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TS-Reconfiguration Graphs
Introduction

Given a graph G = (V, E) and a positive integer k.

G

Vertex V (G)

Edge E(G)

Token Graph Fk(G)

k-Vertex Subsets of V (G)

Token Sliding

F2(G) [Alavi, Behzad, Erdős, and Lick 1991]

TSk-(Reconfiguration) Graph TSk(G)

Independent k-Vertex Subsets of V (G)

Token Sliding

[This Talk]

Each vertex of G contains at most one unlabeled token.

Token Sliding involves moving a token from one vertex to
one of its unoccupied adjacent vertices.

2-vertex subsets
independent

adjacency relation
[Token Sliding]

TS2-reconfiguration graph

Figure: TS2(P4) ⊆ F2(P4)
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Well-known variants of Fk(G)
involve 15-PUZZLE, PEBBLE
MOTION, CHIP-FIRING GAME,
ROBOT MOTION, and so on

TSk-(Reconfiguration) Graph TSk(G)

Independent k-Vertex Subsets of V (G)

Token Sliding

[This Talk]

Each vertex of G contains at most one unlabeled token.
Token Sliding involves moving a token from one vertex to
one of its unoccupied adjacent vertices.

2-vertex subsets
independent

adjacency relation
[Token Sliding]

TS2-reconfiguration graph

Figure: TS2(P4) ⊆ F2(P4)



24

Avis and Hoang

TS-Reconfiguration
Graphs

2 Introduction

A More General Framework

Motivation

Note

Realizing
TSk -Reconfiguration
Graphs
Our Results

L(G) and TS2 (G)
Complete Graphs

Paths and Cycles

Complete Bipartite Graphs

Graph Properties: G
vs. TSk(G) and
TS(G)
Our Results

s-Partite

Eulerian

The Clique’s Size

Open Questions
Can Forests Be
TSk -Graphs?

References

TS-Reconfiguration Graphs
Introduction

Given a graph G = (V, E) and a positive integer k.

G

Vertex V (G)

Edge E(G)

Token Graph Fk(G)

k-Vertex Subsets of V (G)

Token Sliding

F2(G) [Alavi, Behzad, Erdős, and Lick 1991]
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TS-Reconfiguration Graphs
Introduction

In this talk, we focus on two graphs:
TSk(G) whose nodes are independent sets of size-k, and
TS(G) whose nodes are independent sets of arbitrary size.

Note
TSk(G) is an induced subgraph of TS(G).
TSk(G) may not be a component of TS(G).
k = 1 is not interesting, since G ≃ TS1(G) for any graph
G. Therefore we always consider k ≥ 2.
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TS-Reconfiguration Graphs
A More General Framework

Reconfiguration Setting

Moving from one state/configuration to another
The whole state space is not given, but you can, in
polynomial-time, check if a state is “valid”.

... using a pre-defined (reconfiguration) rule
You can, in polynomial-time, check if one “valid” state can
be transformed to another by using the rule exactly once.

Games & Puzzles.

Frequency
Re-Assignment. Robot Motion.

R

R ObstacleRobot
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Frequency
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TS-Reconfiguration Graphs
Motivation

“Reconfiguration of Independent Sets” is one of the most
well-studied topics in the Reconfiguration framework.
Most of the previous research on TSk(G) have been
focused on designing efficient algorithms and showing
computational hardness of several reconfiguration
questions [Nishimura 2018].

REACHABILITY/SHORTEST TRANSFORMATION: Is there a
(shortest) path between two given nodes of TSk(G)?
CONNECTIVITY: Is TSk(G) connected?
and so on.

Our Goal
We look at TSk(G) from a purely graph-theoretic viewpoint .

What are the necessary and sufficient conditions for
TSk(G) to be in some graph class G?
If G satisfies some property P, does TS(G)/TSk(G) also
satisfy P, and vice versa?
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TS-Reconfiguration Graphs
Note

If H and G are isomorphic, then so are TSk(H) and
TSk(G). The reverse does not hold .
If H is an induced subgraph of G, then TSk(H) is an
induced subgraph of TSk(G). The reverse does not hold .

