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TS-Reconfiguration Graphs

Introduction

Given a graph G = (V, E) and a positive integer k.

G Token Graph F,(G)
Vertex | V(G)| k-Vertex Subsets of V(G)
Edge |E(G) Token Sliding

Well-known variants of F.(G)
involve 15-PuzzLE, PEBBLE
MOTION, CHIP-FIRING GAME,
RoBOT MOTION, and so on

F»(G) [Alavi, Behzad, Erdés, and Lick 1991]
m Each vertex of G contains at most one unlabeled token.
m Token Sliding involves moving a token from one vertex to
one of its unoccupied adjacent vertices.
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TS-Reconfiguration Graphs

Introduction

Given a graph G = (V, E) and a positive integer k.

G Token Graph F,(G) TSk-(Reconfiguration) Graph TSy (G)

Vertex | V(G)| k-Vertex Subsets of V(G) | Independent k-Vertex Subsets of V(G)

Edge | E(G) Token Sliding Token Sliding
F»(G) [Alavi, Behzad, Erdés, and Lick 1991] [This Talk]

m Each vertex of G contains at most one unlabeled token.
m Token Sliding involves moving a token from one vertex to

one of its unoccupied adjacent vertices. ﬁ

adjacency relation
[Token Sliding]

independent

TSy-reconfiguration graph
2-vertex subsets

Figure: TSa(Ps) C Fa(Py)
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TS-Reconfiguration Graphs

Introduction

Avis and Hoang

In this talk, we focus on two graphs: fvodcton

eneral Framework

Motivatior

m TS, (G) whose nodes are independent sets of size-k, and
m TS(G) whose nodes are independent sets of arbitrary size.

m TS;(G) is an induced subgraph of TS(G).
m TS (G) may not be a component of TS(G).

m k£ = 1is not interesting, since G ~ TS;(G) for any graph
G. Therefore we always consider k > 2.
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TS-Reconfiguration Graphs

A More General Framework

,-[ Reconfiguration Setting } <

m Moving from one state/configuration to another

m The whole state space is not given, but you can, in
polynomial-time, check if a state is “valid”.

E ... using a pre-defined (reconfiguration) rule
®m You can, in polynomial-time, check if one “valid” state can

be transformed to another by using the rule exactly once.
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Reconfiguration Setting }
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m Moving from one state/configuration to another
m ... using a pre-defined (reconfiguration) rule Inroducton

A More General Framework

Motivation
m Games & Puzzles.
1(2[3]4
5(6[|7|8
Our Results
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TS-Reconfiguration Graphs

Motivation

m “Reconfiguration of Independent Sets” is one of the most Avis and Hoang
well-studied topics in the Reconfiguration framework.

m Most of the previous research on TS, (G) have been
focused on designing efficient algorithms and showing ANoro General Framawor
computational hardness of several reconfiguration o
questions [Nishimura 2018].

m REACHABILITY/SHORTEST TRANSFORMATION: Is there a
(shortest) path between two given nodes of TS, (G)?

m CONNECTIVITY: Is TSi(G) connected?

= and so on.
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TS-Reconfiguration Graphs

Motivation

m “Reconfiguration of Independent Sets” is one of the most
well-studied topics in the Reconfiguration framework.

m Most of the previous research on TS, (G) have been
focused on designing efficient algorithms and showing
computational hardness of several reconfiguration
questions [Nishimura 2018].

m REACHABILITY/SHORTEST TRANSFORMATION: Is there a
(shortest) path between two given nodes of TS, (G)?

m CONNECTIVITY: Is TSi(G) connected?

= and so on.

r-| Our Goal }

We look at TS, (G) from a purely graph-theoretic viewpoint.

m What are the necessary and sufficient conditions for
TSk (G) to be in some graph class G?

m If G satisfies some property P, does TS(G)/TSg(G) also
satisfy P, and vice versa?
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TS-Reconfiguration Graphs

Note

Avis and Hoang

m If H and G are isomorphic, then so are TSy (H) and
TSk (G). The reverse does not hold.

m If H is an induced subgraph of G, then TSy (H) is an
induced subgraph of TSy (G). The reverse does not hold.

