VNU-HUS MAT1206E/3508: Introduction to Al

Reasoning with Uncertainty

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Contents

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Conditional Probabili

he Principle of Maximum Entropy

An Inference Rule for

robabilities

Maximum Entropy Withou Explicit Constraints

Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweety example

The Tweety examp

LEXME

Appendicitis Diagnosis with Formal Methods

Formal Methods
Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

Additional Materials

Introduction

Computing with Probabilities

The Principle of Maximum Entropy

LEXMED

Reasoning with Bayesian Networks

Summary

Additional Materials

Prof. Ertel's Lectures at Ravensburg-Weingarten University in 2011

- https://youtu.be/IW-HIOPqgsk&t=4455 (Computing with Probabilities)
- https://youtu.be/wbbAA8og4D8 (Computing with Probabilities. The Principle of Maximum Entropy)
- https://youtu.be/MWAWjCUuDUs (The Maximum Entropy Method)
- https://youtu.be/sQLzN6zWosY (The Maximum Entropy Method, LEXMED)
- https://youtu.be/xfv8xIk1-x4 (LEXMED, Reasoning with Bayesian Networks)
- https://youtu.be/z-WrA1xbkdY (Reasoning with Bayesian Networks)
- https://youtu.be/gMjuL5vMo04 (Reasoning with Bayesian Networks)

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

Performance
Application Areas and

Experience

Recall: The Flying Penguin Example

- 1. Tweety is a penguin
- 2. Penguins are birds
- 3. Birds can fly

Formalized in PL1, the $knowledge\ base\ KB$ is:

$$penguin(x) \Rightarrow bird(x)$$

$$bird(x) \Rightarrow fly(x)$$

- It can be derived (for example, by resolution): f(y(twetty)).
- If $penguin(x) \Rightarrow \neg fly(x)$ (= "Penguins cannot fly") is added to the knowledge base KB, then $\neg fly(twetty)$ can also be derived.
- \Rightarrow *The knowledge base is inconsistent*. (Because the logic is monotonic; i.e., new knowledge can not void old knowledge.)
- ⇒ Probabilistic Logic is useful.
 - Formalize the statement "Nearly all birds can fly" (e.g., "99% of all birds can fly").
 - Correctly carry out inferences on it.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probability

The Principle o

An Inference Rule for Probabilities

Maximum Entropy Without
Explicit Constraints
Conditional Probability

Versus Material Implication
MaxEnt-Systems

The Tweety exampl

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix
Performance

Application Areas and Experiences

122 E

Reasoning with uncertain or incomplete knowledge is important

- In everyday situations and also in many technical applications of AI, heuristic processes are very important.
 - Example: Use heuristic techniques when looking for a parking space in city traffic.
- Heuristics alone are often not enough, especially when a quick decision is needed given incomplete knowledge.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

An Inference Rule for

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Example 1

If a patient experiences pain in the right lower abdomen and a raised white blood cell (leukocyte) count, this raises the suspicion that it might be appendicitis.

Stomach pain right lower \land Leukocytes $> 10000 \rightarrow$ Appendicitis

If Stomach pain right lower \land Leukocytes > 10000 is true, we can use Modus Ponens to derive Appendicitis

⇒ This model is too coarse.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

The Principle of

Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Withou

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems
The Tweety example

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and Experiences

Experiences

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probability

Maximum Entrop

An Inference Rule for Probabilities

Maximum Entropy Withou Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods
Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

When building their medical expert system MYCIN, Shortliffe and Buchanan [Shortliffe 1976] developed a calculus using so-called *certainty factors*, which *allowed the certainty of facts and rules to be represented*.

- Each *rule* $A \rightarrow B$ is assigned a certain *factor* β .
- $A \rightarrow_{\beta} B$ means the conditional probability $P(B \mid A) = \beta$.
 - \blacksquare Stomach pain right lower \land Leukocytes $>10000 \rightarrow_{0.6}$ Appendicitis
- Formulas for connecting the factors of rules
- Calculus is incorrect
- Inconsistent results could be derived

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

Probabilities
Conditional Probability

The Principle of Maximum Entropy An Inference Rule for

Probabilities

Maximum Entropy Without

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis wit

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXM

Risk Management Using the Cost Matrix

Application Areas and

■ There were also (unsuccessful) attempts to solve this problem by using *non-monotonic logic* and *default logic*.

- Default logic: a special type of non-monotonic logic.
- In the Flying Penguin Example, the first three given rules are default. The newly added rule $penguin(x) \Rightarrow \neg fly(x)$ "override" the default rule $bird(x) \Rightarrow fly(x)$ in the case of penguin, and for other birds the default rule still applies.
- Dempster-Schäfer theory: assigns a belief function Bel(A) to a logical proposition A, whose value gives the degree of evidence for the truth of A.
- Fuzzy logic: demonstrates considerable weaknesses when reasoning under uncertainty in more complex applications.
 - The meaning (semantics) of a proposition in fuzzy logic is not clearly defined.

Reasoning with conditional probabilities

- Conditional probabilities instead of implication (as it is known in logic)
 - Significantly better in modeling everyday causal reasoning.
- Subjective probabilities
 - For example, if you are in the middle of the street and do not know whether you should turn left or right. (That is, the probabilities of turning left and turning right are unknown.)
 - From mathematical viewpoint, if you don't know the probabilities, you do nothing.
 - From AI viewpoint, you need to make a decision. So (even if you don't know anything) you "assume" that turning left and right have the same probability 0.5 and make a decision based on this "assumption".
 - The "assumption" you made may not be true but it is subjective to you.
- *Probability theory* is well-founded.
- Reasoning with uncertain and incomplete knowledge.
 - Maximum entropy method (MaxEnt) and the medical expert system LEXMED.
 - Bayesian networks.

Reasoning with Uncertainty

Hoàng Anh Đức

.

Introduction

Computing with Probabilities Conditional Probability

he Principle of

An Inference Rule for Probabilities

Maximum Entropy Withou Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXM

Risk Management Using the Cost Matrix

Performance Application Areas and

Experiences

Example 2

For a single roll of a fair (unbiased) die (experiment),

- The probability of the event "rolling a six" equals 1/6.
- The probability of the occurrence "rolling an odd number" is equal to 1/2.

Definition

- **Sample** space Ω : the finite set of all possible outcomes for an experiment.
- **Event:** subset of Ω .
 - \blacksquare If the outcome of an experiment is included in an event E, then event E has occurred.
 - \blacksquare A and B are events $\Rightarrow A \cup B$ is an event.
- **Elementary event:** subset of Ω containing exactly one element.
- Sure event: Ω.
- Impossible event: 0.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

Probabilities

An Inference Rule for

Versus Material Implication

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

We will use propositional logic notation for set operations.

Set notation	Propositional logic	Description
$A \cap B$	$A \wedge B$	intersection / and
$A \cup B$	$A \vee B$	union / or
\overline{A}	$\neg A$	complement / negation
Ω	t	certain event / true
Ø	f	impossible event / false

- \blacksquare A, B, etc.: random variables.
- We consider only *discrete random variables with finite value range*.
- Example:
 - The variable *face_number* for a dice roll is discrete with the values 1, 2, 3, 4, 5, 6.
 - The probability of rolling a five or a six is equal to 1/3.

$$\begin{split} &P(\textit{face_number} \in \{5,6\}) \\ &= P(\textit{face_number} = 5 \lor \textit{face_number} = 6) = 1/3. \end{split}$$

Reasoning with Uncertainty

Hoàng Anh Đức

10 Computing with

Probabilities
Conditional Probability

The Principle of

An Inference Rule for

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance Application Areas and

Experience 122

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

11 Computing with

Probabilities

Conditional Probability

Conditional Probability

An Inference Rule for

Probabilities

Maximum Entropy Witho

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Definition

Let $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ be finite. There is no preferred elementary event, which means that we assume a symmetry related to the frequency of how often each elementary event appears. The *probability* P(A) of the event A is then

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Number of favorable cases for } A}{\text{Number of possible cases}}$$

Example 3

Throwing a die, the probability for an even number is

$$P(\textit{face_number} \in \{2,4,6\}) = \frac{|\{2,4,6\}|}{|\{1,2,3,4,5,6\}|} = \frac{3}{6} = \frac{1}{2}.$$

Reasoning with Uncertainty

Hoàng Anh Đức

/ laditional mater

Introduction

Computing with Probabilities

Conditional Probability

The Principle of

An Inference Rule for

Maximum Entropy Withou

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety examp

LEXMED

Appendicitis Diagnosis with

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

- Any elementary event has the probability $1/|\Omega|$ (*Laplace assumption*).
- Applicable only at *finite event sets*.
- To describe events we use variables with the appropriate number of values.
 - Example: Variable eye_color can take on the values green, blue, brown.
 - eye_color = blue then describes an event because we are dealing with a proposition with the truth values t or f.
- Binary (boolean) variables (i.e., variables that can take on the values t and f) are propositions themselves.
 - Write P(JohnCalls) instead of P(JohnCalls = t).

Theorem 1

- (1) $P(\Omega) = 1$.
- (2) $P(\emptyset) = 0$, which means that the impossible event has a probability of 0.
- (3) For pairwise exclusive events A and B, it is true that $P(A \lor B) = P(A) + P(B)$.
- (4) For two complementary events A and $\neg A$, it is true that $P(A) + P(\neg A) = 1$.
- (5) For arbitrary events A and B, it is true that $P(A \lor B) = P(A) + P(B) P(A \land B)$.
- (6) For $A \subseteq B$, it is true that $P(A) \leq P(B)$.
- (7) If $A_1, A_2, ..., A_n$ are the elementary events, then $\sum_{i=1}^{n} P(A_i) = 1$ (normalization condition).

Exercise 1 ([Ertel 2025], Exercise 7.1, p. 171)

Prove the propositions from Theorem 1.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mai

Introduction

Computing with Probabilities

Conditional Probability

The Principle of

Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Maximum Entropy Without Explicit Constraints Conditional Probability

Versus Material Implication MaxEnt-Systems

ne Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods Hybrid Probabilistic

Knowledge Base
Application of LEXMED

unction of LEXM

Risk Management Using

the Cost Matrix

Application Areas and

122 Experience

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Conditional Probability

The Principle of

An Inference Rule for

Maximum Entropy Without Explicit Constraints

Explicit Constraints
Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis wit Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

For binary variables A, B,

- $P(A \land B) = P(A, B)$ stands for the probability of the event $A \land B$.
- Distribution or joint probability distribution P(A, B) of the variables A and B is the vector

$$(P(A,B), P(A, \neg B), P(\neg A, B), P(\neg A, \neg B))$$

■ Distribution in matrix form

$\mathbf{P}(A,B)$	B = t	B = f
A = t	P(A,B)	$P(A, \neg B)$
A = f	$P(\neg A, B)$	$P(\neg A, \neg B)$

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for

Probabilities

Maximum Entropy Witho

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety examp

_EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and Experiences

In general,

 \blacksquare d variables X_1, X_2, \dots, X_d with n values each

■ The distribution contains the values $P(X_1 = x_1, ..., X_d = x_d)$

 x_1, \ldots, x_d each may have n different values

The distribution can therefore be represented as a d-dimensional matrix with a total of n^d elements.

lacksquare By the normalization condition, one of these n^d values is redundant.

■ Thus, the distribution is characterized by n^d-1 unique values.

Conditional Probability

Example 4

On Landsdowne street in Boston, the speed of 100 vehicles is measured. For each measurement it is also noted whether the driver is a student. The results are

Event	Freq.	Relative freq.
Vehicle observed	100	1
Driver is a student (S)	30	0.3
Velocity (speed) too high (V)	10	0.1
Driver is a student and speeding $(S \wedge V)$	5	0.05

Do students speed more frequently than the average person, or than non-students?

Answer: conditional probability.

The probability for speeding under the condition that the driver is a student:

$$P(V\mid S) = \frac{|\mathsf{Driver} \; \mathsf{is} \; \mathsf{a} \; \mathsf{student} \; \mathsf{and} \; \mathsf{speeding}|}{|\mathsf{Driver} \; \mathsf{is} \; \mathsf{a} \; \mathsf{student}|} = \frac{5}{30} = \frac{1}{6} \approx 0.17.$$

The probability for *speeding in general*: P(V) = 0.1.

Thus, students speed more frequently than the average person.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

Conditional Probability

An Inference Rule for

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

Computing with Probabilities Conditional Probability

Definition

For two events A and B, the probability $P(A \mid B)$ for A under the condition B (*conditional probability*) is defined by

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

 $P(A \mid B) = \text{probability of } A \text{ regarding event } B \text{ only, i.e.}$

$$P(A \mid B) = \frac{|A \wedge B|}{|B|}.$$

Indeed, this can be proved as follows.

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{\frac{|A \land B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{|A \land B|}{|B|}.$$

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

17 Conditional Probability

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Performance
Application Areas and

Conditional Probability

Definition

If, for two events A and B, $P(A \mid B) = P(A)$, then these events are called *independent*. In other words, A and B are independent if the probability of the event A is not influenced by the event B.

Theorem 2

For independent events A and B, it follows from the definition that $P(A \wedge B) = P(A) \cdot P(B)$.

Example 5

- A roll of two dice.
- If the two dice are independent, the probability of rolling two sixes

$$P(D_1 = 6 \land D_2 = 6) = P(D_1 = 6) \cdot P(D_2 = 6) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}.$$

■ If, by some magic power, dice 2 is always the same as dice 1, $P(D_1 = 6 \land D_2 = 6) = \frac{1}{6}$.

Exercise 2

Prove Theorem 2.

