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Main questions:

• Reachability: Is there a path between two given solutions? Can we
transform S into T via a sequence of feasible solutions.

Such a sequence, if exists, is called a reconfiguration sequence.

• Shortest Path: If Reachability is yes, can we find a shortest path
between S and T?



Reconfiguration rules: Tells us rules we need to follow to go from one feasible
solution to another.



Reconfiguration rules: Tells us rules we need to follow to go from one feasible
solution to another.

A few well known Reconfiguration rules: Token Sliding (TS), Token Jumping
(TJ) and Token Addition/ Removal (TAR).

Tokens refer to the solution set.



Reconfiguration rules of Token Sliding (TS), Token Jumping (TJ) and Token
Addition/ Removal (TAR).

• Token Sliding (TS): one can move a token to one of its unoccupied
neighbors as long as the resulting token-set forms a feasible solution.

• Token Jumping (TJ): one can move a token to any unoccupied vertex as
long as the resulting token-set forms a feasible solution.

• Token Addition/Removal (TAR(k)): one can either add or remove a
token as long as the resulting token-set forms a feasible solution of size at
most some threshold k ≥ 0.
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Distance-r dominating set (DrDS) of G is a vertex subset D
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For r = 1, this is the classical Dominating Set problem.



Distance-r Dominating Set Reconfiguration DrDSR

DrDSR: We solve Reachability of DrDS in the reconfiguration
graph.
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Previous Results :

• Haddadan et al.[TCS2016] first studied the computational
complexity of Dominating Set Reconfiguration
(DSR) under TAR and showed that the problem is
PSPACE-complete on planar graphs of maximum degree
six, bounded bandwidth graphs, split graphs and bipartite
graphs.

• Haddadan et al.[TCS2016] designed polynomial-time
algorithms for solving DSR under TAR on cographs,
forests, and interval graphs. Bonamy et al.[DAM2021]
showed the above mentioned results also hold under TJ .

• Further results on DSR was also shown in Bousquet and
Joffard[FCT2021] and Křǐst’an and Svoboda[FCT2023].
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DrDSR

For r = 1, this is the classical Dominating Set problem.

Previous Results (Parameterized variant):
There are two natural parameterizations: the number of tokens
k and the length of a reconfiguration sequence `.

• Mouawad et al.[ALG2017] showed that DSR under TAR
on general graphs is W[1]-hard parameterized by k and
W[2]-hard parameterized by k + `.

• When parameterized by k on graphs excluding Kd,d as a
subgraph, Lokshtanov et al.[JCSS2018] designed an FPT

algorithm for solving the problem.

• When parameterized by ` alone, it was mentioned in
Bousquet and Joffard[FCT2021] that the problem is
fixed-parameter tractable on any class where first-order
model-checking is fixed-parameter tractable.



DrDSR

Our Results:
We prove hardness results of DrDSR in different graph classes
for r ≥ 2 under reconfiguration rule of Token Sliding (TS) and
Token Jumping (TJ).
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Our Results: We prove hardness results of DrDSR, r ≥ 2 in
different graph classes under TS and TJ .

We show, DrDSR is PSPACE-Complete in,

• Bipartite Graphs

• Planar graphs

• Chordal Graphs
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DrDSR

Our Results:
In other graph classes we show DrDSR, r ≥ 2 is solvable in
polynomial time.

• DrDSR can be solved in polynomial time on split graphs
under both TS and TJ .

• DrDSR can be solved in polynomial time on trees under
TJ .

• DrDSR can be solved in polynomial time on interval
graphs under TJ and co-graphs under both TS and TJ .
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Theorem

We show that DrDSR, r ≥ 2 in Bipartite Graphs under TS and TJ is
PSPACE−complete.

• Polynomial-time reduction from Minimum Vertex Cover
Reconfiguration (M − V CR) on general graphs, which was showed to
be PSPACE-complete by Ito et al.[TCS2011].

Proof Sketch:
Let (G,Cs, Ct) be an instance of M-VCR where Cs, Ct are two minimum VCs
of a graph G.

We will construct an instance (G′, Ds, Dt) of DrDSR where Ds and Dt are two
DrDSs of a bipartite graph G′.



Theorem

We show that DrDSR, r ≥ 2 in Bipartite Graphs under TS and TJ is
PSPACE−complete.
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Figure: Lower Bound on Bipartite Graphs

Suppose that V (G) = {v1, . . . , vn}. We construct G′ from G as follows.

(a) Replace each edge vivj by a path Pij = x0ijx
1
ij . . . x

2r
ij of length 2r

(1 ≤ i, j ≤ n) with x0ij = vi and x2rij = vj .
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Suppose that V (G) = {v1, . . . , vn}. We construct G′ from G as follows.

(a) Replace each edge vivj by a path Pij = x0ijx
1
ij . . . x

2r
ij of length 2r

(1 ≤ i, j ≤ n) with x0ij = vi and x2rij = vj .

(b) Add a new vertex x and join it to every vertex in V (G).
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We show that DrDSR, r ≥ 2 in Bipartite Graphs under TS and TJ is
PSPACE−complete.
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Suppose that V (G) = {v1, . . . , vn}. We construct G′ from G as follows.

(a) Replace each edge vivj by a path Pij = x0ijx
1
ij . . . x

2r
ij of length 2r

(1 ≤ i, j ≤ n) with x0ij = vi and x2rij = vj .

(b) Add a new vertex x and join it to every vertex in V (G).

(c) Attach a new path Px of length r to x.

We define Ds = Cs + x and Dt = Ct + x.



Theorem

We show that DrDSR, r ≥ 2 in Bipartite Graphs under TS and TJ is
PSPACE−complete.
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Lemma

G′ is a bipartite graph.
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Lemma

G′ is a bipartite graph.

Lemma

Any set of the form C + x, where C is a minimum VC of G, is a minimum
DrDS of G′.
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Lemma

G′ is a bipartite graph.

Lemma

Any set of the form C + x, where C is a minimum VC of G, is a minimum
DrDS of G′.

Lemma

(G,Cs, Ct) is a yes-instance if and only if (G′, Ds, Dt) is a yes-instance.
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Proof Sketch:
Let the tree be T .

• Based on the minimum DrDS, D? obtained from the implementation of
Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition P(T ) of
T consisting of vertex-disjoint subtrees.

• To find P(T ): Let T be rooted at u. In each iteration, it finds a subtree Tv

of height exactly r, adds v to D?, and removes all the leaves of Tu that are
in N r
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Figure: A tree Tu rooted at u = 1. For r = 2, Algorithm returns D? = {7, 5, 1}. A
partition P(Tu) = {C7, C5, C1} of Tu is also constructed.
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We show that DrDSR under TJ on trees runs in polynomial time for any r ≥ 2.

Proof Sketch:
Let the tree be T .

• Let P(T ) = {C1, C2, .., CD∗},

Lemma

Let D be any DrDS of Tu. Then, D ∩ Cv 6= ∅ holds for every v ∈ D?.

Lemma

Let D be an arbitrary DrDS of Tu. Let D′ be any DrDS of Tu that contains
D?, i.e., D? ⊆ D′. Then, in O(n) time, one can construct a TJ-sequence S in
Tu between D and D′.

• The key idea is one can transform both Ds and Dt into some DrDS D that
contains D?. For instance, to transform Ds into D, for each subtree
Cx ∈ P(T ) for x ∈ D?, we move any token in Ds ∩ V (Cx) to x.



DrDSR

Open Questions:

• What is the complexity of DrDSR, r ≥ 2 under TS on
trees?

• What is the complexity of DrDSR, r ≥ 2 under TS on
interval graphs?



Thank You!


