The Complexity of Distance-r Dominating Set Reconfiguration

Niranka Banerjee, RIMS, Kyoto University

24th October, 2023

Joint work with Duc A. Hoang

Model: Graph Reconfiguration

In a *reconfiguration variant* of a computational problem, two *feasible solutions* S and T are given along with a *reconfiguration rule* that describes how to slightly modify one feasible solution to obtain a new one. In a *reconfiguration variant* of a computational problem, two *feasible solutions* S and T are given along with a *reconfiguration rule* that describes how to slightly modify one feasible solution to obtain a new one.

Figure: Reconfiguration

Figure: Reconfiguration

Main questions:

• REACHABILITY: Is there a path between two given solutions? Can we transform S into T via a sequence of feasible solutions.

Such a sequence, if exists, is called a *reconfiguration sequence*.

• SHORTEST PATH: If REACHABILITY is yes, can we find a shortest path between S and T?

Reconfiguration rules: Tells us rules we need to follow to go from one feasible solution to another.

Reconfiguration rules: Tells us rules we need to follow to go from one feasible solution to another.

A few well known Reconfiguration rules: Token Sliding (TS), Token Jumping (TJ) and Token Addition/ Removal (TAR).

Tokens refer to the solution set.

Reconfiguration rules of Token Sliding (TS), Token Jumping (TJ) and Token Addition/ Removal (TAR).

- **Token Sliding** (*TS*): one can move a token to one of its unoccupied neighbors as long as the resulting token-set forms a feasible solution.
- **Token Jumping** (*TJ*): one can move a token to any unoccupied vertex as long as the resulting token-set forms a feasible solution.
- Token Addition/Removal (TAR(k)): one can either add or remove a token as long as the resulting token-set forms a feasible solution of size at most some threshold k ≥ 0.

Computation problem we consider: Distance-r Dominating Set

Computation problem we consider: Distance-r Dominating Set

Definition:

Distance-r dominating set (DrDS) of G is a vertex subset D where each vertex of G is within distance r from some member of D.

Computation problem we consider: Distance-r Dominating Set

Definition:

Distance-r dominating set (DrDS) of G is a vertex subset D where each vertex of G is within distance r from some member of D.

For r = 1, this is the classical Dominating Set problem.

Distance-r Dominating Set Reconfiguration DrDSR

DrDSR: We solve Reachability of DrDS in the reconfiguration graph.

For r = 1, this is the classical Dominating Set problem.

Previous Results :

 Haddadan et al.[TCS2016] first studied the computational complexity of DOMINATING SET RECONFIGURATION (DSR) under TAR and showed that the problem is PSPACE-complete on planar graphs of maximum degree six, bounded bandwidth graphs, split graphs and bipartite graphs.

For r = 1, this is the classical Dominating Set problem.

Previous Results :

- Haddadan et al.[TCS2016] first studied the computational complexity of DOMINATING SET RECONFIGURATION (DSR) under TAR and showed that the problem is PSPACE-complete on planar graphs of maximum degree six, bounded bandwidth graphs, split graphs and bipartite graphs.
- Haddadan et al.[TCS2016] designed polynomial-time algorithms for solving DSR under *TAR* on cographs, forests, and interval graphs. Bonamy et al.[DAM2021] showed the above mentioned results also hold under *TJ*.

For r = 1, this is the classical Dominating Set problem.

Previous Results :

- Haddadan et al.[TCS2016] first studied the computational complexity of DOMINATING SET RECONFIGURATION (DSR) under *TAR* and showed that the problem is *PSPACE*-complete on planar graphs of maximum degree six, bounded bandwidth graphs, split graphs and bipartite graphs.
- Haddadan et al.[TCS2016] designed polynomial-time algorithms for solving DSR under *TAR* on cographs, forests, and interval graphs. Bonamy et al.[DAM2021] showed the above mentioned results also hold under *TJ*.
- Further results on *DSR* was also shown in Bousquet and Joffard[FCT2021] and Křišt'an and Svoboda[FCT2023].

For r = 1, this is the classical Dominating Set problem.

Previous Results (Parameterized variant):

There are two natural parameterizations: the number of tokens k and the length of a reconfiguration sequence ℓ .

 Mouawad et al.[ALG2017] showed that DSR under TAR on general graphs is W[1]-hard parameterized by k and W[2]-hard parameterized by k + ℓ.