Reasoning with Uncertainty

Hoàng Anh Đức

Conditional Probability

An Inference Rule for

Versus Material Implication

The Tweety example

Formal Methods

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

Conditional Probability

THE PROPERTY OF THE PROPERTY O

- *Product Rule:* For two events A and B, $P(A \wedge B) = P(A \mid B) \cdot P(B)$.
- Chain Rule: For random variables $X_1, ..., X_n$,

$$\mathbf{P}(X_{1},\ldots,X_{n}) = \mathbf{P}(X_{n} \mid X_{1},\ldots,X_{n-1}) \cdot \mathbf{P}(X_{1},\ldots,X_{n-1})$$

$$= \mathbf{P}(X_{n} \mid X_{1},\ldots,X_{n-1}) \cdot \mathbf{P}(X_{n-1} \mid X_{1},\ldots,X_{n-2})$$

$$\cdot \mathbf{P}(X_{1},\ldots,X_{n-2})$$

$$= \mathbf{P}(X_{n} \mid X_{1},\ldots,X_{n-1}) \cdot \mathbf{P}(X_{n-1} \mid X_{1},\ldots,X_{n-2})$$

$$\cdot \mathbf{P}(X_{1},\ldots,X_{n-2}) \cdot \ldots \cdot \mathbf{P}(X_{n} \mid X_{1}) \cdot \mathbf{P}(X_{1})$$

$$= \prod_{i=1}^{n} \mathbf{P}(X_{i} \mid X_{1},\ldots,X_{i-1}).$$

(Because the chain rule holds for all values of the (random) variables X_1, \ldots, X_n , it has been formulated for the distribution using the symbol \mathbf{P} .)

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with Probabilities
Conditional Probability

The Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

122 Experiences

Computing with Probabilities Conditional Probability

Example 6

■ For n=3 events, the chain rule for events A_1, A_2, A_3 is

$$P(A_1, A_2, A_3) = P(A_3 \mid A_1, A_2) \cdot P(A_2 \mid A_1) \cdot P(A_1).$$

- We randomly draw 3 cards without replacement from deck with 52 cards.
- Event $A_i = \{ \text{draw an ace in the } i\text{-th try} \}.$
- The probability that we have picked three aces

$$P(A_1, A_2, A_3) = P(A_3 \mid A_1, A_2) \cdot P(A_2 \mid A_1) \cdot P(A_1)$$
$$= \frac{2}{50} \cdot \frac{3}{51} \cdot \frac{4}{52} = \frac{1}{5525}.$$

Reasoning with Uncertainty

Hoàng Anh Đức

Conditional Probability

An Inference Rule for

Versus Material Implication

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

Computing with Probabilities Conditional Probability

NAME OF THE PARTY OF THE PARTY

Example 7

■ For n = 2 random variables X_1 and X_2 which can both take values t and f, for example, we have

$$P(X_1 = t, X_2 = t) = P(X_1, X_2)$$

$$= P(X_1 = t \mid X_2 = t) \cdot P(X_2 = t) = P(X_1 \mid X_2) \cdot P(X_2),$$

$$P(X_1 = t, X_2 = f) = P(X_1, \neg X_2)$$

$$= P(X_1 = t \mid X_2 = f) \cdot P(X_2 = f) = P(X_1 \mid \neg X_2) \cdot P(\neg X_2).$$

lacktriangle Then, the chain rule for distribution $\mathbf{P}(X_1,X_2)$ reads

$$\mathbf{P}(X_1, X_2) = \mathbf{P}(X_2 \mid X_1) \cdot \mathbf{P}(X_1),$$

which means

$$\mathbf{P}(X_{1}, X_{2}) = \begin{pmatrix} P(X_{1}, X_{2}) \\ P(X_{1}, \neg X_{2}) \\ P(\neg X_{1}, X_{2}) \\ P(\neg X_{1}, \neg X_{2}) \end{pmatrix} = \begin{pmatrix} P(X_{2} \mid X_{1}) \cdot P(X_{1}) \\ P(\neg X_{2} \mid X_{1}) \cdot P(X_{1}) \\ P(X_{2} \mid \neg X_{1}) \cdot P(\neg X_{1}) \\ P(\neg X_{2} \mid \neg X_{1}) \cdot P(\neg X_{1}) \end{pmatrix}_{122}$$

Reasoning with Uncertainty

Hoàng Anh Đức

dullional Materials

Computing with Probabilities

Conditional Probability

The Principle of

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Conditional Probability

■ Since $A \leftrightarrow (A \land B) \lor (A \land \neg B)$ is true for binary variables A and B, we also have

$$\begin{split} P(A) &= P((A \wedge B) \vee (A \wedge \neg B)) \\ &= P(A \wedge B) + P(A \wedge \neg B). \quad A \wedge B \text{ and } A \wedge \neg B \text{ are} \\ &\text{pairwise exclusive} \end{split}$$

In general,

$$P(X_1 = x_1, \dots, X_{d-1} = x_{d-1})$$

$$= \sum_{x_d} P(X_1 = x_1, \dots, X_{d-1} = x_{d-1}, X_d = x_d)$$

The application of this formula is called *marginalization*.

■ Marginalization can also be applied to distribution $\mathbf{P}(X_1,\ldots,X_d)$. The resulting distribution $\mathbf{P}(X_1,\ldots,X_{d-1})$ is called the *marginal distribution*.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materi

Computing with

22 Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Explicit Constraints
Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweetv example

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXME

Risk Management Using the Cost Matrix

Performance Application Areas and

122 A

Computing with Probabilities Conditional Probability

Example 8

Leuko Leukocyte value higher than 10000 App Patient has appendicitis (appendix inflammation)

P(App, Leuko)	Арр	$\neg App$	Total
Leuko	0.23	0.31	0.54
¬Leuko	0.05	0.41	0.46
Total	0.28	0.72	1

For example, it holds:

$$\begin{split} P(\textit{Leuko}) &= P(\textit{App}, \textit{Leuko}) + P(\neg \textit{App}, \textit{Leuko}) = 0.54 \\ P(\textit{Leuko} \mid \textit{App}) &= \frac{P(\textit{Leuko}, \textit{App})}{P(\textit{App})} = \frac{0.23}{0.28} \approx 0.82. \end{split}$$

Reasoning with Uncertainty

Hoàng Anh Đức

Conditional Probability

An Inference Rule for

Versus Material Implication

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Computing with Probabilities Conditional Probability

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mate

Introduction

Computing with Probabilities

Conditional Probability

Maximum Entropy

An Inference Rule for

Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

MaxEnt-Systems
The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix
Performance
Application Areas and

122

 $P(A \mid B) = \frac{P(A \land B)}{P(B)}$ as well as $P(B \mid A) = \frac{P(A \land B)}{P(A)}$.

Theorem 3 (Bayes' Theorem)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Exercise 3

Prove Theorem 3.

Conditional Probability

Example 9 (Appendicitis example)

$$P(\textit{App} \mid \textit{Leuko}) = \frac{P(\textit{Leuko} \mid \textit{App}) \cdot P(\textit{App})}{P(\textit{Leuko})} = \frac{0.82 \cdot 0.28}{0.54} \approx 0.43.$$

- Assuming that appendicitis affects the biology of all humans the same, regardless of ethnicity.
- \blacksquare $P(Leuko \mid App)$ is a universal value that is *valid worldwide*.
- $P(App \mid Leuko)$, on the other hand, is not universal, because this value is *influenced by the a priori probabilities* P(App) and P(Leuko). Each of these can vary according to on's life circumstances.
 - For example, P(Leuko) is dependent on whether a population has a high or low rate of exposure to infectious diseases. In the tropics, this value can differ significantly from that of cold regions.
- Bayes' theorem, however, makes it easy for us to take the universally valid value $P(Leuko \mid App)$, and compute $P(App \mid Leuko)$ which is useful for diagnosis.

Reasoning with Uncertainty

Hoàng Anh Đức

dditional Materials

Computing with

Conditional Probability

The Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

Conditional Probability

Example 10

- Sales representative: "Very reliable burglar alarm, reports any burglar with 99% certainty"
- A: Alarm, B: Burglar. The seller claims $P(A \mid B) = 0.99$
- Thus with high certainty: If alarm then burglary!

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Probabilities

Conditional Probability

Conditional Probability

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

122 Exp

Conditional Probability

Example 10

- Sales representative: "Very reliable burglar alarm, reports any burglar with 99% certainty"
- A: Alarm, B: Burglar. The seller claims $P(A \mid B) = 0.99$
- Thus with high certainty: If alarm then burglary!
- No! Be careful!
- What does this mean when we hear the alarm go off?
 - Suppose we (the buyer) live in a relatively safe area in which break-ins are rare, with P(B) = 0.001.
 - Assume that the alarm system is triggered not only by burglars, but also by animals, such as birds or cats in the yard, which results in P(A) = 0.1.
 - Thus, $P(B \mid A) = (P(A \mid B) \cdot P(B))/P(A) \approx 0.01 \Rightarrow$ There will be too many false alarms!

Reasoning with Uncertainty

Hoàng Anh Đức

ioditional mator

Introduction

Probabilities

Conditional Probability

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Conditional Probability

Example 10

- Sales representative: "Very reliable burglar alarm, reports any burglar with 99% certainty"
- A: Alarm, B: Burglar. The seller claims $P(A \mid B) = 0.99$
- Thus with high certainty: If alarm then burglary!
- No! Be careful!
- What does this mean when we hear the alarm go off?
 - Suppose we (the buyer) live in a relatively safe area in which break-ins are rare, with P(B) = 0.001.
 - Assume that the alarm system is triggered not only by burglars, but also by animals, such as birds or cats in the yard, which results in P(A) = 0.1.
 - Thus, $P(B \mid A) = (P(A \mid B) \cdot P(B))/P(A) \approx 0.01 \Rightarrow$ There will be too many false alarms!
- Additionally, we have $P(A) = P(A \mid B) \cdot P(B) + P(A \mid \neg B) \cdot P(B) = 0.00099 + P(A \mid \neg B) \cdot 0.999 = 0.1$, which implies $P(A \mid \neg B) \approx 0.1 \Rightarrow$ The alarm will be triggered roughly every tenth day that there is not a break-in

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

Conditional Probability

Maximum Entropy
An Inference Rule for

Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

The tweety examp

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix
Performance
Application Areas and

Application Experience

Conditional Probability

Exercise 4 ([Ertel 2025], Exercise 7.2, p. 171)

The gardening hobbyist Max wants to statistically analyze his yearly harvest of peas. For every pea pod he picks he measures its length x_i in centimeters and its weight y_i in grams. He divides the peas into two classes, the good and the bad (empty pods). The measured data (x_i, y_i) are

pad pea:
$$\begin{array}{c|cccc} x & 4 & 6 & 6 \\ \hline & 2 & 2 & 2 \\ \end{array}$$

(a) From the data, compute the probabilities
$$P(y>3 \mid \textit{Class} = \textit{good})$$
 and $P(y \leq 3 \mid \textit{Class} = \textit{good})$.

- $P(y > 3 \mid Class = good)$ and $P(y \le 3 \mid Class = good)$. Then use Bayes' formula to determine $P(Class = good \mid y > 3)$ and $P(Class = good \mid y \le 3)$.
- (b) Which of the probabilities computed in subproblem (a) contradicts the statement "All good peas are heavier than 3 grams"?

Reasoning with Uncertainty

Hoàng Anh Đức

Conditional Probability

An Inference Rule for

Versus Material Implication

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

Conditional Probabi

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix

Application Areas and Experiences

A calculus for reasoning under uncertainty can be realized using probability theory.

- Often too little knowledge for solving the necessary equations ⇒ new ideas are needed.
- Idea from E.T. Jaynes (Physicist): Given missing knowledge, one can maximize the entropy of the desired probability distribution.
- Application to the LEXMED project.

An Inference Rule for Probabilities

$$\frac{A, A \Rightarrow B}{B}$$

Generalization to probability rules

$$\frac{P(A) = \alpha, P(B \mid A) = \beta}{P(B) = ?}$$

Given: two probability values α , β , **Find:** P(B).

Marginalization

$$P(B) = P(A, B) + P(\neg A, B)$$

= $P(B \mid A) \cdot P(A) + P(B \mid \neg A) \cdot P(\neg A)$

The values of P(A), $P(\neg A)$, and $P(B \mid A)$ are known. But $P(B \mid \neg A)$ is unknown.

■ We cannot make an exact statement about P(B) with classical probability theory, but at the most we can estimate $P(B) > P(B \mid A) \cdot P(A)$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

The Principle of

Maximum Entropy
An Inference Rule for

Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

122 App

An Inference Rule for Probabilities

$$\mathbf{P}(A,B) = (P(A,B), P(A,\neg B), P(\neg A,B), P(\neg A,\neg B))$$

Abbreviation

$$p_1 = P(A, B)$$

$$p_2 = P(A, \neg B)$$

$$p_3 = P(\neg A, B)$$

$$p_4 = P(\neg A, \neg B)$$

- These four parameters (unknowns) p_1, \ldots, p_4 define the distribution.
- lacksquare Out of it, any probability for A and B can be calculated.
- Four equations are required to calculate these unknowns.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probabilit

Maximum Entropy

An Inference Rule for

Probabilities

Maximum Entropy Without

Explicit Constraints
Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

unction of LEXM

Risk Management Using the Cost Matrix

Application Areas and Experiences

An Inference Rule for Probabilities

- Normalization condition: $p_1 + p_2 + p_3 + p_4 = 1$.
- From the given values $P(A) = \alpha$ and $P(B \mid A) = \beta$ we calculate

$$P(A, B) = P(B \mid A) \cdot P(A) = \alpha \beta$$
$$P(A) = P(A, B) + P(A, \neg B).$$

So far, we have the following system of three equations

$$p_1 + p_2 + p_3 + p_4 = 1$$
$$p_1 = \alpha\beta$$
$$p_1 + p_2 = \alpha$$

Solve it as far as is possible, we get

$$p_1 = \alpha \beta$$
$$p_2 = \alpha (1 - \beta)$$
$$p_3 + p_4 = 1 - \alpha$$

One equation is missing!

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Probabilities

Conditional Probability

The Principle of

Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXN

Risk Management Using the Cost Matrix

Application Areas and Experiences

An Inference Rule for Probabilities

- To come to a definite solution despite this missing knowledge, we change our point of view. We use the given equation as a constraint for the solution of an optimization problem.
- **Find:** Distribution $\mathbf{p} = (p_3, p_4)$ which maximizes the entropy

$$H(\mathbf{p}) = -\sum_{i=1}^{n} p_i \ln p_i = -p_3 \ln p_3 - p_4 \ln p_4$$

under the constraint $p_3 + p_4 = 1 - \alpha$.