7R
D

TS,(Gi)
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Realizing TS;-Reconfiguration Graphs

Our Results

Avis and Hoang

Main Question |
Is G a TSy-graph? ] T —
More precisely, does there exist a graph H such that
G ~; TSi(H), where f: V(G) — V(TSk(H)) is bijective and
wv € E(G) ifand only if f(u)f(v) € E(TSg(H))? owrets

Paths and Cycl
Complete Bipartite Graphs

Our Results
s-Partite
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Realizing TS;-Reconfiguration Graphs

Our Results

[{ Main Question |
|

s G aTSy-graph? ]

More precisely, does there exist a graph H such that
G ~; TSi(H), where f: V(G) — V(TSk(H)) is bijective and
wv € E(G) ifand only if f(u)f(v) € E(TSg(H))?

»-| Our Results

m There is a relationship between the line graph of G and
the TS,-graph of its complement G.

m All complete graphs, paths, and cycles are TSy-graphs.
m Characterize which complete bipartite graphs and

connected split graphs are TS-graphs.
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Realizing TS;-Reconfiguration Graphs
Line graph L(G) and TSa-graph TS2(G)

m TS»(G) is a (spanning) subgraph of L(G).
m TSy(G) ~ L(G) if and only if G is triangle-free.




Realizing TS;-Reconfiguration Graphs
Line graph L(G) and TSa-graph TS2(G)

Lemma 1
m TS»(G) is a (spanning) subgraph of L(G).
m TSy(G) ~ L(G) if and only if G is triangle-free.




Realizing TS;-Reconfiguration Graphs
Complete Graphs

Lemma 2

Avis and Hoang

Given H and let G = TS, ) (H). Then, for every k > o(H),
G is a TSy -graph.

— I
s
(/7\\\;\“5;‘\1:: . -
Complete Graphs
Path les
a(H) = max. size of an e
independent set of H
H

Figure: A graph H' s.t. G = TSy m)(H) ~ TSk (H') for k > a(H).

Corollary 3
K, is a TSy-graph forevery k > 1. ]

24




Realizing TS;-Reconfiguration Graphs

Paths and Cycles

PrOpOSition 4 } Avis and Hoang
P, is a TSy-graph. ]

m (suggested by Yuni IWAMASA.) For k& = 2, use Lemma 1.

P, :L<Pn+1) TSQ( n+1)

m For k > 3, note that (P, ;) = 2. Use Lemma 2.

_ (@) s
Proposition 5 } et Bipartto Graphs
C,, is aTSy-graph (n > 4). ]
m For k = 2, use Lemma 1. o

The Clique's Size

Cyp = L(Cy) ~ TS5(Cr).

m For k > 3, note that o(C,,) = 2. Use Lemma 2.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P, by size-2 independent sets of G.

P, G

apay ag aq

O © O

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.

24



Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P, by size-2 independent sets of G.

P, G

apai a1az a0 a1 ap

Figure: P, is a TS2-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P, by size-2 independent sets of G. ‘

P, G

apay; a1a2 ?(13 ag aq as as

0—0—0 Qe o o

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P, by size-2 independent sets of G. ‘

P, G

apar aiaz aias a a1 as  as

o—0—™0 .\./Q—.

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P,, by size-2 independent sets of G.

P, G

apay; ai1az2 ai1as
o—0—™0 w—p

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P, by size-2 independent sets of G. ‘

P, G

apai aiaz asas a a1 as  as

O—O—O.@.

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs
A Different Approach for Paths

Avis and Hoang

Key Idea (k = 2) }

There exists G such that P, ~ TS2(G). For n > 2, we update
G and label vertices of P,, by size-2 independent sets of G. ‘

P, G

apa1 aiaz aaz aszas a0 a1 as a3 ay

O—O—O—O.@.

Figure: P, is a TSz-graph.

Note: G ~ Pn+1.
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Avis and Hoang

Proposition 6 }

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2. Introduction

e General Framework

(«) Since Ky ~ Cy4, the case m =n = 2is trivial. f m =1 ot
and n < k, we construct G such that K, ,, >~ TS, (G).

ay ao Qp, ag

Our Results
L(G)and TS, (G
.................. . co
Paths and Cycles
Complete Bipartite Graphs

6 60|,

s-Partite

bl b2 bn Eulerian

The Clique's Size

Figure: A graph G such that K1, ~ TSx(G) where n < k. G Forecte 8

TS, -Graphs?
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs
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Avis and Hoang
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m=n=2. Introduction
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Figure: K, is nota TSi-graphwhenm =1andn > k + 1.
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Complete Bipartite Graphs
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Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where either m =1 andn >k +1 or
m>2andn > 2.

