with line 2: [X|L1]/[1], L2/[2], [X|L3]/_272
(Now, X = 1, L1 = [], L2 = [2], L3 = _1612)
Subgoal: append([], [2], _1612).
[] is empty ⇒ Unify with line 1: []/[], L/[2], L/_1612. Thus,
_1612 = L = [2]. Subgoal is solved.
Therefore, L3 = [2], which means _272 = [X|L3] = [1, 2]. Goal is
solved.
Output: Z = [1, 2].

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

32 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 7 (Naive Reverse)
nrev(T, R) means “reversing the order of elements in the list T
and saving the result in R”.

The following program describes how to recursively implement
this predicate.

nrev.pl

1 nrev([],[]).
2 nrev([H|T],R) :- nrev(T,RT), append(RT,[H],R).

As long as the list L (= [H|T]) is not empty, “reversing L”
reduces to “reversing the tail T of L” (and appending the
head H of L to the result).
Indeed, this predicate is very inefficient due to calling
append.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

32 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 7 (Naive Reverse)
nrev(T, R) means “reversing the order of elements in the list T
and saving the result in R”.
The following program describes how to recursively implement
this predicate.

nrev.pl

1 nrev([],[]).
2 nrev([H|T],R) :- nrev(T,RT), append(RT,[H],R).

As long as the list L (= [H|T]) is not empty, “reversing L”
reduces to “reversing the tail T of L” (and appending the
head H of L to the result).
Indeed, this predicate is very inefficient due to calling
append.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

33 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Example 7 (Naive Reverse)
nrev.pl

1 nrev([],[]).
2 nrev([H|T],R) :- nrev(T,RT), append(RT,[H],R).

[trace] ?- nrev([1,2], Z). % query
Call: (12) nrev([1, 2], _268) ? creep
Call: (13) nrev([2], _1594) ? creep
Call: (14) nrev([], _2406) ? creep
Exit: (14) nrev([], []) ? creep
Call: (14) append([], [2], _1594) ? creep
Exit: (14) append([], [2], [2]) ? creep
Exit: (13) nrev([2], [2]) ? creep
Call: (13) append([2], [1], _268) ? creep
Call: (14) append([], [1], _7296) ? creep
Exit: (14) append([], [1], [1]) ? creep
Exit: (13) append([2], [1], [2, 1]) ? creep
Exit: (12) nrev([1, 2], [2, 1]) ? creep
Z = [2, 1].

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

34 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Things go better when one proceeds using a temporary store,
known as the accumulator , as follows:

List Accumulator
[a,b,c,d] []
[b,c,d] [a]
[c,d] [b,a]
[d] [c,b,a]
[] [d,c,b,a]

accrev(T, A, R) means “reversing the order of elements in the
list T (using A as an “accumulator”) and saving the result in R”.
The corresponding program is

accrev.pl

1 accrev([],A,A).
2 accrev([H|T],A,R) :- accrev(T,[H|A],R).

As long as the list L (= [H|T]) is not empty, “reversing L”
reduces to “reversing the tail T of L” (and putting the head
H of L as the first element of the accumulator A).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

35 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

accrev.pl

1 accrev([],A,A).
2 accrev([H|T],A,R) :- accrev(T,[H|A],R).

[trace] ?- accrev([1,2], [], Z). % query
Call: (12) accrev([1, 2], [], _278) ? creep
Call: (13) accrev([2], [1], _278) ? creep
Call: (14) accrev([], [2, 1], _278) ? creep
Exit: (14) accrev([], [2, 1], [2, 1]) ? creep
Exit: (13) accrev([2], [1], [2, 1]) ? creep
Exit: (12) accrev([1, 2], [], [2, 1]) ? creep
Z = [2, 1].

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

36 Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Lists

Exercise 5 ([Ertel 2025], Exercise 5.6, p. 89)
Investigate the runtime behavior of the naive reverse predicate.

(a) Run PROLOG with the trace option and observe the
recursive calls of nrev, append, and accrev.

(b) Compute the asymptotic time complexity of
append(L1,L2,L3), that is, the dependency of the running
time on the length of the list for large lists. Assume that
access to the head of an arbitrary list takes constant time.