- Why should the entropy function be maximized?
 - The entropy measures the uncertainty of a distribution up to a constant factor.
 - Negative entropy is then a measure of the amount of information a distribution contains.
 - Maximizing the entropy minimizes the information content of the distribution.
 - Because we are missing information about the distribution, it must somehow be added in. We could fix an ad hoc value, for example $p_3 = 0.1$. Yet it is better to determine the values p_3 and p_4 such that the information added is minimal.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

The Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

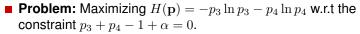
Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Experience

An Inference Rule for Probabilities



- Method of Lagrange multipliers.
- Lagrange function:

$$L = H(\mathbf{p}) + \lambda(p_3 + p_4 - 1 + \alpha)$$

= $-p_3 \ln p_3 - p_4 \ln p_4 + \lambda(p_3 + p_4 - 1 + \alpha)$

lacksquare Taking the partial derivatives with respect to p_3 and p_4

$$\frac{\partial L}{\partial p_3} = -\ln p_3 - 1 + \lambda = 0$$

$$\frac{\partial L}{\partial p_4} = -\ln p_4 - 1 + \lambda = 0$$

■ These two equations along with the constraint give us a system of three equations and three unknowns p_3, p_4, λ . Solving it, we have $p_3 = p_4 = (1 - \alpha)/2$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materi

Introduction

Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXM

Risk Management Using the Cost Matrix

Application Areas and Experiences

Experience

An Inference Rule for Probabilities

$$P(B) = P(A, B) + P(\neg A, B) = p_1 + p_3 = \alpha\beta + \frac{1 - \alpha}{2}$$
$$= \alpha(\beta - \frac{1}{2}) + \frac{1}{2} = P(A)(P(B \mid A) - \frac{1}{2}) + \frac{1}{2}.$$

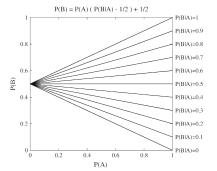


Figure: Curve array for P(B) as a function of P(A) for different values of $P(B \mid A)$.

Reasoning with Uncertainty

Hoàng Anh Đức

takan di sakan

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis wit Formal Methods Hybrid Probabilistic

Knowledge Base
Application of LEXME

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

122 Ap

An Inference Rule for Probabilities

$$P(B) = P(A, B) + P(\neg A, B) = p_1 + p_3 = \alpha\beta + \frac{1 - \alpha}{2}$$
$$= \alpha(\beta - \frac{1}{2}) + \frac{1}{2} = P(A)(P(B \mid A) - \frac{1}{2}) + \frac{1}{2}.$$

■ When P(A) = 1 and $P(B \mid A) = 1, P(B) = 1$ (Modus Ponens holds)

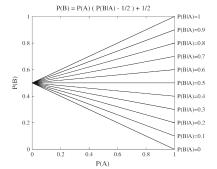


Figure: Curve array for P(B) as a function of P(A) for different values of $P(B \mid A)$.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Probabilities

Versus Material Implication MaxEnt-Systems

The Tweety example

Formal Methods Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

122

An Inference Rule for Probabilities

$$P(B) = P(A, B) + P(\neg A, B) = p_1 + p_3 = \alpha\beta + \frac{1 - \alpha}{2}$$
$$= \alpha(\beta - \frac{1}{2}) + \frac{1}{2} = P(A)(P(B \mid A) - \frac{1}{2}) + \frac{1}{2}.$$

- When P(A) = 1 and $P(B \mid A) = 1$, P(B) = 1 (Modus Ponens holds)
- When P(A) = 1 and $P(B \mid A) = 0$, P(B) = 0 (Modus Ponens holds)

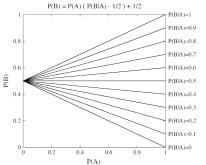


Figure: Curve array for P(B) as a function of P(A) for different values of $P(B \mid A)$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Conditional Probability

The Principle of

Maximum Entropy An Inference Rule for

Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems The Tweety example

LEXMED

Appendicitis Diagnosis wit Formal Methods Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix
Performance
Application Areas and

122 App

An Inference Rule for Probabilities

$$P(B) = P(A, B) + P(\neg A, B) = p_1 + p_3 = \alpha\beta + \frac{1 - \alpha}{2}$$
$$= \alpha(\beta - \frac{1}{2}) + \frac{1}{2} = P(A)(P(B \mid A) - \frac{1}{2}) + \frac{1}{2}.$$

- When P(A) = 1 and $P(B \mid A) = 1$, P(B) = 1 (Modus Ponens holds)
- When P(A) = 0, Modus Ponens cannot be applied, but our formula results in the value 1/2for P(B) irrespective of $P(B \mid A)$. When A is false, we know nothing about B, which reflects our intuition exactly.

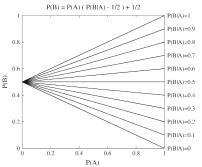


Figure: Curve array for P(B) as a function of P(A) for different values of $P(B \mid A)$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mater

Introduction

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance
Application Areas and

122

An Inference Rule for Probabilities

$$P(B) = P(A, B) + P(\neg A, B) = p_1 + p_3 = \alpha\beta + \frac{1 - \alpha}{2}$$
$$= \alpha(\beta - \frac{1}{2}) + \frac{1}{2} = P(A)(P(B \mid A) - \frac{1}{2}) + \frac{1}{2}.$$

- When P(A) = 1 and $P(B \mid A) = 1$, P(B) = 1 (Modus Ponens holds)
- When P(A) = 1 and $P(B \mid A) = 0$, P(B) = 0 (Modus Ponens holds)
- When P(A) = 0, Modus Ponens cannot be applied, but our formula results in the value 1/2for P(B) irrespective of $P(B \mid A)$. When A is false, we know nothing about B, which reflects our intuition exactly.

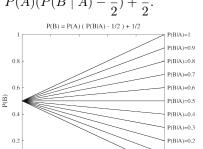


Figure: Curve array for P(B) as a function of P(A) for different values of $P(B \mid A)$.

P(A)

0.6

0.8

0.2

0.4

■ We cannot make any prediction about B when $P(B \mid A) = 1/2$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mate

Computing with

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability Versus Material Implication MaxEnt-Systems The Tweety example

LEXMED

P(B|A)=0.1

P(B|A)=0

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance Application Areas and

Experiences

An Inference Rule for Probabilities

Theorem 4

Let there be a consistent set of linear probabilistic equations. Then there exists a unique maximum for the entropy function with the given equations as constraints. The MaxEnt distribution thereby defined has minimum information content under the constraints.

- It follows from this theorem that there is no distribution. which satisfies the constraints and has higher entropy than the MaxEnt distribution.
- A calculus, which leads to distributions with a higher entropy is adding informations ad hoc, which again is not justified.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for Probabilities

Versus Material Implication

The Tweety example

Formal Methods

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

An Inference Rule for Probabilities

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitie Diagnosis

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

 \blacksquare p_3 and p_4 always occur symmetrically.

■ Therefore, $p_3 = p_4$ (indifference).

Definition

If an arbitrary exchange of two or more variables in the Lagrange equations results in equivalent equations, these variables are called *indifferent*.

Theorem 5

If a set of variables $\{p_{i_1}, p_{i_2}, \dots, p_{i_k}\}$ is indifferent, then the maximum of the entropy under the given constraints is at the point where $p_{i_1} = p_{i_2} = \dots = p_{i_k}$.

Maximum Entropy Without Explicit Constraints

Reasoning with Uncertainty

Hoàng Anh Đức

Auditional Materia

Introduction

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems
The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

- No knowledge given ⇒ All varibles are indifferent. (Indifference Principle.)
- No constraints beside the normalization condition $p_1 + p_2 + \cdots + p_n = 1$.
- We can set $p_1 = \cdots = p_n = \frac{1}{n}$.
- Given a complete lack of knowledge, all worlds are equally probable. That is, the distribution is uniform.

Example 11 (Special case: two variables A and B)

- $P(A,B) = P(A,\neg B) = P(\neg A,B) = P(\neg A,\neg B) = 1/4.$
- $P(A) = P(B) = 1/2 \text{ and } P(B \mid A) = 1/2.$

As soon as the value of a condition deviates from the one derived from the uniform distribution, the probabilities of the worlds shift.

Example 12 (Special case: two variables A and B)

- Assume that only $P(B \mid A) = \beta$ is known.
- Thus, $P(A, B) = P(B \mid A)P(A) = \beta P(A)$. Therefore, $p_1 = \beta(p_1 + p_2)$.
- We derived two constraints:

$$\beta p_2 + (\beta - 1)p_1 = 0$$
$$p_1 + p_2 + p_3 + p_4 - 1 = 0$$

- No symbolic solutions!
- Solving the Lagrange equations numerically.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

he Principle of

An Inference Rule for

Probabilities

38 Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems
The Tweety example

LEVALED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and Experiences

Experience

Exercise 5 ([Ertel 2025], Exercise 7.3, p. 172)

You are supposed to predict the afternoon weather using a few simple weather values from the morning of this day. The classical probability calculation for this requires a complete model, which is given in the following table.

Sky	Bar	Prec	P(Sky, Bar, Prec)
Clear	Rising	Dry	0.40
Clear	Rising	Raining	0.07
Clear	Falling	Dry	0.08
Clear	Falling	Raining	0.10
Cloudy	Rising	Dry	0.09
Cloudy	Rising	Raining	0.11
Cloudy	Falling	Dry	0.03

Skv: Bar:

Prec:

The sky is clear or cloudy in the morning Barometer rising or

falling in the morning Raining or dry in the

afternoon

Maximum Entropy Without Explicit Constraints

Versus Material Implication

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

122

Compute $P(Prec = rain \mid Sky = cloudy)$.

What would you do if the last row were missing from the table?

Compute $P(Prec = dry \mid Sky = clear, Bar = rising)$.

How many events are in the distribution for these three variables?

Reasoning with Uncertainty Hoàng Anh Đức

An Inference Rule for

The Tweety example

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

The Principle of Maximum Entropy

An Inference Rule for Probabilities

40 Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

LEVMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

Exercise 6 ([Ertel 2025], Exercise 7.4, p. 172)

In a television quiz show, the contestant must choose between three closed doors. Behind one door the prize awaits: a car. Behind both of the other doors are goats. The contestant chooses a door, e.g. number one. The host, who knows where the car is, opens another door, e.g. number three, and a goat appears. The contestant is now given the opportunity to choose between the two remaining doors (one and two). What is the better choice from his point of view? To stay with the door he originally chose or to switch to the other closed door?

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

The Principle of Maximum Entropy

An Inference Rule for

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis with

Formal Methods
Hybrid Probabilistic

Knowledge Base
Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Exercise 7 ([Ertel 2025], Exercise 7.5, p. 172)

Using the Lagrange multiplier method, show that, without explicit constraints, the uniform distribution $p_1=p_2=\cdots=p_n=1/n$ represents maximum entropy. Do not forget the implicitly ever-present constraint $p_1+p_2+\cdots+p_n=1$. How can we show this same result using indifference?

Conditional Probability Versus Material Implication

We will now show that, for modeling reasoning, conditional probability is better than what is known in logic as material implication.

A	B	$A \Rightarrow B$	P(A)	P(B)	$P(B \mid A)$
t	t	t	1	1	1
t	f	f	1	0	0
f	t	t	0	1	Undefined
f	f	t	0	0	Undefined

Question: What value does $P(B \mid A)$ have, if only $P(A) = \alpha$ and $P(B) = \gamma$ are given?

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Conditional Probability Versus Material Implication

- $p_1 = P(A, B), p_2 = P(A, \neg B), p_3 = P(\neg A, B),$ $p_4 = P(\neg A, \neg B).$
- Constraints:

$$p_1 + p_2 = \alpha$$

$$p_1 + p_3 = \gamma$$

$$p_1 + p_2 + p_3 + p_4 = 1$$

Again we maximize entropy under the given constraints and obtain:

$$p_1 = \alpha \gamma$$
, $p_2 = \alpha(1-\gamma)$, $p_3 = \gamma(1-\alpha)$, $p_4 = (1-\alpha)(1-\gamma)$

From $p_1 = \alpha \gamma$, we have $P(A, B) = P(A) \cdot P(B)$, which means A and B are independent.

Exercise 8 ([Ertel 2025], Exercise 7.8, p. 173)

Prove that the above-mentioned results for p_1, p_2, p_3, p_4 are correct.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Conditional Probability Versus Material Implication

MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix Application Areas and

Conditional Probability Versus Material Implication

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

122

■ From definition, $P(B \mid A) = \frac{P(A, B)}{P(A)}$.

For $P(A) \neq 0$, we have $P(B \mid A) = P(B)$.

For P(A) = 0, $P(B \mid A)$ stays undefined.

A	B	$A \Rightarrow B$	P(A)	P(B)	$P(B \mid A)$
f	t	t	α	γ	γ
f	f	t	0	γ	Undefined

The Principle of Maximum Entropy MaxEnt-Systems

Water To Note to

- Often, MaxEnt optimization has no symbolic solution.
- Therefore: *numerical entropy maximization*.
- SPIRIT (Symmetrical Probabilistic Intensional Reasoning in Inference Networks in Transition, www.xspirit.de): Fernuniversität Hagen.
- PIT (Probability Induction Tool, http://www.maxent.de): Munich Technical University.
- PIT uses Sequential Quadratic Programming (SQP) to find an extremum of the entropy function numerically.
- As input, PIT expects a file with the constraints:

```
var A{t,f}, B{t,f};

P([A=t]) = 0.6;
P([B=t] | [A=t]) = 0.3;

QP([B=t]);
QP([B=t] | [A=t]);
```

Reasoning with Uncertainty

Hoàng Anh Đức

introduction

Probabilities

The Principle of

Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Withou

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods
Hybrid Probabilistic

Knowledge Base
Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

122 E

The Principle of Maximum Entropy MaxEnt-Systems

NA HOU TV MONTH

- Request QP([B=t])
- Web front end on www.pit-systems.de (Inactive)
- Result

Nr.	Truth value	Probability	Query
1	UNSPECIFIED	3.800e-01	QP([B=t]);
2	UNSPECIFIED	3.000e-01	QP([A=t]- >[B=t]);

P(B) = 0.38 and $P(B \mid A) = 0.3$.

