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Main questions:

2

reconfiguration graph

® REACHABILITY: Is there a path between two given solutions? Can we

transform S into 7" via a sequence of feasible solutions.

Such a sequence, if exists, is called a reconfiguration sequence.

® SHORTEST PATH: If REACHABILITY is yes, can we find a shortest path

between S and T7?
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solution to another.



Reconfiguration rules: Tells us rules we need to follow to go from one feasible
solution to another.

A few well known Reconfiguration rules: Token Sliding (7'S), Token Jumping
(T'J) and Token Addition/ Removal (T'AR).

Tokens refer to the solution set.



Reconfiguration rules of Token Sliding (7'S), Token Jumping (7'.J) and Token
Addition/ Removal (T'AR).
¢ Token Sliding (7'S): one can move a token to one of its unoccupied
neighbors as long as the resulting token-set forms a feasible solution.
® Token Jumping (7'J): one can move a token to any unoccupied vertex as
long as the resulting token-set forms a feasible solution.
* Token Addition/Removal (T'AR(k)): one can either add or remove a
token as long as the resulting token-set forms a feasible solution of size at
most some threshold k& > 0.
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Computation problem we consider: Distance-r Dominating Set

Definition:

Distance-r dominating set (DrDS) of G is a vertex subset D
where each vertex of (& is within distance r from some
member of D.

For r = 1, this is the classical Dominating Set problem.



Distance-r Dominating Set Reconfiguration DrDSR

DrDSR: We solve Reachability of DrDS in the reconfiguration
graph.
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Previous Results :

e Haddadan et al.[TCS2016] first studied the computational
complexity of DOMINATING SET RECONFIGURATION
(DSR)) under TAR and showed that the problem is
PSPAC E-complete on planar graphs of maximum degree
six, bounded bandwidth graphs, split graphs and bipartite
graphs.

® Haddadan et al.[TCS2016] designed polynomial-time
algorithms for solving DSR under T AR on cographs,
forests, and interval graphs. Bonamy et al.[DAM2021]
showed the above mentioned results also hold under T'J.

e Further results on DS R was also shown in Bousquet and
Joffard[FCT2021] and K¥ist'an and Svoboda[FCT2023].
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DrDSR
For r = 1, this is the classical Dominating Set problem.

Previous Results (Parameterized variant):
There are two natural parameterizations: the number of tokens
k and the length of a reconfiguration sequence /.

® Mouawad et al.[ALG2017] showed that DSR under TAR

on general graphs is W[1]-hard parameterized by k& and
W[2]-hard parameterized by k + /.

® When parameterized by k on graphs excluding K, 4 as a
subgraph, Lokshtanov et al.[JCSS2018] designed an FPT
algorithm for solving the problem.

e When parameterized by ¢ alone, it was mentioned in
Bousquet and Joffard[FCT2021] that the problem is
fixed-parameter tractable on any class where first-order
model-checking is fixed-parameter tractable.



DrDSR

Our Results:
We prove hardness results of DrDSR in different graph classes

for r > 2 under reconfiguration rule of Token Sliding (7'S) and
Token Jumping (T'J).
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DrDSR

Our Results: We prove hardness results of DrDSR, r > 2 in
different graph classes under 7'S and 7'J.

We show, DrDSR is PSPAC E-Complete in,
e Bipartite Graphs

® Planar graphs
e Chordal Graphs
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DrDSR

Our Results:
In other graph classes we show DrDSR, r > 2 is solvable in
polynomial time.

e DrDSR can be solved in polynomial time on split graphs
under both 7'S and 7T'.J.

® DrDSR can be solved in polynomial time on trees under
TJ.

® DrDSR can be solved in polynomial time on interval
graphs under 7'.J and co-graphs under both 7'S and T'.J.
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and T'J is PSPACE—complete.
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Theorem

We show that DrDSR, r > 2 in Bipartite Graphs under T'S and T'J is
PSPACE—complete.

® Polynomial-time reduction from MINIMUM VERTEX COVER
RECONFIGURATION (M — VCR) on general graphs, which was showed to
be PSPACE-complete by Ito et al.[TCS2011].

Proof Sketch:
Let (G, Cs, Ct) be an instance of M-VCR where C;, C; are two minimum VCs
of a graph G.

We will construct an instance (G’, Ds, D;) of DrDSR where Dy and D; are two
DrDSs of a bipartite graph G’.



Theorem

We show that DrDSR, r > 2 in Bipartite Graphs under T'S and T'J is
PSPACE—complete.