Gi TS2(Gi)i

1

2

3
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Realizing TSk-Reconfiguration Graphs
Our Results

Main Question

Is G a TSk-graph?

More precisely, does there exist a graph H such that
G ≃f TSk(H), where f : V (G) → V (TSk(H)) is bijective and
uv ∈ E(G) if and only if f(u)f(v) ∈ E(TSk(H))?

Our Results
There is a relationship between the line graph of G and
the TS2-graph of its complement G.
All complete graphs, paths, and cycles are TSk-graphs.
Characterize which complete bipartite graphs and
connected split graphs are TSk-graphs.
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Realizing TSk-Reconfiguration Graphs
Line graph L(G) and TS2-graph TS2(G)

Lemma 1

TS2(G) is a (spanning) subgraph of L(G).
TS2(G) ≃ L(G) if and only if G is triangle-free.

1 2 3

456

G

1 2 3

456

G

12 23 34

455616

25

L(G)

26

12 23 34

455616

25

TS2(G)

26
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Realizing TSk-Reconfiguration Graphs
Complete Graphs

Lemma 2
Given H and let G = TSα(H)(H). Then, for every k ≥ α(H),
G is a TSk-graph. }k − α(H)

} α(H) = max. size of an
independent set of H

H
Figure: A graph H ′ s.t. G = TSα(H)(H) ≃ TSk(H ′) for k ≥ α(H).

Corollary 3

Kn is a TSk-graph for every k ≥ 1.
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Realizing TSk-Reconfiguration Graphs
Paths and Cycles

Proposition 4

Pn is a TSk-graph.

(suggested by Yuni IWAMASA.) For k = 2, use Lemma 1.

Pn = L(Pn+1) ≃ TS2(Pn+1).

For k ≥ 3, note that α(Pn+1) = 2. Use Lemma 2.

Proposition 5

Cn is a TSk-graph (n ≥ 4).

For k = 2, use Lemma 1.

Cn = L(Cn) ≃ TS2(Cn).

For k ≥ 3, note that α(Cn) = 2. Use Lemma 2.
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Realizing TSk-Reconfiguration Graphs
A Different Approach for Paths

Key Idea (k = 2)

There exists G such that P1 ≃ TS2(G). For n ≥ 2, we update
G and label vertices of Pn by size-2 independent sets of G.

a0a1

a1a2

a2a3

a3a4

Pn

a0 a1

a2 a3 a4

G

Figure: Pn is a TS2-graph.

Note: G ≃ Pn+1.
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G and label vertices of Pn by size-2 independent sets of G.
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Realizing TSk-Reconfiguration Graphs
Complete Bipartite Graphs

Proposition 6

Km,n (m ≤ n) is a TSk-graph ⇔ either m = 1 and n ≤ k or
m = n = 2.

(⇐) Since K2,2 ≃ C4, the case m = n = 2 is trivial. If m = 1
and n ≤ k, we construct G such that Km,n ≃ TSk(G).

Kn

a1 a2 an ak

b1 b2 bn

Figure: A graph G such that K1,n ≃ TSk(G) where n ≤ k.

(⇒) Suppose to the contrary that there exists G such that
Km,n ≃ TSk(G) where either or .

I1a1a2 . . . ak J1

I2 J2

I1a1a2 . . . ak J1 xa2 . . . ak

I2ya2 . . . ak J2 za2 . . . ak

I1a1a2 . . . ak J1 xa2 . . . ak

I2xy . . . ak J2 a1y . . . ak

I3xza3 . . . ak J3 xza3 . . . akJ3

How can we
label the rest?

At most two tokens
can move from their
original positions

J3 contains one member of
{a1, a2} and one of {x, y}.