Reasoning with Uncertainty

Hoàng Anh Đức

uullionai walena

Introduction

Computing with Probabilities

Conditional Proba

e Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

122

The Principle of Maximum Entropy MaxEnt-Systems

- Request QP([B=t])
- Web front end on www.pit-systems.de (Inactive)
- Result

	Nr.	Truth value	Probability	Query
ĺ	1	UNSPECIFIED	3.800e-01	QP([B=t]);
	2	UNSPECIFIED	3.000e-01	QP([A=t]- >[B=t]);

P(B) = 0.38 and $P(B \mid A) = 0.3$.

Exercise 9 ([Ertel 2025], Exercise 7.6, p. 172)

Use the PIT system (http://www.pit-systems.de) or SPIRIT (http://www.xspirit.de) to calculate the MaxEnt solution for P(B) under the constraint $P(A) = \alpha$ and $P(B \mid A) = \beta$. Which disadvantage of PIT, compared with calculation by hand, do you notice here?

Exercise 10 ([Ertel 2025], Exercise 7.7, p. 172)

Given the constraints $P(A) = \alpha$ and $P(A \vee B) = \beta$, manually calculate P(B) using the MaxEnt method. Use PIT to check your solution.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

The Principle of Maximum Entropy The Tweety example


```
P(bird \mid penguin) = 1
                                    "penguins are birds"
P(\textit{flies} \mid \textit{bird}) \in [0.95, 1]
                                 "(almost all) birds can fly"
 P(flies \mid penguin) = 0
                                    "penguins cannot fly"
```

PIT input file:

```
var penguin{yes,no}, bird{yes,no}, flies{yes,no}
P([bird=yes] | [penguin=yes]) = 1;
<u>P([flies=yes] | [bird=yes]) IN [0.95,1];</u>
P([flies=yes]
                 [penguin=yes]) = 0;
QP([flies=yes] | [penguin=yes]);
```

Answer

Nr.	Truth value	Probability	Query
1	UNSPECIFIED	0.000e+00	QP([penguin=yes]-

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using

the Cost Matrix

The Principle of Maximum Entropy The Tweety example

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Probability intervals are often very helpful

second rule in the sense of "normally birds fly": $P(flies | bird) \in (0.5, 1]$

MaxEnt enables non monotonic inference

MaxEnt is also successful on challenging benchmarks for non monotonic inference

 Application of MaxEnt within the medical expert system **LEXMED**

LEXMED

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materi

Introduction

Computing with Probabilities

The Principle of Maximum Entror

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with

Formal Methods

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Application of LEXM Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Manfred Schramm, Walter Rampf, Wolfgang Ertel

 Ravensburg-Weingarten University of Applied Sciences + Weingarten 14-Nothelfer Hospital + Technical University Munich

■ LEXMED = Medical expert system capable of learning.

The project was funded by the german state of Baden-Wuerttemberg, the AOK Baden-Württemberg, the Ravensburg-Weingarten University of Applied Sciences and by the hospital 14 Nothelfer in Weingarten.

I FXMFD

Personal Details

Results of

examination

Gender

Age-group

1st quadrant

2nd quadrant

3rd quadrant

4th guadrant

rehound tenderness

pain on tapping

rectal pain

howel sounds

leucocyte count

abnormal ultrasound

abnormal urine sediment

temperature range (rectal)

guarding

unknown

not

done

(E)

œ.

•

œ.

a male a female

□ yes □ no

c yes c no

□ ves □ no

c ves c no

c ves c no

c yes c no

c ves c no

□ yes □ no

□ local □ global □ none

46-55 c 56-65 c 65-

Reasoning with

Computing with

Conditional Probability

An Inference Rule for Maximum Entropy Without

Conditional Probability Versus Material Implication

MaxEnt-Systems The Tweety example

50 LEXMED

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

? ? ? ? ○ -37.3 ○ 37.4-37.6 ○ 37.7-38.0 ○ 38.1-38.4 ○ 38.5-38.9 ○ 39.0-

Abfragen

□ weak □ normal □ increased □ none

values

values

□ 0-6k □ 6k-8k □ 8k-10k □ 10k-12k □ 12k-15k □ 15k-20k □ 20k-

c 0.5 c 6.10 c 11.15 c 16.20 c 21.25 c 26.35 c 36.45 c

Figure: LEXMED Query form.

122

LEXMED

Diagnosis

Probability

App. inflamed

0.70

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for

Versus Material Implication MaxEnt-Systems

LEXMED

Result of the PIT diagnosis

Negative

0.06

Other

0.07

App. perforated

0.17

Figure: LEXMED Answer.

Knowledge Base

Risk Management Using

Application Areas and

Computing with

Maximum Entropy Without

Conditional Probability

Hybrid Probabilistic

Application of LEXMED

the Cost Matrix

122

LEXMED

Appendicitis Diagnosis with Formal Methods

- The most common serious cause of acute abdominal pain is appendicitis.
- Even today, diagnosis can be difficult in many cases.
 - Approx. 20% of the surgically removed appendixes without clinical abnormalities
 - There are also cases, where an inflamed appendix is not recognized
- In 1972, de Dombal (Great Britain) developed an expert system for the diagnosis of acute stomach pain.

Reasoning with Uncertainty

Hoàng Anh Đức

additional waterials

Computing with

Conditional Probability

ne Principle of

An Inference Rule for Probabilities Maximum Entropy Without Evolicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED Function of LEXMED Risk Management Using

the Cost Matrix

Application Areas and Experiences

LEXMED Appendicitis Diagnosis with Formal Methods

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probabilit

Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Withor Explicit Constraints Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety exam

EXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods Hybrid Probabilistic

Knowledge Base
Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Nearly all of the formal diagnostic processes used in medicine to date have been based on *scores*.

- For each value of a symptom (for example fever or lower right stomach pain) the doctor notes a certain number of points.
- If the sum of the points is over a certain value (threshold), a certain decision is recommended (for example operation).

LEXMED

Appendicitis Diagnosis with Formal Methods

With n symptoms S_1, S_2, \ldots, S_n , a score can formally be defined as

- Scores are too weak for the modelling of complex relations.
- Score systems cannot consider "contexts".
 - E.g. they cannot distinguish between the leukocyte values of elderly and medium age people.
- They demand high requirements on databases (representative).

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

ha Deinaiala af

Maximum Entropy

An Inference Rule for Probabilities

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety examp

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Risk Management Using

the Cost Matrix
Performance
Application Areas and

Exp Exp

LEXMED Hybrid Probabilistic Knowledge Base

Washing order to

Query to the expert system: What is the probability for an inflamed appendix, if the patient is a 23 year old man with pain in the in downright stomach and a leukocyte value of 13000?

Symptom	Values	#	Short
Gender	Male, female	2	Sex2
Age	0-5, 6-10, 11-15, 16-20, 21-25, 26-35, 36-45, 46-55, 56-65, 65-	10	Age10
Pain 1st Quad.	Yes, no	2	P1Q2
Pain 2nd Quad.	Yes, no	2	P2Q2
Pain 3rd Quad.	Yes, no	2	P3Q2
Pain 4th Quad.	Yes, no	2	P4Q2
Guarding	Local, global, none	3	Gua3
Rebound tenderness	Yes, no	2	Reb2
Pain on tapping	Yes, no	2	Tapp2
Rectal pain	Yes, no	2	RecP2
Bowel sounds	Weak, normal, increased, none	4	BowS4
Abnormal ultrasound	Yes, no	2	Sono2
Abnormal urine sedim.	Yes, no	2	Urin2
Temperature (rectal)	-37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0-	6	TRec6
Leukocytes	0-6k, 6k-8k, 8k-10k, 10k-12k, 12k-15k, 15k-20k, 20k-	7	Leuko7
Diagnosis	Inflamed, perforated, negative, other	4	Diag4

Figure: Symptoms used for the query in LEXMED and their values. The number of values for the each symptom is given in the column marked #.

Reasoning with Uncertainty

Hoàng Anh Đức

. . . .

Introduction

Computing with Probabilities

onditional Probability

The Princi

An Inference Rule for

robabilities faximum Entropy With xplicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweetv example

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

LEXMED Hybrid Probabilistic Knowledge Base

Query to the expert system:

$$P(\textit{Diag4} = \textit{inflamed} \lor \textit{Diag4} = \textit{perforated} \mid Sex2 = \textit{male} \land Age10 \in 21-25 \land Leuko7 \in 12-15k)$$

Knowledge Base:

Database

15000 patients from Baden-Württemberg 1995

Expert knowledge

Dr. Rampf

Dr. Hontschik

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

■ LEXMED calculates the probabilities of various diagnoses using the probability distribution of all relevant variables (see the previous table).

■ The size of the distribution (that is, the size of the event space):

$$2^{10} \cdot 10 \cdot 3 \cdot 4 \cdot 6 \cdot 7 \cdot 4 = 20643840.$$

- \blacksquare Normalization condition $\Rightarrow 20\,643\,839$ independent values.
- Any rule set with less than 20 643 839 probability values may not describe the event space completely.
- A *complete distribution* is required.
- lacksquare A human expert can not deliver $20\,643\,839$ values!
- Use <u>MaxEnt method</u>. The generalization of about 500 rules to a complete probability model is done in LEXMED by maximizing the entropy with the 500 rules as constraints.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probability

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis w

Formal Methods

Hybrid Probabilistic Knowledge Base

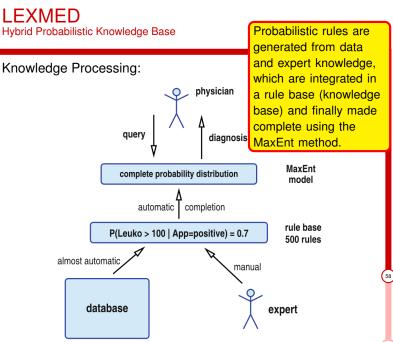
Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and

Experiences



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with Probabilities

Conditional Probabilit

The Principle of

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix Performance

Application Areas and Experiences

LEXMED Application of LEXMED

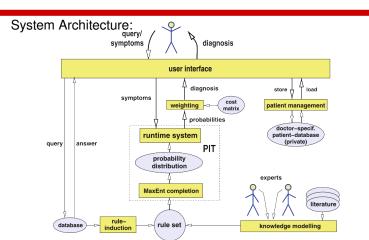


Figure: Rules are generated from the database as well as from expert knowledge. From these, MaxEnt creates a complete probability distribution. For a user query, the probability of every possible diagnosis is calculated. Using the cost matrix (will be defined later) a decision is then suggested.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Probabilities

onditional Probabili

The Principle

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Performance

Application Areas and

122

The usage of LEXMED is simple and self-explanatory.

- The doctor visits the LEXMED home page at www.lexmed.de.
- Doctor inputs the results of his examination into the input form.
 - If certain examination results are missing as input (for example the sonogram results), then the doctor chooses the entry not examined.
 - Naturally the certainty of the diagnosis is higher when more symptom values are input.
- LEXMED outputs the probabilities for the four different diagnoses as well as a suggestion for a treatment.
- Each registered user has access to a private patient database, in which input data can be archived.
- Thus data and diagnoses from earlier patients can be easily compared with those of a new patient.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mate

Introduction

Computing with Probabilities

he Principle o

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweetv example

The Tweety examp

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix Performance

Application Areas and Experiences

Reasoning with Uncertainty Hoàng Anh Đức

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

122

Knowledge is formalized using probabilistic propositions, e.g.,

 $P(Leuko7 > 20\,000 \mid Diag4 = inflamed) = 0.09.$

Note: Instead of single numerical values, we might also use intervals (i.e. [0.06, 0.12]).

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

Jonditional Probabi

The Principle of Maximum Entrop

An Inference Rule for Probabilities

Maximum Entropy Withou Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety exam

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Performance
Application Areas and
Experiences

Learning of Rules by Statistical Induction

- Raw data in LEXMED: 54 different (anonymized) values for 14,646 patients (whose appendixes were surgically removed).
- After a statistical analysis, 14 symptoms among 54 attributes are selected and used for the query in LEXMED.
- Two steps to *create the rules* from this databases:
 - (1) Determining the dependency structure of the symptoms.
 - (2) Filling this structure with the respective probability rules.

Dependency graph computed from the database (see the next slide)

■ Node: variable (symptom + diagnosis)

Edge: directed

Edge's thickness: measures the correlation of the variables

■ Two independent variables: correlation = 0.

- The pair correlation for each of the 14 symptoms with Diag4 was computed. (Blue edges).
- All triple correlations between the diagnosis and two symptoms were calculated. Of these, only the strongest values have been drawn as additional edges between the two participating symptoms. (Green edges.)

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

Conditional Probabilit

he Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety exampl

LEXMED

Appendicitis Diagnosis with Formal Methods

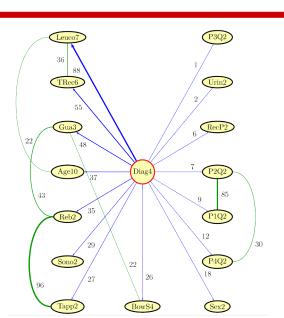
Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix
Performance
Application Areas and

LEXMED Function of LEXMED



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

Probabilities

Conditional Probability

he Principle of

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEVALED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

the Cost Matrix
Performance
Application Areas and

Experiences

122

Estimating the *Rule Probabilities*

- Structure of the dependency graph = structure of the learned rules.
- The rules have different complexities.
 - Rules which only describe the <u>distribution of the possible</u> <u>diagnoses</u> (a priori rules), e.g., P(Diag4 = inflamed) = 0.40.
 - Rules which describe the *dependency between the diagnosis and a symptom* (rules with simple conditions), e.g., $P(Sono2 = ves \mid Diag4 = inflamed) = 0.43$.
 - Rules which describe the dependency between the diagnosis and two symptoms, e.g., $P(P4Q2 = yes \mid Diag4 = inflamed \land P2Q2 = yes) = 0.61.$
- The numerical values for these rules are estimated by counting their frequency in the database.
 - For example, $P(Sono2 = yes \mid Diag4 = inflamed) = 0.43$ because we count in the database and calculate

$$\frac{|\textit{Diag4} = \textit{inflamed} \land \textit{Sono2} = \textit{yes}|}{|\textit{Diag4} = \textit{inflamed}|} = 0.43.$$

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mater

Introduction

Computing with Probabilities

multional i robabili

Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

. _...

