AFSA B01 Group: SSSS 2022.05

On Reconfiguration Graph of Independent Sets under Token Sliding

arXiv:2203.16861

May 22, 2022

David Avis Duc A. Hoang

Graduate School of Informatics, Kyoto University, Japan avis@i.kyoto-u.ac.jp hoang.duc.8r@kyoto-u.ac.jp

(A research starting from SSSW 2021.04 @ Kyoto)

Outline

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: G vs. $TS_k(G)$ and TS(G)

Our Results s-Partite Eulerian The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

$\begin{array}{l} \mbox{Realizing} \\ \mbox{TS}_k\mbox{-Reconfiguration} \\ \mbox{Graphs} \end{array}$

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

Fulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

Given a graph G = (V, E) and a positive integer k.

	G
Vertex	V(G)
Edge	E(G)

Each vertex of G contains at most one unlabeled token.

Avis and Hoang

TS-Reconfiguration Graphs

) Introduction

A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

Given a graph G = (V, E) and a positive integer k.

	G
Vertex	V(G)
Edge	E(G)

Each vertex of G contains at most one unlabeled token.
 Token Sliding involves moving a token from one vertex to one of its unoccupied adjacent vertices. — ()

) Introduction

A More General Framework Motivation Note

Realizing TS $_k$ -Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

Given a graph G = (V, E) and a positive integer k.

	G	Token Graph $F_k(G)$
Vertex	V(G)	k-Vertex Subsets of $V(G)$
Edge	E(G)	Token Sliding

Well-known variants of $F_k(G)$ involve 15-PUZZLE, PEBBLE MOTION, CHIP-FIRING GAME, ROBOT MOTION, and so on

F2(G) [Alavi, Behzad, Erdős, and Lick 1991]

- Each vertex of *G* contains at most *one unlabeled* token.
- Token Sliding involves moving a token from one vertex to one of its unoccupied adjacent vertices.

Avis and Hoang

TS-Reconfiguration Graphs

) Introduction

A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

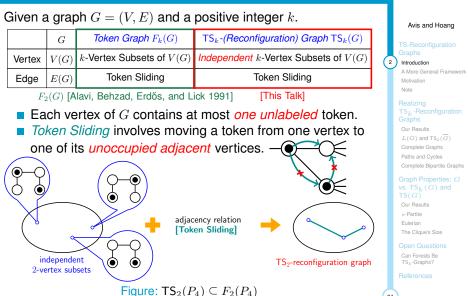
s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?



Avis and Hoang

TS-Reconfiguration Graphs

) Introduction

A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results s-Partite Eulerian The Clique's Siz

Open Questions

Can Forests Be TS_k-Graphs?

References

In this talk, we focus on two graphs:

- **T** $S_k(G)$ whose nodes are independent sets of *size-k*, and
- TS(G) whose nodes are independent sets of *arbitrary size*.

Note

- **T** $S_k(G)$ is an induced subgraph of TS(G).
- **T** $S_k(G)$ may *not* be a component of TS(G).
- k = 1 is not interesting, since $G \simeq \mathsf{TS}_1(G)$ for any graph
 - *G*. Therefore we always consider $k \ge 2$.

Reconfiguration Setting

- Moving from one state/configuration to another
 - The whole state space is not given, but you can, in polynomial-time, check if a state is "valid".
- ... using a pre-defined (reconfiguration) rule
 - You can, in polynomial-time, check if one "valid" state can be transformed to another by using the rule *exactly once*.

Avis and Hoang

Graphs

A More General Framework

Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

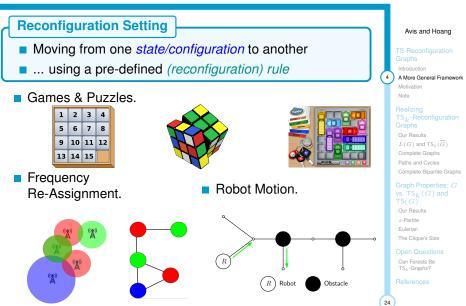
Our Results

s-Partite

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?



- "Reconfiguration of Independent Sets" is one of the most well-studied topics in the Reconfiguration framework.
- Most of the previous research on TS_k(G) have been focused on *designing efficient algorithms* and *showing computational hardness* of several reconfiguration questions [Nishimura 2018].
 - REACHABILITY/SHORTEST TRANSFORMATION: Is there a (shortest) path between two given nodes of TS_k(G)?
 - CONNECTIVITY: Is $TS_k(G)$ connected?
 - and so on.

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework

Motivation

Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

- "Reconfiguration of Independent Sets" is one of the most well-studied topics in the Reconfiguration framework.
- Most of the previous research on TS_k(G) have been focused on *designing efficient algorithms* and *showing computational hardness* of several reconfiguration questions [Nishimura 2018].
 - REACHABILITY/SHORTEST TRANSFORMATION: Is there a (shortest) path between two given nodes of TS_k(G)?
 - CONNECTIVITY: Is $TS_k(G)$ connected?
 - and so on.