(c) Compute the time complexity of nrev(L,R).
(d) Compute the time complexity of accrev(L,R).
(e) Experimentally determine the time complexity of the

predicates nrev, append, and accrev, for example by
carrying out time measurements (time(+Goal) gives
inferences and CPU time.).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

37 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

PROLOG programs are not fully compiled, rather, they are
interpreted by the WAM. Therefore it is possible to modify
programs at runtime. A program can even modify itself.
With commands such as assert and retract, facts and
rules can be added to the knowledge base or taken out of
it.
Assert predicates

assert(X): Adds a new fact or clause to the database.
Term is asserted as the last fact or clause with the same key
predicate.
asserta(X): Same as assert, but adds a clause at the
beginning of the database.
assertz(X): Exactly same as assert(X).

Retract predicates
retract(X): Removes fact or clause X from the database.
retractall(X): Removes all facts or clauses from the
database for which the head unifies with X.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

38 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

A simple application of asserta is the addition of derived facts
to the beginning of the knowledge base with the goal of
avoiding a repeated, potentially time-expensive derivation.

Example 8 (Family Relationship)
dynamic_rel.pl

1 child_fact(oscar, karen, frank).
2 child_fact(mary, karen, frank).
3 child_fact(eve, anne, oscar).
4 child_fact(henry, anne, oscar).
5 child_fact(isolde, anne, oscar).
6 child_fact(clyde, mary, oscarb).
7

8 child(X,Z,Y) :- child_fact(X,Y,Z).
9 child(X,Z,Y) :- child_fact(X,Z,Y).

10

11 :- dynamic descendant/2.
12 descendant(X,Y) :- child(X,Y,Z), asserta(descendant(X,Y)).
13 descendant(X,Y) :- child(X,U,V), descendant(U,Y),
14 asserta(descendant(X,Y)).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

39 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

?- [dynamic_rel].
true.

?- descendant(clyde, karen).
true .

?- listing(descendant).
:- dynamic descendant/2.

descendant(clyde, karen).
descendant(mary, karen).
descendant(X, Y) :-
child(X, Y, Z),
asserta(descendant(X, Y)).
descendant(X, Y) :-
child(X, U, V),
descendant(U, Y),
asserta(descendant(X, Y)).

true.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

40 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

By manipulating rules with assert and retract, even
programs that change themselves completely can be
written. This idea became known under the term genetic
programming. It allows the construction of arbitrarily
flexible learning programs.
In practice, however, it turns out that, due to the huge
number of senseless possible changes, changing the code
by trial and error rarely leads to a performance increase.
Systematic changing of rules, on the other hand, makes
programming so much more complex that, so far, such
programs that extensively modify their own code have not
been successful.
Machine learning has been quite successful. However,
only very limited modifications of the program code are
being conducted here.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

41 Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

References

Self-modifying Programs

Exercise 6 ([Ertel 2025], Exercise 5.8, p. 89)
The Fibonacci sequence is defined recursively by fib(0) = 1,
fib(1) = 1 and fib(n) = fib(n − 1) + fib(n − 2).
(a) Define a recursive PROLOG predicate fib(N,R) which

calculates fib(N) and returns it in R.
(b) Determine the runtime complexity of the predicate fib

theoretically and by measurement.
(c) Change your program by using asserta such that

unnecessary inferences are no longer carried out.
(d) Determine the runtime complexity of the modified

predicate theoretically and by measurement (notice that
this depends on whether fib was previously called).

(e) Why is fib with asserta also faster when it is started for
the first time right after PROLOG is started?

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

42 A Planning Example

Constraint Logic
Programming

References

A Planning Example

A farmer wants to bring a cabbage, a goat, and a wolf across a
river, but his boat is so small that he can only take them across

one at a time. The farmer thought it over and then said to
himself: “If I first bring the wolf to the other side, then the goat
will eat the cabbage. If I transport the cabbage first, then the

goat will be eaten by the wolf. What should I do?”

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

43 A Planning Example

Constraint Logic
Programming

References

A Planning Example

plan.pl

1 start :- action(state(left,left,left,left),
2 state(right,right,right,right)).
3

4 action(Start,Goal) :-
5 plan(Start,Goal,[Start],Path),
6 nl,write(’Solution:’),nl,
7 write_path(Path).
8 % write_path(Path), fail. % all solutions output
9

10 plan(Start,Goal,Visited,Path) :-
11 go(Start,Next),
12 safe(Next),
13 \+ member(Next,Visited), % not(member(...))
14 plan(Next,Goal,[Next|Visited],Path).
15 plan(Goal,Goal,Path,Path).
16