Taz...ak (Pigeonhole principle )

yas ... ak
aiag...ag

Figure: K, is nota TSi-graphwhenm =1andn > k + 1.
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Avis and Hoang

Proposition 6 }

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2. Introduction

e General Framework

(=) Suppose to the contrary that there exists G such that e
K n >~ TSi(G) where either m =1 andn >k +1 or
m>2andn > 2.

Our Results

q a a L(G)and TS, (G
Tas...a (P|geonhole principle ) o

Paths and Cycles

Complete Bipartite Graphs
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Proposition 6 }

Avis and Hoang

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2. Introduction

A More General Framework

(=) Suppose to the contrary that there exists G such that e
K n >~ TSi(G) where eitherm =1 andn > k+1 or
m>2andn > 2.

atas ...y e e How can we
label the rest?
Complete Bipartite Graphs
e e Our Results

s-Partite

Our Results

Eulerian

The Clique's Size

Can Forests Be
TS, -Graphs?

Figure: Ky, » is not a TSx-graph when m > 2 and n > 2.
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Proposition 6 }

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where eitherm =1 andn > k+1 or
m>2andn > 2.

alaz...ak e How can we
. label the rest?
‘ At most two tokens
can move from their

original positions

Figure: Ky, » is not a TSx-graph when m > 2 and n > 2.

Avis and Hoang




Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Avis and Hoang

Proposition 6 }

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where eitherm =1 andn > k+1 or
m>2andn > 2.

aias...ay e e vay ..., |How canwe
. label the rest?
‘ If one token can
Yyaz...ag zZas . ..ak i .
move from its origi- S

nal position e

Eulerian

The Clique's Size

Can Forests Be
TS, -Graphs?

Figure: Ky, » is not a TSx-graph when m > 2 and n > 2.
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Proposition 6 }

Avis and Hoang

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where eitherm =1 andn > k+1 or
m>2andn > 2.

How
a1a9 rag . ..ak ow about
zrzas...a? @
If one token can
yasg . .. 2a9 . ..0ak . .
move from its origi-
nal position
rzas rzas...ag

Figure: Ky, » is not a TSx-graph when m > 2 and n > 2.
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Complete Bipartite Graphs

Avis and Hoang

Proposition 6 }

Ky (m < n)isaTSi-graph < eitherm =1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where eitherm =1 andn > k+1 or
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aias...ay e e vay ..., |How canwe
. label the rest?
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Realizing TS;-Reconfiguration Graphs

Complete Bipartite Graphs

Proposition 6 }

Avis and Hoang

Kpn (m < n)isaTS,-graph < eitherm = 1 andn < k or
m=n=2.

(=) Suppose to the contrary that there exists G such that
K n >~ TSi(G) where eitherm =1 andn > k+1 or
m>2andn > 2.

How can we
aiay...a ra
1 Ok e.e 2 label J5? @
“ If two tokens can
- Ak ary. . .
\ move from their orig-

inal position

J3 contains one member of
{a1,a2} and one of {z,y}.

Figure: Ky, » is not a TSx-graph when m > 2 and n > 2.
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Graph Properties: G vs. TS (G) and TS(G)

Our Results

A Main Question |

‘P too, and vice versa?

If G satisfies a graph property P, does TS(G)/TSy(G) satisfy

N

~| Our Results

We answered the question for the following properties P:

m s-Partite
m Planar
m Eulerian

m (Non-)acyclic
m The clique’s size
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Graph Properties: G vs. TS, (G) and TS(G)

Our Results

Avis and Hoang

P G @[ ® [(© )
s-partite general yes no
. yes, iff k=2,n>3
P, yes, iff n <8 ork>31n<8
planar tree yes, iffn <7
Ch .
connected yes, iffn < 6
Eulerian Cn no yes yes
general no yes no | no
acyclic P, yes, iff n < 4
non-acyclic Cp no | yes, iff 1 <k <n/2
having K, general yes [ no | yes