Appendicitis Diagnosis wit Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance Application Areas and

Application Experience

Some of the LEXMED rules with probability intervals written in PIT syntax. "*" stands for " \wedge " here.

```
[0.132.0.156]
     P([Leuco7=0-6k]
                            [Diag4=negativ]
                                               [Age10=16-20])
     P([Leuco7=6-8k]
                           [Diag4=negativ]
                                               [Age10=16-20]
                                                                  [0.257, 0.281]
     P([Leuco7=8-10k]
                           [Diag4=negativ]
                                               [Age10=16-20]
                                                                  [0.250.0.274]
     P([Leuco7=10-12k]
                           [Diag4=negativ]
                                               [Age10=16-20]]
                                                                  [0.159.0.183]
     P([Leuco7=12-15k]
                           [Diag4=negativ]
                                               [Age10=16-20]
                                                                  [0.087,0.112]
     P([Leuco7=15-20k]
                           [Diag4=negativ]
                                               [Age10=16-20]
                                                                  [0.032.0.056]
     P([Leuco7=20k-]
                           [Diag4=negativ]
                                               [Age10=16-20]
                                                                  [0.000, 0.023]
     P([Leuco7=0-6k]
                           [Diag4=negativ]
                                               [Age10=21-25]
                                                                  [0.132, 0.172]
                                               [Age10=21-25]
     P([Leuco7=6-8k]
                           [Diag4=negativ]
                                                                  [0.227.0.266]
     P([Leuco7=8-10k]
                           [Diag4=negativ]
                                               [Age10=21-25]
                                                                  [0.211, 0.250]
     P([Leuco7=10-12k]
                           [Diag4=negativ]
                                               [Age10=21-25]
                                                                  [0.166, 0.205]
                                                                  [0.081,0.120]
     P([Leuco7=12-15k]
                           [Diag4=negativ]
                                               [Age10=21-25]
     P([Leuco7=15-20k]
                           [Diag4=negativ]
                                               [Age10=21-25]
                                                                  [0.041, 0.081]
     P([Leuco7=20k-]
                            [Diag4=negativ]
                                               [Age10=21-25]]
                                                                  [0.004.0.043]
14
```

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEVALED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix Performance

122

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mater

Introduction

Computing with Probabilities

Conditional Probabi

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Withou

Explicit Constraints
Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and

122

Expert Rules

- Rules for non-specific abdominal pain (NSAP) receive their values from propositions of medical experts.
- To model the uncertainty of expert knowledge, the use of probability intervals has proven effective.
- Once the expert rules have been created, the rule base is finished.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

Conditional Probabili

The Principle of Maximum Entror

An Inference Rule for Probabilities

Maximum Entropy Withou Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety examp

LEVMED

Appendicitis Diagnosis with

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Performance
Application Areas and

Expert Rules

- Rules for non-specific abdominal pain (NSAP) receive their values from propositions of medical experts.
- To model the uncertainty of expert knowledge, the use of probability intervals has proven effective.
- Once the expert rules have been created, the rule base is finished.

The complete probability model is calculated with the method of maximum entropy by the PIT-system.

Using its efficiently stored probability model, LEXMED calculates the probabilities for the four possible diagnoses within a few seconds. For example, we assume the following output:

	Results of the PIT diagnosis				
Diagnosis	Appendix inflamed	Appendix perforated	Negative	Other	
Probability	0.24	0.16	0.57	0.03	

- A decision must be made based on these four probability values.
- How to derive an optimal decision from these probabilities?
- Ask LEXMED to calculate a recommended decision.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

onditional Probabili

ne Principle o

An Inference Rule for Probabilities

laximum Entropy Withou xplicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety exam

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix
Performance
Application Areas and

Applicat Experies

Risk Management Using the Cost Matrix

Question

How can the computed probabilities now be translated optimally into decisions?

Naive algorithm

- assign a decision to each diagnosis
- ultimately select the decision that corresponds to the highest probability

Example 13 (Naive Algorithm)

- 0.4 for the diagnosis *appendicitis* (inflamed or perforated), 0.55 for the diagnosis *negative*, and 0.05 for the diagnosis other.
- Decide "no operation" (which may be too risky).

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for

Versus Material Implication MaxEnt-Systems

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Risk Management Using the Cost Matrix

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mate

Introduction

Computing with

obabilities

The Principle of Maximum Entrop

An Inference Rule for Probabilities

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Cost-oriented method

- Comparing the costs of the possible errors that can occur for each decision. (= costs for wrong decisions)
 - The error is quantified in the form of "(hypothetical) additional cost of the current decision compared to the optimum".
 - The given values contain the costs to the hospital, to the insurance company, the patient (for example risk of post-operative complications), and to other parties (for example absence from work), taking into account long term consequences.
 - Optimal decisions have (additional) costs 0.
- The entries are finally averaged for each decision, that is, summed while taking into account their frequencies.
- Finally, the decision with the smallest average cost of error is suggested.

Risk Management Using the Cost Matrix

					_
	Probability of various diagnoses				
	inflamed	perforated	negative	other	
Therapy	0.25	0.15	0.55	0.05	
Operation	0	500	5800	6000	3565
Emergency operation	500	0	6300	6500	3915
Ambulant observ.	12000	150000	0	16500	26325
Other	3000	5000	1300	0	2215
Stationary observ.	3500	7000	400	600	2175

Figure: The cost matrix of LEXMED together with a patient's computed diagnosis probabilities.

- Computed probabilities for the four possible diagnoses: (0.25, 0.15, 0.55, 0.05).
- The last column of the table contains the result of the calculations of the average expected costs of the errors.
 - E.g., the cost of the errors corresponds to Operation:

 $0.25 \cdot 0 + 0.15 \cdot 500 + 0.55 \cdot 5800 + 0.05 \cdot 6000 = 3565.$

Reasoning with Uncertainty

Hoàng Anh Đức

dditional Materi

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED

71 Risk Management Using

the Cost Matrix
Performance
Application Areas and

Application A Experiences

Risk Management Using the Cost Matrix

Cost matrix in the binary case

■ Diagnosis: *Appendicitis* and *NSAP* (a.k.a *non-specific* abdominal pain).

$$P(\textit{Appendicitis}) = p_1$$

 $P(\textit{NSAP}) = p_2$

- Therapies: operation, ambulant observ. (= send patient home).
- Cost matrix:

	Appendicitis	NSAP
operation	0	k_2
ambulant observ.	k_1	0

$$\begin{pmatrix} 0 & k_2 \\ k_1 & 0 \end{pmatrix}$$

- Correct decision: cost 0.
- False positive: cost k_2 = expected costs which occur when a patient without an inflamed appendix is operated on
- False negative: cost k_1 = expected costs which occur when deciding to send the patient home in the case of appendicitis

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Water VI Door IV

Cost matrix in the binary case

Average additional cost for the two possible treatments:

$$\begin{pmatrix} 0 & k_2 \\ k_1 & 0 \end{pmatrix} \cdot \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} k_2 p_2 \\ k_1 p_1 \end{pmatrix}$$

- Multiply the vector $(k_2p_2, k_1p_1)^T$ by any scalar, say $1/k_1$, does not affect the final decision (as we only care about which one is smaller).
 - \Rightarrow Only the relationship $k=k_2/k_1$ is relevant.
 - \Rightarrow Same result with the cost matrix $\begin{pmatrix} 0 & k \\ 1 & 0 \end{pmatrix}$.
- Risk management
 - lacksquare By changing k we can fit the "working point" of the diagnosis system.
 - $k \to \infty$: extremely risky setting, no patient will ever be operated on \Rightarrow the system gives no False positive but many False negatives.
 - = k = 0: all patients are operated.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

73 Risk Management Using the Cost Matrix

Application Areas and Experiences

122

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

The Principle of Maximum Entrop

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

> Application Areas and Experiences

Exercise 11 ([Ertel 2025], Exercise 7.9, p. 173)

A probabilistic algorithm calculates the likelihood p that an inbound email is spam. To classify the emails in classes *delete* and read, a cost matrix is then applied to the result.

- (a) Give a cost matrix (2×2 matrix) for the spam filter. Assume here that it costs the user 10 cents to delete an email, while the loss of an email costs 10 dollars. (Note: 1 dollar = 100 cents.)
- (b) Show that, for the case of a 2×2 matrix, the application of the cost matrix is equivalent to the application of a threshold on the spam probability and determine the threshold.

To simplify the representation and make for a better comparison to similar studies, LEXMED was restricted to the two-value distinction between appendicitis and NSAP, as described before.

For each k ($0 \le k < \infty$), the sensitivity and specificity are measured against the test data

> Sensitivity = P(classified positive | positive)|classified positive and positive| positive Specificity = P(classified negative | negative)|classified negative and negative| negative

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance

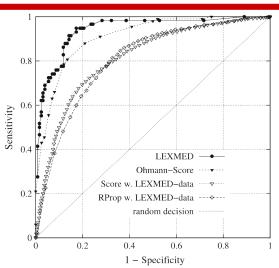


Figure: ROC curve from LEXMED compared with the Ohmann score and two additional models

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for Maximum Entropy Without

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix Performance

LEXMED Application Areas and Experiences

Uncertainty

An Inference Rule for

Versus Material Implication MaxEnt-Systems

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using

the Cost Matrix Application Areas and

Use in the diagnosis

- Quality assurance: comparing the diagnosis quality of hospitals with expert systems.
- Since 1999 in use in the 14-Nothelfer hospital in Weingarten
- Diagnosis quality is comparable to an experienced surgeon
- Commercial marketing very difficult
- Wrong time?
- Wish of patients for personal care!
- Since de Dombal 1972, 39 years passed. Will it take another 39 years to make computer diagnostics become an established medical tool?

Experiences

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities Conditional Probability

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic

Knowledge Base
Application of LEXMED

Application of LEXME Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

- \blacksquare d variables X_1, \ldots, X_d with n values each
- Probability distribution has $n^d 1$ values.
- In practice *the distribution contains many redundancies*.

 ⇒ It can be heavily reduced with the appropriate methods.
- Bayesian networks utilize knowledge about the independence of variables to simplify the model.

Reasoning with Bayesian Networks Independent Variables

■ Simplest case: all variables are pairwise independent

$$\mathbf{P}(X_1, X_2, \dots, X_d) = \mathbf{P}(X_1) \cdot \mathbf{P}(X_2) \cdot \dots \cdot \mathbf{P}(X_d)$$

Conditional probabilities become trivial:¹

$$P(A \mid B) = \frac{P(A,B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

■ The situation becomes more interesting when only a portion of the variables are independent or independent under certain conditions. For reasoning in AI, the dependencies between variables happen to be important and must be utilized.

Reasoning with Uncertainty Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Conditional Probability

e Principle of

An Inference Rule for Probabilities Maximum Entropy Without

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix
Performance
Application Areas and

¹In the naive Bayes method, the independence of all attributes is assumed, and this method has been successfully applied to text classification.

Independent Variables

Example 14 (Alarm-Example, [Pearl 1988]; [Russell and Norvig 2010])

- Bob: single, has an alarm system in his house.
- John and Mary: neighbors of Bob in the houses next door to the left and right, respectively.
- Bob asks John and Mary to call him at his office if they hear the alarm.
- Knowledge Base:
 - Variables: J = "John calls", M = "Mary calls", AI = "Alarm siren sounds", Bur = "Burglary", Ear = "Earthquake"
 - Calling behaviors of John and Mary

$$P(J \mid AI) = 0.90$$
 $P(M \mid AI) = 0.70$ $P(J \mid \neg AI) = 0.05$ $P(M \mid \neg AI) = 0.01$

■ The alarm is triggered by a burglary, but can also be triggered by a (weak) earthquake, which can lead to a false alarm.

$$P(AI \mid Bur, \neg Ear) = 0.95$$
 $P(AI \mid \neg Bur, \neg Ear) = 0.29$ $P(AI \mid Bur, \neg Ear) = 0.94$ $P(AI \mid \neg Bur, \neg Ear) = 0.001$

- A priori probabilities: P(Bur) = 0.001, P(Ear) = 0.002. (Bur and Ear are independent.)
- **Requests:** $P(Bur | J \vee M)$, P(J | Bur), P(M | Bur)

Reasoning with Uncertainty

Hoàng Anh Đức

riaditional mai

Introduction

Computing with Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Withou

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

.EXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Performance Application Areas and

Experiences

Graphical Representation of Knowledge as a Bayesian Network

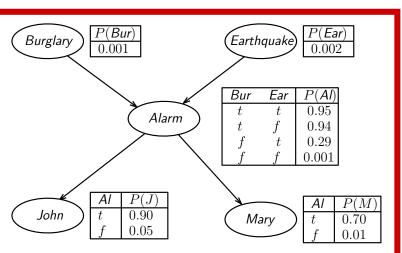


Figure: Bayesian network for the alarm example with the associated CPTs (conditional probability tables). The CPT of a node lists all the conditional probabilities of the node's variable conditioned on all the nodes connected by incoming edges.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

An Inference Rule for

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Application Areas and

Conditional Independence

Two variables A and B are called *conditionally independent*, given C if

$$\mathbf{P}(A, B \mid C) = \mathbf{P}(A \mid C) \cdot \mathbf{P}(B \mid C).$$

(This equation is *true for all combinations of values for all three variables* (that is, for the distribution).)

Remark

- independent ⇒ conditional independent.
- conditional independent ⇒ independent.
- A and B are independent events means knowing that A happened would not tell you anything about whether B happened (or vice versa).
- A and B are conditionally independent events, given C means that if you already knew that C happened, then knowing that A happened would not tell you further information about whether B happened.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mater

Introduction

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety exam

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Application of LEXMI Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Conditional Independence

Example 15 (independent *⇒* cond. independent)

There are two fair coins: tossing a coin result heads 50% of the time. Toss these two coins once.