17 go(state(X,X,Z,K),state(Y,Y,Z,K)) :- across(X,Y). % farmer, wolf
18 go(state(X,W,X,K),state(Y,W,Y,K)) :- across(X,Y). % farmer, goat
19 go(state(X,W,Z,X),state(Y,W,Z,Y)) :- across(X,Y). % farmer, cabbage
20 go(state(X,W,Z,K),state(Y,W,Z,K)) :- across(X,Y). % farmer
21

22 across(left,right).
23 across(right,left).
24

25 safe(state(B,W,Z,K)) :- across(W,Z), across(Z,K).
26 safe(state(B,B,B,K)).
27 safe(state(B,W,B,B)).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

44 A Planning Example

Constraint Logic
Programming

References

A Planning Example

state(Farmer,Wolf,Goat,Cabbage) describes the current
state of the world. Each variable has two possible values
left and right.

For example, state(left, left, right, right) means
the farmer and the wolf is on the left-hand side of the river
and the goat and the cabbage is on the right-hand side.

across(X,Y) means going from position X to position Y.
Lines 22–23 indicate that there are only two possibilities
for the pair (X, Y), which are (left, right) and
(right, left).
go(Start,Next) describes going from the state Start to
the state Next (lines 17–20) using the predicate across.

Lines 17–20 describes all four possibilities for the predicate
go (the farmer either go alone or carry with him exactly one
of the three: the wolf, the goat, the cabbage).
go(state(X,X,Z,K),state(Y,Y,Z,K)) :- across(X,Y))
means that the farmer and the wolf go across the river from
position X (left/right) to position Y (right/left).

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

45 A Planning Example

Constraint Logic
Programming

References

A Planning Example

safe(Next) checks if the state Next is “safe”.
safe(state(B,W,Z,K)) :- across(W,Z), across(Z,K). (Line 25)
means that a general state state(B,W,Z,K) is “safe” if either the
wolf and the goat are not on the same position (across(W,Z)) or the
goat and the cabbage are not on the same position (across(Z,K)).
safe(state(B,B,B,K)). (Line 26) means that the state where the
farmer, the wolf, and the goat are on the same position is “safe”.
Similarly for line 27.

plan(Start,Goal,Visited,Path) describes how to reach the
state Goal from the state Start. The result—a list of states—is
stored in Path. The list of visited states is stored in Visited.
plan is implemented recursively (lines 10–15):

to go from Start to Goal,
go to a successor state Next (created using the predicate go),
test the safety of Next with the predicate safe,
test whether Next is already visited with the built-in predicate
member,
and if Next is safe and not visited, recursively go from Next to Goal
and putting Next at the beginning of the list Visited.

The base case is at line 15, when Start = Goal and
Visited = Path.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

46 A Planning Example

Constraint Logic
Programming

References

A Planning Example

For the query ?- start., we get the answers:

Solution:
Farmer and goat from left to right
Farmer from right to left
Farmer and cabbage from left to right
Farmer and goat from right to left
Farmer and wolf from left to right
Farmer from right to left
Farmer and goat from left to right
true ;

Solution:
Farmer and goat from left to right
Farmer from right to left
Farmer and wolf from left to right
Farmer and goat from right to left
Farmer and cabbage from left to right
Farmer from right to left
Farmer and goat from left to right
true ;

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

47 A Planning Example

Constraint Logic
Programming

References

A Planning Example

For better understanding, we describe the definition of plan in
logic:

∀z plan(z, z) ∧

∧ ∀s∀z∀n

[
go(s, n) ∧ safe(n) ∧ plan(n, z) ⇒ plan(s, z)

]
The base case is ∀z plan(z, z).
In the recursive call, for all starting state s, goal state z, and
next state n, if we can go from s to n and n is safe and we can
recursively go from n to z then we can go from s to z.

This definition comes out significantly more concise than in
PROLOG. There are two reasons for this:

1. The output of the discovered plan is unimportant for logic.
2. It is not really necessary to check whether the next state was

already visited if unnecessary trips do not bother the farmer.
If, however, \+ member(...) is left out of the PROLOG program,
then there is an infinite loop and PROLOG might not find a
schedule even if there is one. The cause of this is PROLOG’s
backward chaining search strategy , which, according to the
depth-first search principle, always works on subgoals one at a
time without restricting recursion depth, and is therefore
incomplete.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

48 A Planning Example

Constraint Logic
Programming

References

A Planning Example

As in all planning tasks, the state of the world changes as
actions are carried out from one step to the next .
This suggests sending the state as a variable to all
predicates that depend on the state of the world , such as
in the predicate safe. The state transitions occur in the
predicate go.
This approach is called situation calculus [Russell and
Norvig 2010].