Figure: Km,n is not a TSk-graph when m ≥ 2 and n > 2.
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Realizing TSk-Reconfiguration Graphs
Complete Bipartite Graphs

Proposition 6

Km,n (m ≤ n) is a TSk-graph ⇔ either m = 1 and n ≤ k or
m = n = 2.
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P G (a) (b) (c) (d)
s-partite general yes no

planar

Pn yes, iff n ≤ 8 yes, iff k = 2, n ≥ 3
or k ≥ 3, n ≤ 8

tree yes, iff n ≤ 7
Cn yes, iff n ≤ 6connected

Eulerian Cn no yes yes
general no yes no no

acyclic Pn yes, iff n ≤ 4
non-acyclic Cn no yes, iff 1 ≤ k < n/2
having Ks general yes no yes

Table: Some properties of (reconfiguration) graphs. Here n = |V (G)|.
There are four cases: (a) P(G) ⇒ P(TS(G)), (b) P(TS(G)) ⇒ P(G),
(c) P(G) ⇒ P(TSk(G)), and (d) P(TSk(G)) ⇒ P(G). (P(G) ⇒ P(H)
means if G satisfies property P then H satisfies P.)
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Graph Properties: G vs. TSk(G) and TS(G)
s-Partite

A proper s-coloring f : V (G) → {0, . . . , s − 1} of G is a
mapping such that f(u) ̸= f(v) if uv ∈ E(G). The chromatic
number χ(G) of a graph G is the smallest s such that G has a
proper s-coloring.

s-Partite
G is s-partite ⇔ TS(G) is s-partite. In other words,
χ(G) = χ(TS(G)) ≥ χ(TSk(G)).

(by Masahiro TAKAHASHI.) Let f : V (G) → {0, . . . , s − 1}
be a proper s-coloring of G. Then
g : V (TS(G)) → {0, . . . , s − 1} defined by
g(I) =

∑
v∈I

f(v) mod s is a proper s-coloring of TS(G).

There exists a graph G such that χ(TSk(G)) < χ(G).
Take a graph G having a vertex v that is adjacent to all
other vertices and let G′ = G − v. We have
χ(G) = χ(G′) + 1 ≥ χ(TSk(G′)) + 1 = χ(TSk(G)) + 1.
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Graph Properties: G vs. TSk(G) and TS(G)
Eulerian

A graph G is Eulerian ⇔ G is connected and all vertices of G
have even degree.

Eulerian
TSk(Cn) is Eulerian, for 1 ≤ k < n/2.

For 1 ≤ k < n/2, TSk(Cn) is connected. Take any
I ∈ TSk(Cn). Only maximal paths P = v1v2 . . . v2i+1 in
Cn satisfying {v1, v3, . . . , v2i+1} ⊆ I affect the degree of
I. (Each path contributes 0 or 2.)

For any Eulerian graph G on n ≥ 4 vertices, every
component of TS2(G) is Eulerian.

Every vertex of TS2(G) has even degree.

There exists an Eulerian graph G where TSk(G) is not
Eulerian, for any k ∈ {3, . . . , α(G)}.
For any graph G, if TS(G) is Eulerian, so is G. Moreover,
for any k ≥ 2, one can construct a graph G such that G
is not Eulerian but TSk(G) is.
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𝐶2𝑘−1

𝑘 ≥ 3

𝑘 = 2

𝑘 TS𝑘 (𝐺)

disconnected

has degree-3
vertex }

𝑘 − 2 vertices

(a)
𝐺 TS𝑘 (𝐺)𝐺

(b)

𝐶4

𝐶3

Figure: (a) G is Eulerian and TSk(G) is not, (b) G is not Eulerian and
TSk(G) is.
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The Clique’s Size

G has a Kn ⇔ TS(G) has a Kn (n ≥ 3).
If TSk(G) has a K3, so does G.

I2 = {x, a2, . . . , ak}I1 = {a1, a2, . . . , ak}

I3 = {x, z, . . . , ak}I3 = {y, a2, . . . , ak}

There exists a graph G s.t. G has a Kn and TSk(G)
(k ≥ 2) does not .

𝐾𝑛

}≥ 𝑘 vertices
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The Clique’s Size

G has a Kn ⇔ TS(G) has a Kn (n ≥ 3).
If TSk(G) has a K3, so does G.