For r = 1, this is the classical Dominating Set problem.

Previous Results (Parameterized variant):

There are two natural parameterizations: the number of tokens k and the length of a reconfiguration sequence ℓ .

- Mouawad et al.[ALG2017] showed that DSR under TAR on general graphs is W[1]-hard parameterized by k and W[2]-hard parameterized by k + ℓ.
- When parameterized by k on graphs excluding $K_{d,d}$ as a subgraph, Lokshtanov et al.[JCSS2018] designed an FPT algorithm for solving the problem.

For r = 1, this is the classical Dominating Set problem.

Previous Results (Parameterized variant):

There are two natural parameterizations: the number of tokens k and the length of a reconfiguration sequence ℓ .

- Mouawad et al.[ALG2017] showed that DSR under TAR on general graphs is W[1]-hard parameterized by k and W[2]-hard parameterized by k + ℓ.
- When parameterized by k on graphs excluding $K_{d,d}$ as a subgraph, Lokshtanov et al.[JCSS2018] designed an FPT algorithm for solving the problem.
- When parameterized by l alone, it was mentioned in Bousquet and Joffard[FCT2021] that the problem is fixed-parameter tractable on any class where first-order model-checking is fixed-parameter tractable.

Our Results:

We prove hardness results of DrDSR in different graph classes for $r \ge 2$ under reconfiguration rule of Token Sliding (TS) and Token Jumping (TJ).

Distance-r Dominating Set

Our Results: We prove hardness results of DrDSR, $r \ge 2$ in different graph classes under TS and TJ.

We show, DrDSR is PSPACE-Complete in,

• Bipartite Graphs

Our Results: We prove hardness results of DrDSR, $r \ge 2$ in different graph classes under TS and TJ.

We show, DrDSR is PSPACE-Complete in,

- Bipartite Graphs
- Planar graphs

Our Results: We prove hardness results of DrDSR, $r \ge 2$ in different graph classes under TS and TJ.

We show, DrDSR is PSPACE-Complete in,

- Bipartite Graphs
- Planar graphs
- Chordal Graphs

Our Results:

In other graph classes we show DrDSR, $r\geq 2$ is solvable in polynomial time.

• DrDSR can be solved in polynomial time on split graphs under both TS and TJ.

Our Results:

In other graph classes we show DrDSR, $r\geq 2$ is solvable in polynomial time.

- DrDSR can be solved in polynomial time on split graphs under both TS and TJ.
- DrDSR can be solved in polynomial time on trees under TJ.

Our Results:

In other graph classes we show DrDSR, $r\geq 2$ is solvable in polynomial time.

- DrDSR can be solved in polynomial time on split graphs under both TS and TJ.
- DrDSR can be solved in polynomial time on trees under TJ.
- DrDSR can be solved in polynomial time on interval graphs under TJ and co-graphs under both TS and TJ.

Theorem

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TSand TJ is PSPACE-complete.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

• Polynomial-time reduction from MINIMUM VERTEX COVER RECONFIGURATION (M - VCR) on general graphs, which was showed to be PSPACE-complete by Ito et al.[TCS2011].

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

• Polynomial-time reduction from MINIMUM VERTEX COVER RECONFIGURATION (M - VCR) on general graphs, which was showed to be PSPACE-complete by Ito et al.[TCS2011].

Proof Sketch:

Let (G, C_s, C_t) be an instance of M-VCR where C_s, C_t are two minimum VCs of a graph G.

We will construct an instance (G', D_s, D_t) of DrDSR where D_s and D_t are two DrDSs of a bipartite graph G'.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Suppose that $V(G) = \{v_1, \ldots, v_n\}$. We construct G' from G as follows.

a Replace each edge $v_i v_j$ by a path $P_{ij} = x_{ij}^0 x_{ij}^1 \dots x_{ij}^{2r}$ of length 2r $(1 \le i, j \le n)$ with $x_{ij}^0 = v_i$ and $x_{ij}^{2r} = v_j$.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Suppose that $V(G) = \{v_1, \ldots, v_n\}$. We construct G' from G as follows.

- a Replace each edge $v_i v_j$ by a path $P_{ij} = x_{ij}^0 x_{ij}^1 \dots x_{ij}^{2r}$ of length 2r $(1 \le i, j \le n)$ with $x_{ij}^0 = v_i$ and $x_{ij}^{2r} = v_j$.
- **b** Add a new vertex x and join it to every vertex in V(G).