Variable	Value	
E(Same result)	t, f	
$F(First\ coin)$	H(Head), T(Tail)	
S(Second coin $)$	H(Head), T(Tail)	

- $\mathbf{P}(F,S) = \mathbf{P}(F) \cdot \mathbf{P}(S)$
 - As we toss two coins at the same time, the result of the first coin does not affect the result of the second coin and vice versa.
- $\mathbf{P}(F, S \mid E) \neq \mathbf{P}(F \mid E) \cdot \mathbf{P}(S \mid E)$
 - When you know that, say E = t (i.e., the result of the two coins, by some magic power, must be the same), then knowing the result of the first coin tells you exactly the result of the second coin.

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix

Conditional Independence

Example 16 (cond. independent *⇒* independent)

There are two biased coins: tossing *coin1* results heads 99% of the time and tossing *coin2* results tails 99% of the time. Choose one coin at random and toss it twice.

Variable	Value
$C(extit{Coin})$	$c_1(coin1), c_2(coin2)$
F(First toss)	H(Head), T(Tail)
$S(Second\ toss)$	H(Head), T(Tail)

 $\mathbf{P}(F, S \mid C) = \mathbf{P}(F \mid C) \cdot \mathbf{P}(S \mid C)$

■ If you already know which coin is taken, then knowing the result of the first toss does not help predicting the result of the second toss.

- $\mathbf{P}(F,S) \neq \mathbf{P}(F) \cdot \mathbf{P}(S)$
 - If you do not know which coin is taken, then knowing the result of the first toss is useful. For example, if the result of the first toss is head, then it is a strong evidence that you take coin1, and thus the second toss is unlikely to result head.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix

Conditional Independence

Example 17 (Alarm-Example (cont.))

- John and Mary independently react to an alarm. $P(J, M \mid Al) = P(J \mid Al) \cdot P(M \mid Al)$.
- Thus, given an alarm, two variables *J* and *M* are independent.
- (Without any condition,) J and M are not independent, that is, $\mathbf{P}(J,M) \neq \mathbf{P}(J) \cdot \mathbf{P}(M)$. [Why?]
 - **Hint:** It suffices to show that the equation does not hold for one combination of values of J and M, say $P(J,M) \neq P(J) \cdot P(M)$. (More precisely, $P(J=t,M=t) \neq P(J=t) \cdot P(M=t)$.)
 - Calculate P(Al) using the given probabilities, marginalization, and independence of Bur and Ear. (Result: $P(Al) \approx 0.00252$.)
 - \blacksquare Then calculate P(J) and P(M) using conditional probabilities and the computed $P(\mathit{AI}).$
 - (Result: P(J) = 0.052 and P(M) = 0.0117.)
 - Similarly, calculate P(J,M) using conditional probabilities, conditional independence of J and M given Al. (Result: $P(J,M) \approx 0.002086$.)
 - Compare P(J, M) and $P(J) \cdot P(M)$.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

onditional Probability

The Principle of Maximum Entropy

An Inference Rule for

Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems The Tweety example

The Tweety examp

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Application of LEXM

Risk Management Using the Cost Matrix

Performance Application Areas and

Reasoning with Bayesian Networks Conditional Independence

Example 18 (Alarm-Example (cont.))

John react to an alarm, but does not react to a burglary. (This could be, for example, because of a high wall that blocks his view on Bob's property, but he can still hear the alarm.)

$$\mathbf{P}(J, \mathit{Bur} \mid \mathit{Al}) = \mathbf{P}(J \mid \mathit{Al}) \cdot \mathbf{P}(\mathit{Bur} \mid \mathit{Al}).$$

Given an alarm, the variables J and Ear, M and Bur, as well as M and Ear are also independent.

$$\mathbf{P}(J, \mathsf{Ear} \mid \mathsf{AI}) = \mathbf{P}(J \mid \mathsf{AI}) \cdot \mathbf{P}(\mathsf{Ear} \mid \mathsf{AI})$$

 $\mathbf{P}(M, \mathsf{Bur} \mid \mathsf{AI}) = \mathbf{P}(M \mid \mathsf{AI}) \cdot \mathbf{P}(\mathsf{Bur} \mid \mathsf{AI})$
 $\mathbf{P}(M, \mathsf{Ear} \mid \mathsf{AI}) = \mathbf{P}(M \mid \mathsf{AI}) \cdot \mathbf{P}(\mathsf{Ear} \mid \mathsf{AI})$

Reasoning with Uncertainty Hoàng Anh Đức

Additional Materi

Introduction

Computing with Probabilities

Conditional Probability

he Principle of Maximum Entropy

An Inference Rule for

obabilities aximum Entropy Withor

Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

Reasoning with Bayesian Networks Conditional Independence

A SAN OF THE SAN OF TH

Theorem 6

The following equations are pairwise equivalent, which means that each individual equation describes the conditional independence for the variables A and B given C.

$$\mathbf{P}(A, B \mid C) = \mathbf{P}(A \mid C) \cdot \mathbf{P}(B \mid C) \tag{1}$$

$$\mathbf{P}(A \mid B, C) = \mathbf{P}(A \mid C) \tag{2}$$

$$\mathbf{P}(B \mid A, C) = \mathbf{P}(B \mid C) \tag{3}$$

Proof.

We prove Eq. (1) \Leftrightarrow Eq. (2). Similarly for Eq. (1) and Eq. (3).

- (a) Chain rule: $\mathbf{P}(A, B, C) = \mathbf{P}(A \mid B, C)\mathbf{P}(B \mid C)\mathbf{P}(C)$.
- (b) Definition: $\mathbf{P}(A, B, C) = \mathbf{P}(A, B \mid C)\mathbf{P}(C)$.
- (c) Eq. (1) \Rightarrow Eq. (2): From Eq. (1) and (b), $\mathbf{P}(A,B,C) = \mathbf{P}(A\mid C)P(B\mid C)\mathbf{P}(C)$. Comparing with (a).
- (d) Eq. (2) \Rightarrow Eq. (1): From Eq. (2) and (a), $\mathbf{P}(A,B,C) = \mathbf{P}(A \mid C)P(B \mid C)\mathbf{P}(C)$. Comparing with (b).

Reasoning with Uncertainty

Hoàng Anh Đức

introduction

Computing with Probabilities

Conditional Probability

Maximum Entropy

An Inference Rule for

robabilities aximum Entropy Without

Explicit Constraints
Conditional Probability
Versus Material Implication

MaxEnt-Systems The Tweety example

LEVMED

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

olication Area periences

Reasoning with Bayesian Networks Practical Application

Reasoning with

Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Maximum Entropy Without

Versus Material Implication MaxEnt-Systems

Now we turn again to the *alarm example* and show *how the* Bayesian network can be used for reasoning.

$$P(J \mid \textit{Bur}) = \frac{P(J, \textit{Bur})}{P(\textit{Bur})} = \frac{P(J, \textit{Bur}, \textit{AI}) + P(J, \textit{Bur}, \neg \textit{AI})}{P(\textit{Bur})}$$

$$\mathbf{P}(J, Bur, Al) = \mathbf{P}(J \mid Bur, Al)\mathbf{P}(Al \mid Bur)\mathbf{P}(Bur)$$
$$= \mathbf{P}(J \mid Al)\mathbf{P}(Al \mid Bur)\mathbf{P}(Bur)$$

 $P(J \mid \textit{Bur}) = \frac{P(J \mid \textit{Al})P(\textit{Al} \mid \textit{Bur})P(\textit{Bur})}{P(\textit{Bur})}$

 $+ \frac{P(J \mid \neg \textit{Al})P(\neg \textit{Al} \mid \textit{Bur})P(\textit{Bur})}{P(\textit{Bur})}$

Chain rule J and Bur

are independent

given Al

The Tweety example

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

 $= P(J \mid Al)P(Al \mid Bur) + P(J \mid \neg Al)P(\neg Al \mid Bur)$

 $P(J, Bur, Al) = P(J \mid Bur, Al)P(Al \mid Bur)P(Bur)$

Practical Application

Reasoning with Uncertainty Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix Application Areas and

 $P(\textit{Al} \mid \textit{Bur}) = \frac{P(\textit{Al}, \textit{Bur})}{P(\textit{Bur})} = \frac{P(\textit{Al}, \textit{Bur}, \textit{Ear}) + P(\textit{Al}, \textit{Bur}, \neg \textit{Ear})}{P(\textit{Rur})}$ $_ \ \underline{\underline{P}(\textit{Al} \mid \textit{Bur}, \textit{Ear})} P(\textit{Bur}, \textit{Ear})$ P(Bur) $+ \frac{P(\textit{AI} \mid \textit{Bur}, \neg \textit{Ear})}{P(\textit{Bur}, \neg \textit{Ear})}$ P(Bur) $P(AI \mid Bur, Ear)P(Bur)P(Ear)$ P(Bur) $+ \frac{P(\textit{AI} \mid \textit{Bur}, \neg \textit{Ear}) P(\textit{Bur})}{P(\neg \textit{Ear})} P(\neg \textit{Ear})$ $= P(AI \mid Bur, Ear)P(Ear) + P(AI \mid Bur, \neg Ear)P(\neg Ear)$ $= 0.95 \cdot 0.002 + 0.94 \cdot 0.998 = 0.94$

Similarly, $P(\neg AI \mid Bur) = 0.06$.

Reasoning with Bayesian Networks Practical Application

Therefore,

$$\begin{split} P(J \mid \textit{Bur}) &= P(J \mid \textit{Al})P(\textit{Al} \mid \textit{Bur}) + P(J \mid \neg \textit{Al})P(\neg \textit{Al} \mid \textit{Bur}) \\ &= 0.9 \cdot 0.94 + 0.05 \cdot 0.06 = 0.849. \end{split}$$

Analogously, $P(M \mid \textit{Bur}) = 0.659$.

Similar to $P(J \mid \textit{Bur})$, we can calculate

$$\begin{split} P(J,M \mid \textit{Bur}) &= P(J,M \mid \textit{Al})P(\textit{Al} \mid \textit{Bur}) \\ &+ P(J,M \mid \neg \textit{Al})P(\neg \textit{Al} \mid \textit{Bur}) \\ &= P(J \mid \textit{Al})P(M \mid \textit{Al})P(\textit{Al} \mid \textit{Bur}) \\ &+ P(J \mid \neg \textit{Al})P(M \mid \neg \textit{Al})P(\neg \textit{Al} \mid \textit{Bur}) \\ &= 0.9 \cdot 0.7 \cdot 0.94 + 0.05 \cdot 0.01 \cdot 0.06 = 0.5922. \end{split}$$

John calls for about 85% of all break-ins and Mary for about 66% of all break-ins. Both of them call for about of 59% of all break-ins.

Reasoning with Uncertainty Hoàng Anh Đức

......

Introduction

Computing with Probabilities

Conditional Probability

he Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and Experiences

Reasoning with Bayesian Networks Practical Application

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication

MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

$$\begin{split} P(J \lor M \mid \textit{Bur}) &= P(\neg(\neg J \land \neg M) \mid \textit{Bur}) \\ &= 1 - P(\neg J, \neg M \mid \textit{Bur}) \\ P(\neg J, \neg M \mid \textit{Bur}) &= P(\neg J \mid \textit{Al})P(\neg M \mid \textit{Al})P(\textit{Al} \mid \textit{Bur}) \\ &+ P(\neg J \mid \neg \textit{Al})P(\neg M \mid \neg \textit{Al})P(\neg \textit{Al} \mid \textit{Bur}) \\ &= 0.1 \cdot 0.3 \cdot 0.94 + 0.95 \cdot 0.99 \cdot 0.06 = 0.085. \\ P(J \lor M \mid \textit{Bur}) &= 1 - P(\neg J, \neg M \mid \textit{Bur}) \\ &= 1 - 0.085 = 0.915. \end{split}$$

Bob thus receives a notification from either John or Mary for about 92% of all burglaries

Practical Application

$$P(\textit{Bur} \mid J) = \frac{P(J \mid \textit{Bur})P(\textit{Bur})}{P(J)} = \frac{0.849 \cdot 0.001}{0.052} = 0.016$$

$$P(\textit{Bur} \mid M) = \frac{P(M \mid \textit{Bur})P(\textit{Bur})}{P(M)} = \frac{0.659 \cdot 0.001}{0.0117} = 0.056$$

$$\begin{split} P(\textit{Bur} \mid J, M) &= \frac{P(J, M \mid \textit{Bur}) P(\textit{Bur})}{P(J, M)} \\ &= \frac{0.5922 \cdot 0.001}{0.002086} = 0.284. \end{split}$$

- If John calls, the probability of a burglary is 1.6%. If Mary calls, it is 5.6%, which is about five times higher than John.
 - \Rightarrow Significantly higher confidence given a call from Mary.
- Bob should only be seriously concerned about his home if both of them call, as the probability of a burglary in that case is 28.4%.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis wit

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix Performance

Application Areas and Experiences

Reasoning with Bayesian Networks Practical Application

Conditioning

$$P(A \mid B) = \sum_{c} P(A \mid B, C = c) P(C = c \mid B).$$

If furthermore ${\cal A}$ and ${\cal B}$ are conditionally independent given C, this formula simplifies to

$$P(A \mid B) = \sum_{c} P(A \mid C = c) P(C = c \mid B).$$

Reasoning with Uncertainty

Hoàng Anh Đức

Laborator and Co.