I2 = {x, a2, . . . , ak}I1 = {a1, a2, . . . , ak}

I3 = {x, z, . . . , ak}I3 = {y, a2, . . . , ak}

There exists a graph G s.t. G has a Kn and TSk(G)
(k ≥ 2) does not .

𝐾𝑛
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Can Forests Be TSk-Graphs?

Open Question

A forest T is a TSk-graph ⇔ ?

Remark: “Being a TSk-graph” is not hereditary even for trees.
For example, K1,3 is not a TS2-graph, but the graph obtained
by replacing an edge of K1,3 by a P4 is.

ab

ac

bd

ae ef ce

T ≃ TS2(G)

a b

cd

ef

G
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Open Questions
Can Forests Be TSk-Graphs?

We have constructed a (complete?) list G of graphs such that if
TS2(G) is a forest, G must not contain any member of G as an
induced subgraph. (Thanks to Jesper JANSSON for helpful
discussions.)

Cn (n ≥ 4),
and the following graphs:
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Can Forests Be TSk-Graphs?

Note
If TS2(G) is a forest , G is a weakly chordal graph (⊆ perfect
graph).

G is C4-free ⇔ G is 2K2-free ⇒ G is Cn-free (n ≥ 6).
G is Cn-free (n ≥ 4) ⇒ G is (Cn, Cn)-free (n ≥ 5) ⇔ G is
weakly chordal (⊆ perfect).
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Proposition 7

Let F be a forest. TS2(F ) is a forest ⇔ F is (2K2, H)-free.

2K2 ≃ C4 H-graph

Consequently,

Let F be a tree. TS2(F ) is a tree ⇔ F ≃ Pn (1 ≤ n ≤ 4).

(⇒) TS2(2K2) ≃ C4 and TS2(H) ≃ C8 + 2K1.
(⇐) If F has a cycle and is 2K2-free, it contains an induced

H-graph.

Question

Let G be a non-acyclic graph. Then TS2(G) is a forest ⇔ ?
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Open Questions
Can Forests Be TSk-Graphs?

Let F be a forest. If TS3(F ) is a forest, F does not contain
any of the following graphs as an induced subgraph

2K2 + K1 H + K1

H ′

Question

If TS3(F ) has a cycle, does F contain one of the above graphs
as an induced subgraph?



24

Avis and Hoang

TS-Reconfiguration
Graphs
Introduction

A More General Framework

Motivation

Note

Realizing
TSk -Reconfiguration
Graphs
Our Results

L(G) and TS2 (G)
Complete Graphs

Paths and Cycles

Complete Bipartite Graphs

Graph Properties: G
vs. TSk(G) and
TS(G)
Our Results

s-Partite

Eulerian

The Clique’s Size

Open Questions
Can Forests Be
TSk -Graphs?

24 References

References

Nishimura, Naomi (2018). “Introduction to
Reconfiguration”. In: Algorithms 11.4, p. 52. DOI:
10.3390/a11040052.
Alavi, Yousef, Mehdi Behzad, Paul Erdős, and
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Realizing TSk-Reconfiguration Graphs
Connected Split Graphs

K S
Figure: A split graph G = (K ∪ S, E).

Recall
Every split graph G has a KS-partition such that |K| =
ω(G)—the maximum size of a clique of G. We denote it by
G = (K ∪ S, E)K-max.
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Realizing TSk-Reconfiguration Graphs
Connected Split Graphs

Proposition 8

A connected G = (K ∪ S, E)K-max is a TSk-graph ⇔ every
v ∈ K has at most k − 1 neighbors in S and every w ∈ S has
exactly one neighbor in K.

(⇐) We construct a graph H such that G = TSk(H).
(⇒) How do we label G here?