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

49 A Planning Example

Constraint Logic
Programming

References

A Planning Example

Exercise 7 ([Ertel 2025], Exercise 5.2, p. 88)
(a) Write a predicate write_move(+State1, +State2), that

outputs a sentence like “Farmer and wolf cross from left to
right” for each boat crossing. State1 and State2 are terms
of the form state(Farmer, Wolf, Goat, Cabbage).

(b) Write a recursive predicate write_path(+Path), which
calls the predicate write_move(+State1, +State2) and
outputs all of the farmer’s actions.

Exercise 8 ([Ertel 2025], Exercise 5.3, p. 88)
(a) At first glance the variable Path in the predicate plan of the

PROLOG program plan.pl is unnecessary because it is
apparently not changed anywhere. What is it needed for?

(b) If we add a fail to the end of action in plan.pl (comment
out Line 7 and un-comment Line 8), then all solutions will
be given as output. Why is every solution now printed
twice? How can you prevent this? (Hint: Look at the
definition of the predicate safe.)

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

50 Constraint Logic
Programming

References

Constraint Logic Programming

The programming of scheduling systems, in which many
(sometimes complex) logical and numerical conditions must be
fulfilled, can be very expensive and difficult with conventional
programming languages.
This is precisely where logic could be useful .
An approach is to simply write all logical conditions in PL1 and
then enter a query . Usually this approach fails miserably . The
reason is the penguin problem discussed in “Limitations of
Logic”. The fact penguin(tweety) does ensure that
penguin(tweety) is true but does not rule out that
raven(tweety) is also true. To rule this out with additional
axioms is very inconvenient.
Constraint Logic Programming (CLP) [Jaffar and Lassez 1987],
which allows the explicit formulation of constraints for variables,
offers an elegant and very efficient mechanism for solving this
problem.

The interpreter constantly monitors the execution of the program for
adherence to all of its constraints.
The programmer is fully relieved of the task of controlling the
constraints, which in many cases can greatly simplify programming.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

51 Constraint Logic
Programming

References

Constraint Logic Programming

Example 9 (Applying the CLP mechanism of
GNU-PROLOG (The finite domain (FD) constraint
solver))
The secretary of Albert Einstein High School has to come up with a
plan for allocating rooms for final exams. He has the following
information: the four teachers Mayer, Hoover, Miller and Smith give
tests for the subjects German, English, Math, and Physics in the
ascendingly numbered rooms 1, 2, 3 and 4. Every teacher gives a
test for exactly one subject in exactly one room. Besides that, he
knows the following about the teachers and their subjects.
(1) Mr. Mayer never tests in room 4.
(2) Mr. Miller always tests German.
(3) Mr. Smith and Mr. Miller do not give tests in neighboring rooms.
(4) Mrs. Hoover tests Mathematics.
(5) Physics is always tested in room number 4.
(6) German and English are not tested in room 1.

Who gives a test in which room?

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

52 Constraint Logic
Programming

References

Constraint Logic Programming

raumplan.pl

1 %%% Run in GNU-PROLOG
2 start :-
3 fd_domain([Mayer, Hoover, Miller, Smith],1,4),
4 fd_all_different([Mayer, Miller, Hoover, Smith]),
5

6 fd_domain([German, English, Math, Physics],1,4),
7 fd_all_different([German, English, Math, Physics]),
8

9 fd_labeling([Mayer, Hoover, Miller, Smith]),
10

11 Mayer #\=4, % Mayer not in room 4
12 Miller #= German, % Miller tests German
13 dist(Miller, Smith) #>= 2, % Distance Miller/Smith >= 2
14 Hoover #= Math, % Hoover tests mathematics
15 Physics #= 4, % Physics in room 4
16 German #\= 1, % German not in room 1
17 English #\= 1, % English not in room 1
18 nl,
19 write([Mayer, Hoover, Miller, Smith]), nl,
20 write([German, English, Math, Physics]), nl.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

53 Constraint Logic
Programming

References

Constraint Logic Programming

GNU-PROLOG built-in predicates:
fd_domain(Vars, Lower, Upper) constraints each element X of Vars
to take a value in Lower..Upper.
fd_all_different(List) constrains all variables in List to take
distinct values.
fd_labeling(Vars, Options) assigns a value to each variable X of
the list Vars according to the list of labeling options given by Options.
This predicate is re-executable on backtracking. fd_labeling(Vars) is
equivalent to fd_labeling(Vars, []).