Table: Some properties of (reconfiguration) graphs. Here n = |V (G)|.
There are four cases: (a) P(G) = P(TS(G)), (b) P(TS(G)) = P(G),
(c) P(G) = P(TSk(G)), and (d) P(TSk(GQ)) = P(G). (P(G) = P(H)
means if G satisfies property P then H satisfies P.)
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Graph Properties: G vs. TS, (G) and TS(G)

s-Partite

A proper s-coloring f : V(G) — {0,...,s — 1} of Gis a
mapping such that f(u) # f(v) if uww € E(G). The chromatic
number x(G) of a graph G is the smallest s such that G has a
proper s-coloring.

»-| s-Partite

m G is s-partite & TS(G) is s-partite. In other words,
xX(G) = x(TS(G)) = x(TSk(G)).
m (by Masahiro TAKAHASHL.) Let f : V(G) — {0,...,s — 1}
be a proper s-coloring of G. Then
g:V(TS(G)) — {0,...,s — 1} defined by
g(I) =3, ¢, f(v) mod s is a proper s-coloring of TS(G).

Avis and Hoang

Our Results
s-Partite

Eulerian

The Clique's Size
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Graph Properties: G vs. TS, (G) and TS(G)

s-Partite

A proper s-coloring f : V(G) — {0,...,s — 1} of Gis a
mapping such that f(u) # f(v) if uww € E(G). The chromatic

number x(G) of a graph G is the smallest s such that G has a
proper s-coloring.

»-| s-Partite

m G is s-partite & TS(G) is s-partite. In other words,
X(G) = x(TS(G)) = x(TSk(G)).
m (by Masahiro TAKAHASHL.) Let f : V(G) — {0,...,s — 1}
be a proper s-coloring of G. Then
g:V(TS(G)) — {0,...,s — 1} defined by
g(I) = ZUGI f(v) mod s is a proper s-coloring of TS(G).
m There exists a graph G such that x(TSx(G)) < x(G).

m Take a graph G having a vertex v that is adjacent to all
other vertices and let G’ = G — v. We have

X(G) = x(G') +1 2 x(TSk(G")) +1 = x(TSk(G)) + 1.

24
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Graph Properties: G vs. TS, (G) and TS(G)

Eulerian

A graph G is Eulerian < G is connected and all vertices of G
have even degree.

»-| Eulerian I

m TS, (C,) is Eulerian, for 1 < k < n/2.
m For1 <k < n/2, TS,(C,) is connected. Take any
I € TS(Cy). Only maximal paths P = vivz ... v2i41 in

C, satisfying {v1,vs, ..., v2:+1} C I affect the degree of
1. (Each path contributes 0 or 2.)

24
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Graph Properties: G vs. TS, (G) and TS(G)

Eulerian

A graph G is Eulerian < G is connected and all vertices of G
have even degree.

,.| Eulerian I
m TS, (C,) is Eulerian, for 1 < k < n/2.
m For1 <k < n/2, TS,(C,) is connected. Take any
I € TSk(Cy). Only maximal paths P = viva ... v2:41 in
C, satisfying {v1,vs, ..., v2:+1} C I affect the degree of
1. (Each path contributes 0 or 2.)
m For any Eulerian graph G on n > 4 vertices, every
component of TSy (G) is Eulerian.
m Every vertex of TS2(G) has even degree.
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Graph Properties: G vs. TS, (G) and TS(G)

Eulerian

A graph G is Eulerian < G is connected and all vertices of G
have even degree.

'-| Eulerian I

m TS, (C,) is Eulerian, for 1 < k < n/2.
m For1 <k < n/2, TS,(C,) is connected. Take any
I € TSi(Cy). Only maximal paths P = viva ... v2:41 iN
C, satisfying {v1,vs, ..., v2:+1} C I affect the degree of
1. (Each path contributes 0 or 2.)
m For any Eulerian graph G on n > 4 vertices, every
component of TSy (G) is Eulerian.
m Every vertex of TS2(G) has even degree.
m There exists an Eulerian graph G where TS, (G) is not
Eulerian, forany k € {3,...,a(G)}.
m For any graph G, if TS(G) is Eulerian, so is G. Moreover,
for any k& > 2, one can construct a graph G such that G
is not Eulerian but TSy (G) is.