K
S

I

Kn

Km

a1a2 . . . ak−1b1

a1a2 . . . ak−1b2

a1a2 . . . ak−1bm

x1
1a2 . . . an1 . . . b1

a1x
1
2 . . . an1 . . . b1

a1a2 . . . x1
n1 . . . b1

xm
1 a2 . . . anm . . . bm

a1a2 . . . xm
nm

. . . bm

G = (K ∪ S, E)K-max

a1 a2 an1 anm
ak−1

x1
1 x1

2 x1
n1 xm

1 xm
2 xm

nm

b1 b2 bm−1 bm

H

Figure: Construction of a graph H such that G ≃ TSk(H).
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Planar
If G is non-planar, so is TS(G). (G ≃ TS1(G))

[Computer search] With respect to the number of
vertices, C7 is the unique smallest planar graph G for
which TS(G) is non-planar.

For each of 99 connected planar graphs G on 6 vertices,
TS(G) is planar.
TS2(C7) is non-planar.

TS2(Pn) is planar for every n ≥ 3.
TS2(Pn) is a subgraph of a n × n grid.

[Computer search] P8 is the largest path P for which
TS(P ) is planar.

TS(P8) is planar, and TS3(P9) is not.

{vi, vj}

{vi+1, vj}

{vi, vj−1}

{vi−1, vj}

{vi, vj+1}



4

Avis and Hoang

Realizing
TSk -Reconfiguration
Graphs
Connected Split Graphs

Graph Properties: G
vs. TSk(G) and
TS(G)

3 Planar

Girth

Graph Properties: G vs. TSk(G) and TS(G)
Planar

Planar
If G is non-planar, so is TS(G). (G ≃ TS1(G))
[Computer search] With respect to the number of
vertices, C7 is the unique smallest planar graph G for
which TS(G) is non-planar.

For each of 99 connected planar graphs G on 6 vertices,
TS(G) is planar.
TS2(C7) is non-planar.

TS2(Pn) is planar for every n ≥ 3.
TS2(Pn) is a subgraph of a n × n grid.

[Computer search] P8 is the largest path P for which
TS(P ) is planar.

TS(P8) is planar, and TS3(P9) is not.

{vi, vj}

{vi+1, vj}

{vi, vj−1}

{vi−1, vj}

{vi, vj+1}



4

Avis and Hoang

Realizing
TSk -Reconfiguration
Graphs
Connected Split Graphs

Graph Properties: G
vs. TSk(G) and
TS(G)

3 Planar

Girth

Graph Properties: G vs. TSk(G) and TS(G)
Planar

74 52 62

73 63 51

31

41

42

72
53

64 75
61

Figure: A subdivision of K3,3 that is contained in TS2(C7). Each
number of the form ab inside a node represents an independent set
{va, vb} of C7 = v1 . . . v7v1.

{vi, vj}

{vi+1, vj}

{vi, vj−1}

{vi−1, vj}

{vi, vj+1}
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{vi, vj}

{vi+1, vj}

{vi, vj−1}

{vi−1, vj}

{vi, vj+1}

135

136

137

138

146

147

148

157

158

168

246

247

248

257

258

268

357

358

368 468

Figure: A planar drawing of TS3(P8). Each number of the form abc
inside a node represents an independent set {va, vb, vc} of
P8 = v1 . . . v8.
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{vi, vj}

{vi+1, vj}

{vi, vj−1}

{vi−1, vj}

{vi, vj+1}

259 369 268

249 359 269

358

368

248

258

257

157

158
168

149

159

169

179

279 379 479 469

Figure: A subdivision of K3,3 that is contained in TS3(P9). Each
number of the form abc inside a node represents an independent set
{va, vb, vc} of P9 = v1 . . . v9.
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Girth

The girth of a graph G is the smallest size of a cycle in G, and
is ∞ if G is acyclic.

Girth
girth(TS(Pn)) is 4 for every n ≥ 5 and ∞ otherwise.

TS(Pn) has a C4 when n ≥ 5. Moreover, since Pn is
bipartite, so is TS(Pn), i.e., it does not contain a C3.

For 1 ≤ k < n/2, girth(TSk(Cn)) = n. If k = n/2, we
have girth(TSk(Cn)) = ∞.

Let I ∈ TSk(G). How to form a cycle in TSk(Cn)
containing I?
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