Our Goal

We look at $TS_k(G)$ from a purely graph-theoretic viewpoint.

- What are the necessary and sufficient conditions for TS_k(G) to be in some graph class G?
- If G satisfies some property P, does TS(G)/TS_k(G) also satisfy P, and vice versa?

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework

Motivation

Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

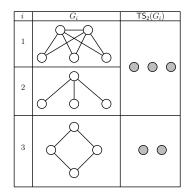
Our Results s-Partite Eulerian The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

If *H* and *G* are isomorphic, then so are $\mathsf{TS}_k(H)$ and $\mathsf{TS}_k(G)$. The reverse does not hold.

If H is an induced subgraph of G, then TS_k(H) is an induced subgraph of TS_k(G). The reverse does not hold.



Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

$\begin{array}{l} \mbox{Realizing} \\ \mbox{TS}_k\mbox{-Reconfiguration} \\ \mbox{Graphs} \end{array}$

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

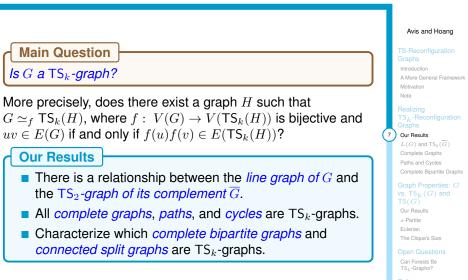
Eulerian

The Clique's Size

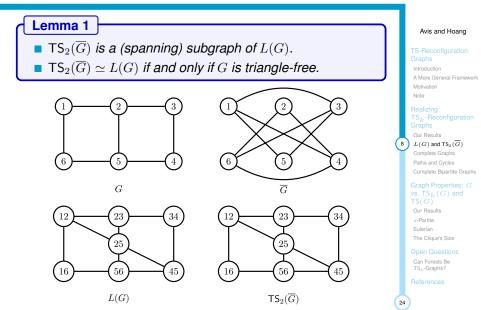
Open Questions

Can Forests Be TS_k-Graphs?

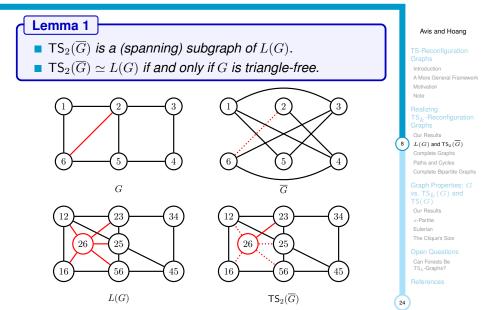
Avis and Hoang Main Question Is G a TS_k -graph? A More General Framework More precisely, does there exist a graph H such that $G \simeq_f \mathsf{TS}_k(H)$, where $f: V(G) \to V(\mathsf{TS}_k(H))$ is bijective and $uv \in E(G)$ if and only if $f(u)f(v) \in E(\mathsf{TS}_k(H))$? Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs Our Besults «-Partite The Clique's Size Can Forests Be TS: -Graphs? 24



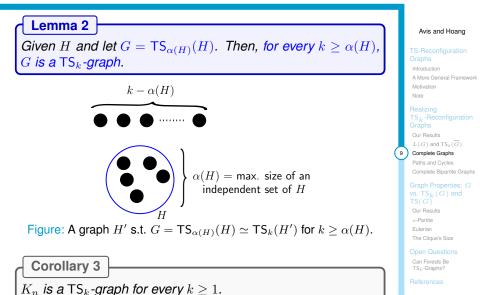
Realizing TS_k -**Reconfiguration Graphs** Line graph L(G) and TS_2 -graph $TS_2(\overline{G})$



Realizing TS_k -**Reconfiguration Graphs** Line graph L(G) and TS_2 -graph $TS_2(\overline{G})$

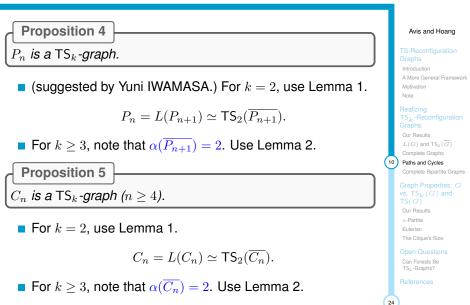


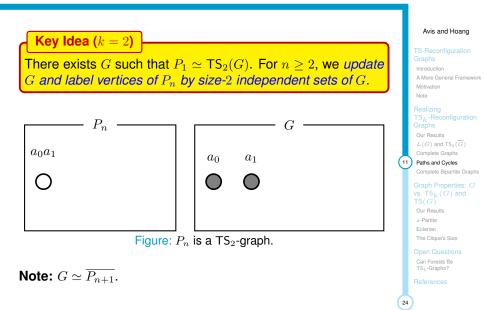
$\underset{\text{Complete Graphs}}{\text{Realizing TS}_k} \text{-} \text{Reconfiguration Graphs}$