Figure: Lower Bound on Bipartite Graphs

Suppose that V(G) = {v1,...,v,}. We construct G’ from G as follows.

® Replace each edge v;v; by a path P;; = x?jxilj .. .:c?jr of length 2r

(1 <i,j <n)with 2f; = v; and 7] = v;.
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Figure: Lower Bound on Bipartite Graphs

Suppose that V(G) = {v1,...,v,}. We construct G’ from G as follows.

® Replace each edge v;v; by a path P;j = a0z, ... 7] of length 2r

(1 <i,j <n)with a:gj = v; and x?f = vj.

O Add a new vertex z and join it to every vertex in V(G).



Theorem

We show that DrDSR, r > 2 in Bipartite Graphs under T'S and T'J is
PSPACE—complete.

Figure: Lower Bound on Bipartite Graphs

Suppose that V(G) = {v1,...,v,}. We construct G’ from G as follows.
® Replace each edge v;v; by a path P;; = x?ja:ilj .. .:c?]’-” of length 2r
(1 <i,j <n) with x% = v; and x%; = vj.
® Add a new vertex x and join it to every vertex in V(G).
® Attach a new path P, of length r to z.
We define Dy = Cs 4+ x and D; = C} + x.
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G’ is a bipartite graph.

Lemma

Any set of the form C + x, where C' is a minimum VC of G, is a minimum
DrDS of G'.



Theorem

We show that DrDSR, r > 2 in Bipartite Graphs under T'S and T'.J is
PSPACE—complete.

Figure: Lower Bound on Bipartite Graphs

Lemma

G’ is a bipartite graph.

Lemma

Any set of the form C + x, where C is a minimum VC of G, is a minimum
DrDS of G'.

Lemma

(G,Cs, Cy) is a yes-instance if and only if (G', Ds, Dy) is a yes-instance.
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Let the tree be T

® Based on the minimum DrDS, D* obtained from the implementation of
Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition P(7") of
T consisting of vertex-disjoint subtrees.
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Proof Sketch:
Let the tree be T.
® Based on the minimum DrDS, D* obtained from the implementation of
Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition P(7") of
T consisting of vertex-disjoint subtrees.
® To find P(T): Let T be rooted at u. In each iteration, it finds a subtree T,
of height exactly r, adds v to D*, and removes all the leaves of T, that are
in N, [v].



Theorem
We show that DrDSR under T'J on trees runs in polynomial time for any r > 2.
Proof Sketch:
Let the tree be T
® Based on the minimum DrDS, D* obtained from the implementation of
Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition P(T") of
T consisting of vertex-disjoint subtrees.
® To find P(T): Let T be rooted at u. In each iteration, it finds a subtree T,
of height exactly r, adds v to D*, and removes all the leaves of T, that are
in N, [v].

Figure: A tree Ty, rooted at u = 1. For r = 2, Algorithm returns D* = {7,5,1}. A
partition P(T,,) = {C7,C5,C1} of T, is also constructed.



Theorem

We show that DrDSR, under T'J on trees runs in polynomial time for any r > 2.

Proof Sketch:
Let the tree be T..

® |et ]P’(T) = {01,02, ..,CD*},
Lemma
Let D be any DrDS of T,,. Then, D N C, # () holds for every v € D*.
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Proof Sketch:
Let the tree be T..

® Let ]P)(T) == {017027 "7CD*}Y

Lemma
Let D be any DrDS of T,,. Then, D N C, # () holds for every v € D*.

Lemma

Let D be an arbitrary DrDS of T,,. Let D’ be any DrDS of T,, that contains
D*, i.e., D* C D'. Then, in O(n) time, one can construct a T'J-sequence S in
T, between D and D’.



Theorem
We show that DrDSR under T'J on trees runs in polynomial time for any r > 2.

Proof Sketch:
Let the tree be T..

° Let ]P)(T) - {017027 "7CD*}’

Lemma
Let D be any DrDS of T,,. Then, D N C, # () holds for every v € D*.

Lemma

Let D be an arbitrary DrDS of T,,. Let D' be any DrDS of T, that contains
D*, i.e., D* C D'. Then, in O(n) time, one can construct a T'J-sequence S in
T, between D and D’.

® The key idea is one can transform both D and D; into some DrDS D that
contains D*. For instance, to transform D into D, for each subtree
Cy € P(T') for € D*, we move any token in D; NV (C;) to x.



DrDSR

Open Questions:

e What is the complexity of DrDSR, » > 2 under 7S on
trees?

e What is the complexity of DrDSR, » > 2 under TS on
interval graphs?



Thank You!