Computing with Probabilities

Conditional Probability

Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEVALED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

Experiences

Software for Bayesian Networks

PIT input for the alarm example.

```
var Alarm{t,f}, Burglary{t,f}, Earthquake{t,f}, John{t,f}, Mary{t,f};
     P([Earthquake=t]) = 0.002;
     P([Burglary=t]) = 0.001;
     P([Alarm=t] | [Burglary=t]
                                AND [Earthquake=t]) = 0.95;
     P([Alarm=t] |
                   [Burglary=t]
                                AND [Earthquake=f]) = 0.94:
                                AND [Earthquake=t]) = 0.29;
     P([Alarm=t] | [Burglary=f]
     P([Alarm=t] | [Burglary=f] AND [Earthquake=f]) = 0.001;
                  [Alarm=t]) = 0.90:
     P([John=t] |
     P([Mary=t]
                  [Alarm=t]) = 0.70:
12
     P([Marv=t]
                  [Alarm=f]) = 0.01:
14
     QP([Burglary=t] | [John=t] AND [Mary=t]);
```

Response:

```
P([Burglary=t] \mid [John=t] AND [Mary=t]) = 0.2841.
```

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix Performance

Application Areas and Experiences

Software for Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

4.4

- PIT is not a classical Bayesian network tool.
- PIT can take arbitrary conditional probabilities and queries as input and calculate correct results.
- On input of CPTs or equivalent rules, the MaxEnt principle implies the same conditional independences and thus also the same answers as a Bayesian network.
- Bayesian networks are thus a special case of MaxEnt.

Introduction

Computing with Probabilities

Conditional Probability

he Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitie Dingage :- ...itt

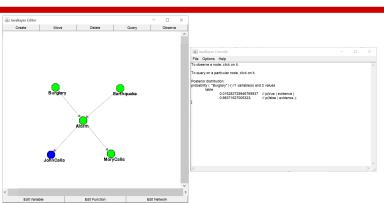
Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Software for Bayesian Networks



- A classic system is JavaBayes. Two windows: graphical editor + console
- With the graphical network editor, nodes and edges can be manipulated and the values in the CPTs edited.
- The values of variables can be assigned with "Observe" and the values of other variables called up with "Query". The answers to gueries then appear in the console

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for

Versus Material Implication

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using

the Cost Matrix

Software for Bayesian Networks

- More powerful is the professional tool Hugin.
- Continuous variables possible.
- Can also learn Bayesian networks, that is, generate the network fully automatically from statistical data.

Reasoning with Uncertainty

Hoàng Anh Đức

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

 \blacksquare For the variables v_1,\dots,v_n with $|v_1|,\dots,|v_n|$ different values each, the distribution has a total of

$$\prod_{i=1}^{n} |v_i| - 1$$

independent entries.

■ Alarm example: $2^5 - 1 = 31$ independent entries.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Conditional Probability

The Principle of Maximum Entropy

An Inference Rule for Probabilities

obabilities aximum Entropy Without oplicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

The Tweety exam

Appendicitis Diagnosis with

Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

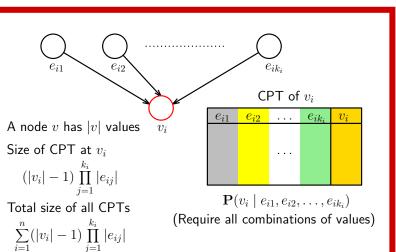
Function of LEXMED

Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

Development of Bayesian Networks



Alarm example: 2+2+4+1+1=10 entries which uniquely describe the network.

Reasoning with Uncertainty

Hoàng Anh Đức

toron a comme

Computing with Probabilities

Conditional Probability

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and

Development of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

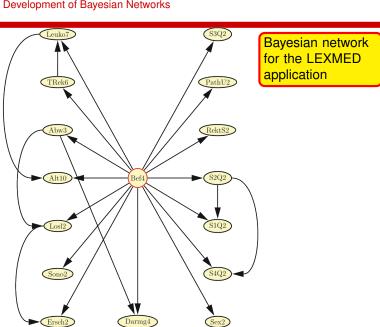
Risk Management Using the Cost Matrix

Application Areas and

Special case:

- n variables
- Equal number b of values
- Each node has k parent nodes
- All CPTs together have $n(b-1)b^k$ entries
- Complete distribution contains $b^n 1$ entries
- Local connection
- Network becomes modularized ⇒ reduction in complexity

Reasoning with Bayesian Networks Development of Bayesian Networks



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for Maximum Entropy Without

Versus Material Implication

MaxEnt-Systems The Tweety example

Hybrid Probabilistic Knowledge Base

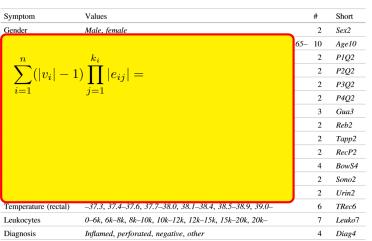
Application of LEXMED

Risk Management Using

the Cost Matrix Performance Application Areas and

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

ntroduction

Computing with Probabilities

nditional Probability

ne Principi Iaximum E

An Inference Rule for Probabilities

iximum Entropy Witho

Versus Material Implication MaxEnt-Systems The Tweety example

EVMED.

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

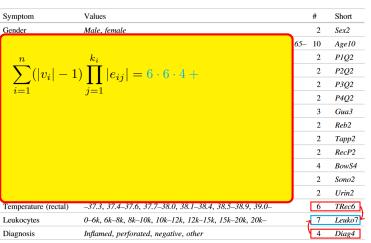
Knowledge Base
Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix Performance

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

Donational Probability

Maximum E

An Inference Rule for Probabilities Maximum Entropy Withou

aximum Entropy Withor xplicit Constraints anditional Probability

Versus Material Implication MaxEnt-Systems The Tweety example

LEVMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

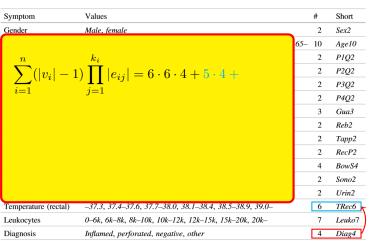
Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

obabilities

ne Principle

An Inference Rule for Probabilities Maximum Entropy Witho

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

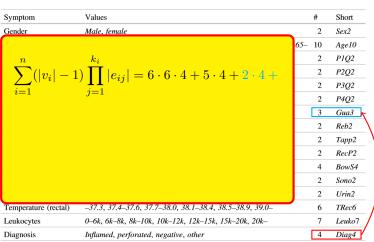
Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance Application Areas and

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

introduction

Computing with Probabilities

ho Principle of

Maximum E

An Inference Rule for Probabilities Maximum Entropy Withou

Explicit Constraints
Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweety example

rne rweety example

LEXMEL

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

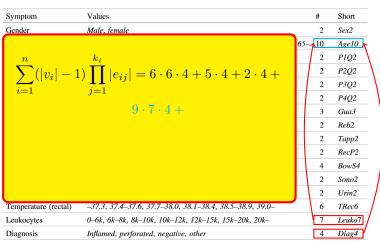
Function of LEXMED
Risk Management Using

the Cost Matrix Performance Application Areas and

plication Areas periences

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

robabilities

The Principle of

An Inference Rule for Probabilities

laximum Entropy Withou xplicit Constraints

Versus Material Implication MaxEnt-Systems The Tweety example

LEXMED

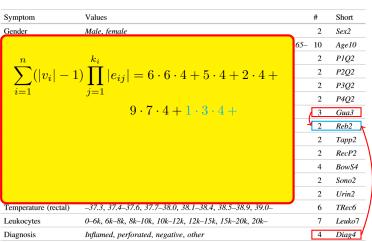
Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

landara di cantina di

niioduction

Computing with Probabilities

he Princip

An Inference Rule for Probabilities Maximum Entropy Withou

Explicit Constraints
Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweety example

The tweety example

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Knowledge Base Application of LEXMED

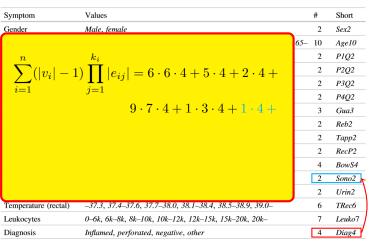
Function of LEXMED

Risk Management Using

the Cost Matrix
Performance

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

ntroduction

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities Maximum Entropy Witho

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

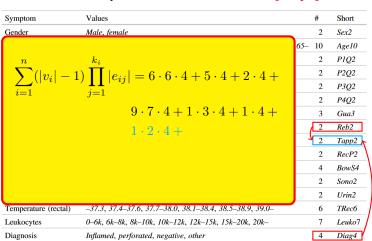
Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

plication Areas periences

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

obabilities onditional Probability

he Principl

An Inference Rule for Probabilities

Maximum Entropy Without Constraints

Versus Material Implication MaxEnt-Systems The Tweety example

ine iweety example

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

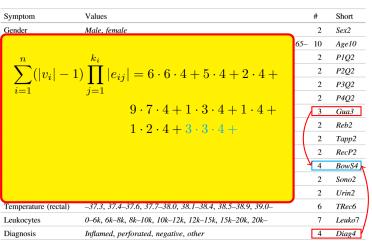
Knowledge Base
Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix Performance Application Areas and

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

obabilities

The Princip

An Inference Rule for Probabilities Maximum Entropy Witho

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

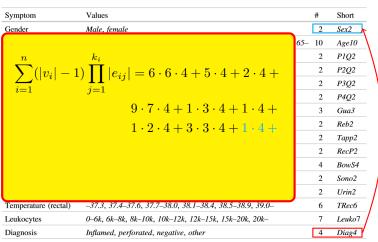
Knowledge Base Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix
Performance

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

obabilities onditional Probability

he Principl

An Inference Rule for Probabilities Maximum Entropy Withou Explicit Constraints

Conditional Probability
Versus Material Implication
MaxEnt-Systems

The Tweety example

LEXMED

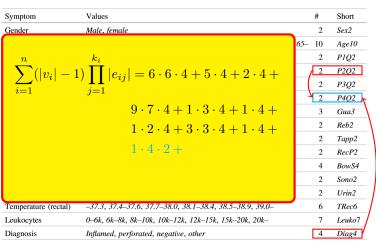
Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED Function of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

landari di castala

illoduction

Computing with Probabilities

The Princip

An Inference Rule for Probabilities

laximum Entropy Withou xplicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

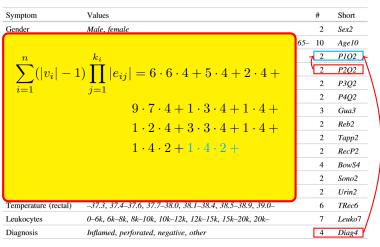
Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance Application Areas and

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

nitoduction

Computing with Probabilities

he Principle of

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems
The Tweety example

me rweety examp

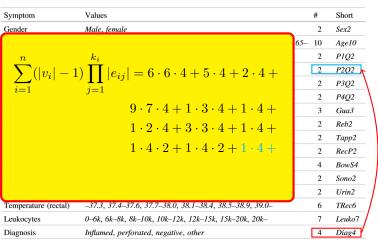
Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

obabilities

onditional Probability

i ne Princip Maximum E

An Inference Rule for Probabilities Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

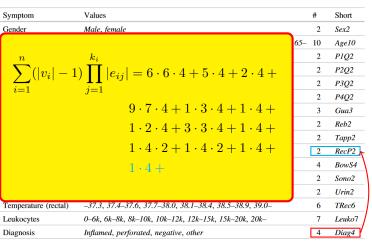
Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with

obabilities

ie Principle o eximum Entr

An Inference Rule for Probabilities Maximum Entropy Withou

Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweetv example

тпе тweety ехаптріє

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

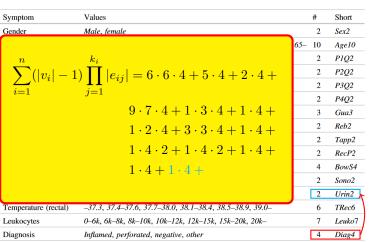
Knowledge Base
Application of LEXMED

Function of LEXMI

Risk Management Using the Cost Matrix Performance

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

babilities

ne Principle of

aximum Entrop

An Inference Rule for Probabilities Maximum Entropy Withou

Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweety example

EVMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

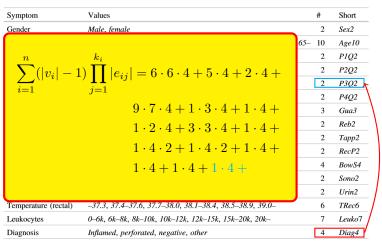
Knowledge Base
Application of LEXMED

Function of LEXMED

Risk Management Using the Cost Matrix

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

. . . .

miroductioff

Computing with Probabilities

he Principle of

Maximum Entropy An Inference Rule for

Probabilities Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

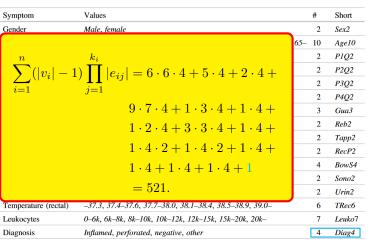
Knowledge Base
Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance Application Areas and Experiences

Development of Bayesian Networks

- Size of the distribution: 20 643 839 values.
- Size of the Bayesian network: 521 values. [Why?]



Reasoning with Uncertainty

Hoàng Anh Đức

Constitution of the Consti

Computing with

babilities

ne Principle of

/laximum E

An Inference Rule for Probabilities Maximum Entropy Without

Explicit Constraints
Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweety example

LEVALED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Knowledge Base Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix Performance Application Areas and

Development of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

Conditional Probabili

Maximum Entrop

An Inference Rule for

Probabilities

Maximum Entropy Witho

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety exampl

LEXMED

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance

Application Areas and Experiences

Construction of a Bayesian network

- Design of the network structure (usually performed manually)
- (2) Entering the probabilities in the CPTs (usually automated)

Construction of the network in the alarm example.

■ Causes: burglary and earthquake

■ Symptoms: John and Mary

■ Alarm: hidden variable

- Because John and Mary do not directly react to a burglar or earthquake, rather only to the alarm, it is appropriate to add this as an additional variable which is not observable by Bob.
- Considering causality: going from cause to effect

Reasoning with Bayesian Networks Development of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Maximum Entropy Without

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using

the Cost Matrix

Application Areas and

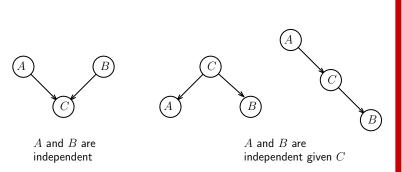


Figure: There is no edge between A and B if they are independent (left) or conditionally independent (middle, right).