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Suppose that $V(G) = \{v_1, \ldots, v_n\}$. We construct G' from G as follows.

- **a** Replace each edge $v_i v_j$ by a path $P_{ij} = x_{ij}^0 x_{ij}^1 \dots x_{ij}^{2r}$ of length 2r $(1 \le i, j \le n)$ with $x_{ij}^0 = v_i$ and $x_{ij}^{2r} = v_j$.
- **b** Add a new vertex x and join it to every vertex in V(G).
- **c** Attach a new path P_x of length r to x.

We define $D_s = C_s + x$ and $D_t = C_t + x$.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Lemma

G' is a bipartite graph.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Lemma

G' is a bipartite graph.

Lemma

Any set of the form C + x, where C is a minimum VC of G, is a minimum DrDS of G'.

We show that DrDSR, $r \ge 2$ in Bipartite Graphs under TS and TJ is PSPACE-complete.

Figure: Lower Bound on Bipartite Graphs

Lemma

G' is a bipartite graph.

Lemma

Any set of the form C + x, where C is a minimum VC of G, is a minimum DrDS of G'.

Lemma

 (G, C_s, C_t) is a yes-instance if and only if (G', D_s, D_t) is a yes-instance.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \geq 2$.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

• Based on the minimum DrDS, D^* obtained from the implementation of Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition $\mathbb{P}(T)$ of T consisting of vertex-disjoint subtrees.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

- Based on the minimum DrDS, D^* obtained from the implementation of Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition $\mathbb{P}(T)$ of T consisting of vertex-disjoint subtrees.
- To find $\mathbb{P}(T)$: Let T be rooted at u. In each iteration, it finds a subtree T_v of height exactly r, adds v to D^* , and removes all the leaves of T_u that are in $N_{T_u}^r[v]$.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

- Based on the minimum DrDS, D^* obtained from the implementation of Abu-Affash, Carmi, and Krasin[DAM2022], we construct a partition $\mathbb{P}(T)$ of T consisting of vertex-disjoint subtrees.
- To find $\mathbb{P}(T)$: Let T be rooted at u. In each iteration, it finds a subtree T_v of height exactly r, adds v to D^* , and removes all the leaves of T_u that are in $N_{T_u}^r[v]$.

Figure: A tree T_u rooted at u = 1. For r = 2, Algorithm returns $D^* = \{7, 5, 1\}$. A partition $\mathbb{P}(T_u) = \{C_7, C_5, C_1\}$ of T_u is also constructed.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

• Let $\mathbb{P}(T) = \{C_1, C_2, .., C_{D^*}\}$,

Lemma

Let D be any DrDS of T_u . Then, $D \cap C_v \neq \emptyset$ holds for every $v \in D^*$.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

• Let $\mathbb{P}(T) = \{C_1, C_2, .., C_{D^*}\},\$

Lemma

Let D be any DrDS of T_u . Then, $D \cap C_v \neq \emptyset$ holds for every $v \in D^*$.

Lemma

Let D be an arbitrary DrDS of T_u . Let D' be any DrDS of T_u that contains D^* , i.e., $D^* \subseteq D'$. Then, in O(n) time, one can construct a TJ-sequence S in T_u between D and D'.

We show that DrDSR under TJ on trees runs in polynomial time for any $r \ge 2$. Proof Sketch:

Let the tree be T.

• Let $\mathbb{P}(T) = \{C_1, C_2, ..., C_{D^*}\},\$

Lemma

Let D be any DrDS of T_u . Then, $D \cap C_v \neq \emptyset$ holds for every $v \in D^*$.

Lemma

Let D be an arbitrary DrDS of T_u . Let D' be any DrDS of T_u that contains D^* , i.e., $D^* \subseteq D'$. Then, in O(n) time, one can construct a TJ-sequence S in T_u between D and D'.

The key idea is one can transform both D_s and D_t into some DrDS D that contains D^{*}. For instance, to transform D_s into D, for each subtree C_x ∈ P(T) for x ∈ D^{*}, we move any token in D_s ∩ V(C_x) to x.

Open Questions:

- What is the complexity of DrDSR, $r \ge 2$ under TS on trees?
- What is the complexity of DrDSR, $r \ge 2$ under TS on interval graphs?

Thank You!