Avis and Hoang

Our Results

Partite
Eulerian

24



Graph Properties: G vs. TS, (G) and TS(G)

Eulerian

(a) (b) Avis and Hoang
G TSk (G) G TS, (G)

k=2 disconnected (&

has degree-3
vertex

Cy

N ——— e
k — 2 vertices

Figure: (a) G is Eulerian and TS, (G) is not, (b) G is not Eulerian and
TSk(G) is.
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Graph Properties: G vs. TS, (G) and TS(G)

The Clique’s Size

,-[ The Clique’s Size }

m G hasa K,, & TS(G) has a K,, (n > 3).
m If TS, (G) has a K3, so does G.

L ={a,a9,...;ax} L ={z,a9,...,a;}

Avis and Hoang

I={y,as,....;ax} Iz=A{x,z,...,a1} Gomplee Biparie Graphs

Our Results
s-Partite

Eulerian

@ The Clique’s Size

Can Forests Be
TS} -Graphs?

24



Graph Properties: G vs. TS, (G) and TS(G)

The Clique’s Size

,-[ The Clique’s Size ]

m G hasa K,, & TS(G) has a K,, (n > 3).
m If TSx(G) has a K3, so does G.

Ilz{al,ag,...,ak} IQZ{(L',GQ,...,ak}

13:{y7a25"'aak} IgZ{I,Z,...,ak}

m There exists a graph G s.t. G has a K,, and TS, (G)
(k > 2) does not.

> k vertices

Avis and Hoang
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Open Questions

Can Forests Be TS-Graphs?

Open Question |

J
A forest T'is a TSi-graph < ?

Remark: “Being a TS,-graph” is not hereditary even for trees.

For example, K 3 is not a TSy-graph, but the graph obtained
by replacing an edge of K1 3 by a Py is.

@ 34

(D) d :

T ~ TS2(G) G

24

Avis and Hoang

ntroduction

A More General Framework

Motivatior

artite Graphs

Euleriar

The Clique's Size

Can Forests Be
TS,,-Graphs?



Open Questions
Can Forests Be TS-Graphs?

We have constructed a (complete?) list G of graphs such that if
TS2(Q) is a forest, G must not contain any member of G as an
induced subgraph. (Thanks to Jesper JANSSON for helpful

Avis and Hoang

discussions )
n > 4
[ and the foIIowmg graphs:

[ o

it I
e B

Can Forests Be
TS, -Graphs?

@
i



Open Questions

Can Forests Be TSy-Graphs?

If TSo(G) is a forest, G is a weakly chordal graph (C perfect
graph).

m G is Cy-free & G is 2K,-free = G is C,,-free (n > 6).
m GisC,-free (n > 4) = Gis (C,,C,)-free (n > 5) < G is
weakly chordal (C perfect).

24
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Open Questions

Can Forests Be TS-Graphs?

,-[ Proposition 7 ]

Avis and Hoang

Let F be a forest TSy (F) is a forest < F is (2K, H)-free.

1] e ||

2K2 ~ C4 'graph Our Results

Consequently,

Let F beatree. TSy(F)isatree < F ~ P, (1 <n <4).

(=) T52(2K2) ~ (4 and TSQ(H) ~ Cs + 2K;.

(<) If F has a cycle and is 2K,-free, it contains an induced
H-graph.

Question TS,,-Graphs?
Let G be a non-acyclic graph. Then TS;(G) is a forest < ? ”




Open Questions

Can Forests Be TS-Graphs?

m Let F' be aforest. If TS;(F) is a forest, F does not contain Avis and Hoang
any of the following graphs as an induced subgraph

2Ky + K3 H+ K,

Question

If TS;(F') has a cycle, does F' contain one of the above graphs Tou Graph?
as an induced subgraph?

Can Forests Be

24
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Realizing TS;-Reconfiguration Graphs

Connected Split Graphs
/) Avis and Hoang

Connected Split Graphs

0.0 Q

K S
Figure: A splitgraph G = (K U S, E).

Recall

Every split graph G has a KS-partition such that |K| =
w(G)—the maximum size of a clique of G. We denote it by
G= (K us, E)K—max-




Realizing TS;-Reconfiguration Graphs
Connected Split Graphs

Proposition 8 }

A connected G = (K U S, E)k-max iS @ TSi-graph < every
v € K has at most k — 1 neighbors in S and every w € S has
exactly one neighbor in K.