Development of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức Additional Materials

Computing with

An Inference Rule for

Maximum Entropy Without

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic

Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Earthquake Cause Burglary Alarm Hidden **Effect** John Mary

Figure: Stepwise construction of the alarm network considering causality

Development of Bayesian Networks

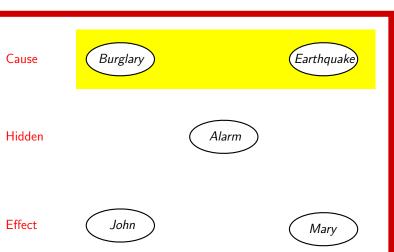


Figure: Stepwise construction of the alarm network considering causality

Reasoning with Uncertainty

Hoàng Anh Đức Additional Materials

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Development of Bayesian Networks

Effect

Additional Materials

ntroduction

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Mary

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and

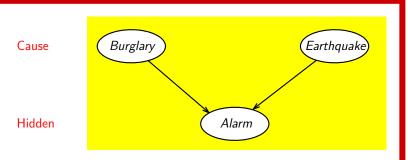


Figure: Stepwise construction of the alarm network considering causality

John

Reasoning with Bayesian Networks Development of Bayesian Networks

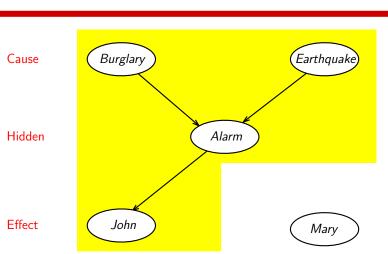


Figure: Stepwise construction of the alarm network considering causality

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Maximum Entropy Without

Versus Material Implication MaxEnt-Systems The Tweety example

Hybrid Probabilistic Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Reasoning with Bayesian Networks Development of Bayesian Networks



Figure: Stepwise construction of the alarm network considering causality

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for Maximum Entropy Without

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Development of Bayesian Networks

- If the order of variables is chosen to reflect the causal relationship beginning with the causes and proceeding to the diagnosis variables, then the result will be a simple network.
- Otherwise the network may contain significantly more edges. Such non-causal networks are often very difficult to understand and have a higher complexity for reasoning.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

Conditional Probability

Maximum Entropy

An Inference Rule for

Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance Application Areas and

Experiences

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

The Principle of Maximum Entrop

An Inference Rule for

aximum Entropy Withou

Explicit Constraints

Conditional Probability

Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base Application of LEXMED

Application of LEXME Function of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Requirements

- Bayesian network has *no cycles*.
- The variables are numbered such that no variable has a lower index than any variable that predecessor.

It holds

$$\mathbf{P}(X_n \mid X_1, \dots, X_{n-1}) = \mathbf{P}(X_n \mid \textit{Parent}(X_n))$$

 \Leftrightarrow An arbitrary variable X_i in a Bayesian network is conditionally independent of its ancestors, given its parents.

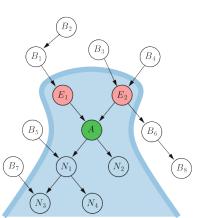
Semantics of Bayesian Networks

More generally,

Theorem 7

A node in a Bayesian network is conditionally independent from all non-successor nodes, given its parents.

Example of conditional independence in a Bayesian network. If the parent nodes E_1 and E_2 are given, then all non-successor nodes B_1, \ldots, B_8 are independent of A.



Reasoning with Uncertainty

Hoàng Anh Đức

Constitution of the Consti

Computing with

ropapilities

The Principle

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using the Cost Matrix

Performance Application Areas and

rperiences

Semantics of Bayesian Networks

Chain rule for Bayesian network

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid X_1, \dots, X_{i-1})$$
$$= \prod_{i=1}^n \mathbf{P}(X_i \mid \textit{Parent}(X_i))$$

Using this rule in the alarm example,

$$\mathbf{P}(J, \textit{Bur}, \textit{Al}) = \mathbf{P}(J \mid \textit{Al})\mathbf{P}(\textit{Al} \mid \textit{Bur})\mathbf{P}(\textit{Bur})$$

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

Hybrid Probabilistic Knowledge Base Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis wit Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix Performance Application Areas and

Application Experience

Basics of Bayesian Networks

- A *Bayesian network* is defined by:
 - A set of variables and a set of directed edges between these variables.
 - Each variable has finitely many possible values.
 - The variables together with the edges form a directed acyclic graph (DAG). A DAG is a graph without cycles, that is, without paths of the form (A, ..., A).
 - For every variable A the CPT (that is, the table of conditional probabilities $P(A \mid \textit{Parents}(A)))$ is given.
- Two variables A and B are called *conditionally independent* given C if $\mathbf{P}(A, B \mid C) = \mathbf{P}(A \mid C)\mathbf{P}(B \mid C)$ or, equivalently, if $\mathbf{P}(A \mid B, C) = \mathbf{P}(A \mid C)$.

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Material

Introduction

Computing with Probabilities

Conditional Probabilit

The Principle of Maximum Entropy

An Inference Rule for Probabilities

iximum Entropy Without plicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEVMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Basics of Bayesian Networks (cont.)

Besides the foundational rules of computation for probabilities, the following rules are also true:

Bayes' Theorem
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$
.

Marginalization
$$P(B) = P(A, B) + P(\neg A, B) = P(B \mid A)P(A) + P(B \mid \neg A)P(\neg A).$$

Conditioning
$$P(A \mid B) = \sum_{c} P(A \mid B, C = c)P(C = c \mid B)$$

B).

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with Probabilities

he Principle of Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

Appendicitie Diagnosis

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and Experiences

Basics of Bayesian Networks (cont.)

- A variable in a Bayesian network is conditionally independent of all non-successor variables given its parent variables. If X_1, \ldots, X_{n-1} are no successors of X_n , we have $P(X_n \mid X_1, \ldots, X_{n-1}) = P(X_n \mid \textit{Parents}(X_n))$. This condition must be honored during the construction of a network.
- During construction of a Bayesian network the variables should be ordered according to causality. First the causes, then the hidden variables, and the diagnosis variables last.
- Chain rule: $P(X_1, ..., X_n) = \prod_{i=1} P(X_i \mid \textit{Parent}(X_i)).$

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Exercise 12 ([Ertel 2025], Exercise 7.10, p. 173)

Given a Bayesian network with the three binary variables A, B, C and P(A) = 0.2, P(B) = 0.9, as well as the CPT shown below:

(a) Compute $P(A \mid B)$.

0.10.2(b) Compute $P(C \mid A)$. 0.90.4

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Materia

Introduction

Computing with Probabilities

Conditional Probabilit

Maximum Entropy An Inference Rule for

Probabilities

Maximum Entropy Witho

Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweety example

The Tweety examp

LEVMED

Appendicitis Diagnosis wit Formal Methods

Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

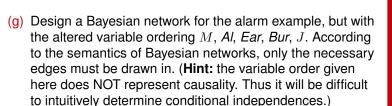
Performance Application Areas and

Exercise 13 ([Ertel 2025], Exercise 7.11, p. 173)

For the alarm example (Example 14), calculate the following conditional probabilities:

- (a) Calculate the a priori probabilities P(AI), P(J), P(M).
- (b) Calculate $P(M \mid \textit{Bur})$ using the product rule, marginalization, the chain rule, and conditional independence.
- (c) Use Bayes' formula to calculate $P(Bur \mid M)$.
- (d) Compute $P(AI \mid J, M)$ and $P(Bur \mid J, M)$.
- (e) Show that the variables J and M are not independent.
- (f) Check all of your results with JavaBayes and with PIT.

Semantics of Bayesian Networks



- (h) In the original Bayesian network of the alarm example, the earthquake nodes is removed. Which CPTs does this change? (Why these in particular?)
 - (i) Calculate the CPT of the alarm node in the new network.

Reasoning with Uncertainty

Hoàng Anh Đức

Introduction

Computing with Probabilities

The Principle

An Inference Rule for Probabilities Maximum Entropy Without Evaligit Constraints

Explicit Constraints

Conditional Probability

Versus Material Implication

MaxEnt-Systems

The Tweety example

Appendicitie Diagnosis w

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using

the Cost Matrix Performance

Semantics of Bayesian Networks

Reasoning with Uncertainty

Hoàng Anh Đức

Haditional Ivia

Introduction

Computing with Probabilities

Conditional Probability

Maximum Entropy

An Inference Rule for Probabilities

Maximum Entropy Witho Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

The Tweety example

LEXMED

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Application of LEXM

Function of LE

Risk Management Using the Cost Matrix

Application Areas and Experiences

Exercise 14 ([Ertel 2025], Exercise 7.12, p. 173)

A diagnostic system is to be made for a dynamo-powered bicycle light using a Bayesian network. The variables in the following table are given.

Abbr.	Meaning	Value
Li	Light is on	t/f
Str	Street condition	dry, wet, snow_covered
Flw	Dynamo flywheel worn out	t/f
R	Dynamo sliding	t/f
V	Dynamo shows voltage	t/f
B	Light bulb o.k.	t/f
K	Cable o.k.	t/f

The following variables are pairwise independent: Str, Flw, B, K. Furthermore: (R,B), (R,K), (V,B), (V,K) are independent and the following equation holds:

Semantics of Bayesian Networks

$$P(Li \mid V, R) = P(Li \mid V)$$

$$P(V \mid R, Str) = P(V \mid R)$$

$$P(V \mid R, Flw) = P(V \mid R)$$

- (a) Draw all of the edges into the graph (taking causality into account).
- (b) Enter all missing CPTs into the graph (table of conditional probabilities). Freely insert plausible values for the probabilities.
- (c) Show that the network does not contain an edge (*Str*, *Li*).
- (d) Compute $P(V \mid Str = snow_covered)$.

V	B	K	P(Li)
t	t	t	0.99
t	t	f	0.01
t	f	t	0.01
t	f	f	0.001
f	\dot{t}	\dot{t}	0.3
f	t	f	0.005
f	f	\dot{t}	0.005
f	f	f	0

Reasoning with Uncertainty

Hoàng Anh Đức

takan di sakan

Computing with Probabilities

The Principle of

An Inference Rule for Probabilities

Maximum Entropy Without Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis with Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Function of LEX

Risk Management Using the Cost Matrix Performance

- STATE OF THE PARTY OF THE PARTY
- Reasoning with Uncertainty

Hoàng Anh Đức

Additional Mate

Introduction

Computing with Probabilities

The Bringinle of

Maximum Entrop

An Inference Rule for Probabilities

Maximum Entropy Withor Explicit Constraints

Conditional Probability Versus Material Implication MaxEnt-Systems

The Tweety example

THE TWOOLY CA

Appendicitis Diagnosis with

Formal Methods Hybrid Probabilistic

Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Performance Application Areas and

- Probabilistic logic for reasoning under uncertain knowledge.
- Method of maximum entropy models non-monotonic reasoning.
- Bayesian networks as special case of MaxEnt.
- Bayesian networks rely on independence assumptions.
- In a Bayesian network, all CPTs must be filled completely.
- With MaxEnt, arbitrary knowledge can be formulated.
 - E.g.: "I am pretty sure that A is true.": $P(A) \in [0.6, 1]$.
 - The freedom that the developer has when modeling with MaxEnt can be a disadvantage (especially for a beginner) because, in contrast to the Bayesian approach, it is not necessarily clear what knowledge should be modeled.

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Ma

Introduction

Computing with Probabilities

Conditional Probabi

he Principle of Maximum Entropy

An Inference Rule for Probabilities

laximum Entropy Wit xplicit Constraints

Conditional Probability Versus Material Implication

MaxEnt-Systems
The Tweetv example

The Tweety examp

EXMED

Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED Risk Management Using

the Cost Matrix Performance

- Combining MaxEnt and Bayesian networks
 - Building a network according to the Bayesian methodology, enter all the edges accordingly and then fill the CPTs with values.
 - If certain values for the CPTs are unavailable, then they can be replaced with intervals or by other probabilistic logic formulas
 - Such a network no longer has the special semantics of a Bayesian network. It must be processed and completed by a MaxEnt system.
- Arbitrary rule sets may be inconsistent: P(A) = 0.7 and P(A) = 0.8.
- PIT recognizes inconsistency.
- In some cases reasoning is possible anyway.

Uncertainty

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Reasoning with Hoàng Anh Đức

Medial expert system LEXMED

- can be modeled and implemented using MaxEnt and Bayesian networks
- can replace the well-established, but too weak linear scoring systems used in medicine
- Better than linear score systems.
- Scores are equivalent to the special case Naive-Bayes, that is, to the assumption that all symptoms are conditionally independent given the diagnosis.
- In the LEXMED example we showed that it is possible to build an expert system for reasoning under uncertainty that is capable of discovering (learning) knowledge from the data in a database

Reasoning with Uncertainty

Hoàng Anh Đức

Additional Material

Computing with

Conditional Probability

The Principle of

An Inference Rule for

Maximum Entropy Wi

Explicit Constraints

Versus Material Implication
MaxEnt-Systems

The Tweety example

LEXME

Appendicitis Diagnosis with Formal Methods

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Function of LEXMED
Risk Management Using

the Cost Matrix Performance

- Nowadays, bayesian inference is very important and well-developed
- We have completely left out the handling of continuous variables.
- For the case of normally distributed random variables there are procedures and systems.
- For arbitrary distributions, however, the computational complexity is a big problem.
- In addition to the directed networks that are heavily based on causality, there are also undirected networks.

References

Reasoning with Uncertainty

Hoàng Anh Đức

Computing with

An Inference Rule for

Versus Material Implication MaxEnt-Systems

The Tweety example

Hybrid Probabilistic Knowledge Base

Application of LEXMED

Risk Management Using the Cost Matrix

Application Areas and

Ertel, Wolfgang (2025). Introduction to Artificial Intelligence. 3rd. Springer. DOI: 10.1007/978-3-658-43102-0.

Russell, Stuart J. and Peter Norvig (2010). Artificial Intelligence: A Modern Approach. 3rd. Pearson.

Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier. DOI: 10.1016/C2009-0-27609-4.

Shortliffe, Edward (1976). Computer-based medical consultations: MYCIN Flsevier