The variables Mayer,Hoover,Miller,Smith as well as
German,English,Math,Physics can each take on an integer value
from 1 to 4 as the room number. (Lines 3–6.)
A binding Mayer = 1 and German = 1 means that Mr. Mayer gives
the German test in room 1.
Lines 4 and 7 ensure that the four particular variables take on
different values.
Line 9 ensures that all variables are assigned a concrete value in the
case of a solution. This line is not absolutely necessary here. If there
were multiple solutions, however, only intervals would be output.
In lines 11–17 the constraints are given, and the remaining lines
output the room numbers for all teachers and all subjects in a simple
format.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

54 Constraint Logic
Programming

References

Constraint Logic Programming

The program is loaded into GNU-PROLOG with
[’raumplan.pl’]., and with start. we obtain the output

[3,1,2,4]
[2,3,1,4]

true ?

yes

This output corresponds to the plan

Room num. 1 2 3 4
Teacher Hoover Miller Mayer Smith
Subject Math German English Physics

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

55 Constraint Logic
Programming

References

Constraint Logic Programming

Exercise 9 ([Ertel 2025], Exercise 5.9, p. 89)
The following typical logic puzzle was supposedly written by
Albert Einstein. Furthermore, he supposedly claimed that only
2% of the world’s population is capable of solving it. The
following statements are given.

There are five houses, each painted a different color.
Every house is occupied by a person with a different
nationality.
Every resident prefers a specific drink, smokes a specific
brand of cigarette, and has a specific pet.
None of the five people drinks the same thing, smokes the
same thing, or has the same pet.
Hints:

The Briton lives in the red house.
The Swede has a dog.
The Dane likes to drink tea.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

56 Constraint Logic
Programming

References

Constraint Logic Programming

Hints (continue):
The green house is to the left of the white house.
The owner of the green house drinks coffee.
The person who smokes Pall Mall has a bird.
The man who lives in the middle house drinks milk.
The owner of the yellow house smokes Dunhill.
The Norwegian lives in the first house.
The Marlboro smoker lives next to the one who has a cat.
The man with the horse lives next to the one who smokes
Dunhill.
The Winfield smoker likes to drink beer.
The Norwegian lives next to the blue house.
The German smokes Rothmanns.
The Marlboro smoker has a neighbor who drinks water.

Question: To whom does the fish belong?
(a) First solve the puzzle manually.
(b) Write a CLP program (for example with GNU-PROLOG) to

solve the puzzle. Orient yourself with the room scheduling
problem above.

57

Logic Programming
with PROLOG

Hoàng Anh Đức

Additional Materials

PROLOG Systems
and Implementations

Basic of PROLOG

Simple Examples

Execution Control and
Procedural Elements

Lists

Self-modifying
Programs

A Planning Example

Constraint Logic
Programming

57 References

References

Ertel, Wolfgang (2025). Introduction to Artificial
Intelligence. 3rd. Springer. DOI:
10.1007/978-3-658-43102-0.
Clocksin, William F. and Christopher S. Mellish (2013).
Programming in PROLOG Using the ISO Standard. 3rd.
Springer Science & Business Media. DOI:
10.1007/978-3-642-97005-4.
Bratko, Ivan (2011). Prolog programming for artificial
intelligence. 4th. Addison-Wesley.
Russell, Stuart J. and Peter Norvig (2010). Artificial
Intelligence: A Modern Approach. 3rd. Pearson.
Jaffar, Joxan and Jean-Louis Lassez (1987). “Constraint
Logic Programming.” In: Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 111–119. DOI:
https://doi.org/10.1145/41625.41635.

https://doi.org/10.1007/978-3-658-43102-0
https://doi.org/10.1007/978-3-642-97005-4
https://doi.org/https://doi.org/10.1145/41625.41635

	Additional Materials
	PROLOG Systems and Implementations
	Basic of PROLOG
	Simple Examples
	Execution Control and Procedural Elements
	Lists
	Self-modifying Programs
	A Planning Example
	Constraint Logic Programming
	References