(<) We construct a graph H such that G = TS, (H).
(=) How do we label G here?

-

11
Ty Ay

aiay ... ag_1by Q
aiay ... ag_1by O

[T
R PR

WA

| 1
laray .. Ty
g = :
: /:Om’l”a,g Ay, -
F
a1ay . .. 10y, O : Sy
| m
\:Olalag s
’
K --
S
G= (KU&E)K—max H

Figure: Construction of a graph H such that G ~ TSy (H).

Avis and Hoang

Connected Split Graphs



Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

r-| Planar I N\

m If G is non-planar, so is TS(G). (G ~ TS1(G))

Connected Split Graphs

Planar
Girth




Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

'-| Planar } )

m If G is non-planar, so is TS(G). (G ~ TS1(G))

m [Computer search] With respect to the number of
vertices, C+ is the unique smallest planar graph G for
which TS(G) is non-planar. Planar

m For each of 99 connected planar graphs G on 6 vertices,
TS(G) is planar.
m TS2(Cv) is non-planar.

Connected Split Graphs




Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

Planar
Girth

Figure: A subdivision of K3 3 that is contained in TS2(C7). Each
number of the form ab inside a node represents an independent set
{va,vb} of Cr=wv1...0701.



Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

'-| Planar } N
m If G is non-planar, so is TS(G). (G ~ TS1(G))
m [Computer search] With respect to the number of

vertices, C+ is the unique smallest planar graph G for
which TS(G) is non-planar. Planar

Girth

nnected Split Graphs

TS(G) is planar.
m TS2(Cv) is non-planar.
m TS, (P,) is planar for every n > 3.
m TS»(P,) is a subgraph of a n x n grid.




Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

'-| Planar } N
m If G is non-planar, so is TS(G). (G ~ TS1(G))

m [Computer search] With respect to the number of
vertices, C+ is the unique smallest planar graph G for
which TS(G) is non-planar. Planar

m For each of 99 connected planar graphs G on 6 vertices, o
TS(G) is planar. o
m TS2(Cv) is non-planar.
m TSy (P,) is planar for every n > 3.
m TS»(P,) is a subgraph of a n x n grid.

[ [Computer search] P is the largest path P for WhICh
TS(P) is planar.

m TS(Ps) is planar, and TS3(Ps) is not.




Graph Properties: G vs. TS, (G) and TS(G)

Planar

@ Avis and Hoang
©)
()
g Connected Split Graphs
@

Planar

=

Figure: A planar drawing of TS3(Ps). Each number of the form abc
inside a node represents an |ndependent set {va, vy, v} Of
Ps =v1...08. 4




Graph Properties: G vs. TS, (G) and TS(G)

Planar

Avis and Hoang

Planar
Girth

Figure: A subdivision of K3 3 that is contained in TS3(Fs). Each
number of the form abc inside a node represents an independent set
{Va, Vb, vc} Of Py = v1 ... 09,



Graph Properties: G vs. TS, (G) and TS(G)

Girth

The girth of a graph G is the smallest size of a cycle in G, and
is oo if G is acyclic.

r-| Girth

m girth(TS(R,)) is 4 for every n > 5 and oo otherwise.

m TS(P,) has a Cy when n > 5. Moreover, since P, is
bipartite, so is TS(P,), i.e., it does not contain a Cs.

Avis and Hoang

Connected Split Graphs

Planar
Girth



Graph Properties: G vs. TS, (G) and TS(G)

Girth

The girth of a graph G is the smallest size of a cycle in G, and
is oo if G is acyclic.

r-| Girth

m girth(TS(P,)) is 4 for every n > 5 and oo otherwise.
m TS(P,) has a Cy when n > 5. Moreover, since P, is
bipartite, so is TS(P,), i.e., it does not contain a Cs.
m Forl <k <n/2 girth(TS,(Cy)) =n. If k=n/2, we
have girth(TS;(C,,)) = co.
m Let I € TSk(G). How to form a cycle in TSk (C»)
containing I?

Avis and Hoang

nnected Split Graphs

Planar
Girth
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