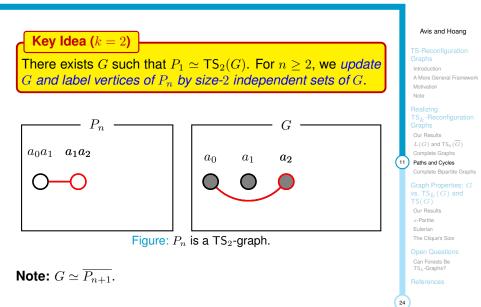


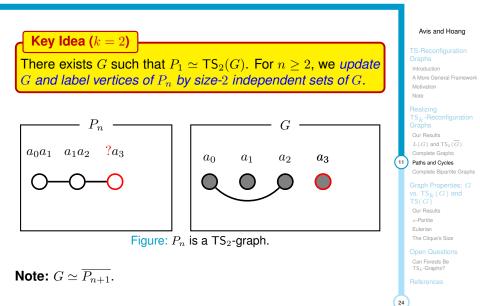
24

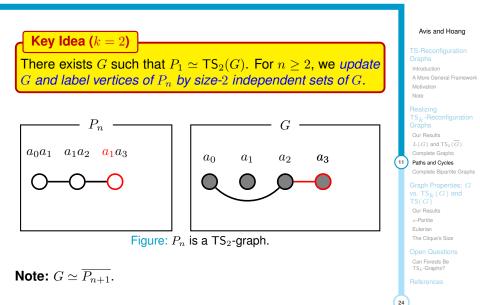
Realizing TS_k -Reconfiguration Graphs

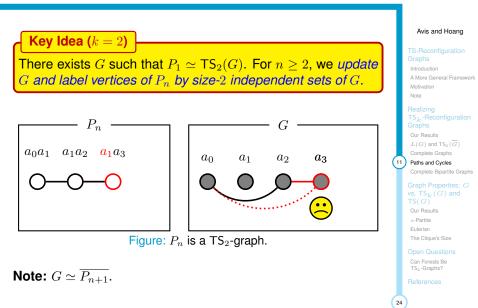


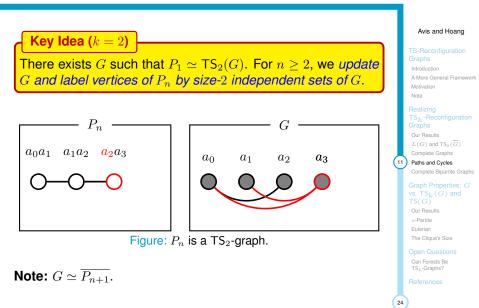


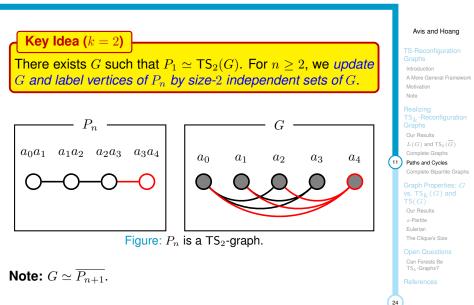












Proposition 6Avia $K_{m,n} \ (m \le n)$ is a TS_k -graph \Leftrightarrow either m = 1 and $n \le k$ orTS-Ref
Graphem = n = 2.Introduction of the set of the

(\Leftarrow) Since $K_{2,2} \simeq C_4$, the case m = n = 2 is trivial. If m = 1 and $n \le k$, we construct *G* such that $K_{m,n} \simeq \mathsf{TS}_k(G)$.

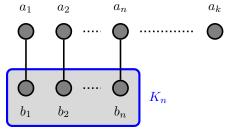


Figure: A graph G such that $K_{1,n} \simeq \mathsf{TS}_k(G)$ where $n \leq k$.

Avis and Hoang

S-Reconfiguration Graphs

A More General Frameworl Motivation Note

Realizing TS_k -Reconfiguration GraphsOur Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipareties Craphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Result

s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

(⇒) Suppose to the contrary that there exists *G* such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and $n \ge k+1$ or $m \ge 2$ and n > 2.

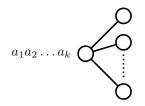


Figure: $K_{m,n}$ is not a TS_k-graph when m = 1 and $n \ge k + 1$.

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k -Reconfiguration Graphs Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs

Paths and Cycles

Complete Bipartite Graphs

Graph Properties: G vs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and n > k + 1 or

 $\mathbf{x}a_2 \dots a_k$

 $ua_2 \dots a_k$

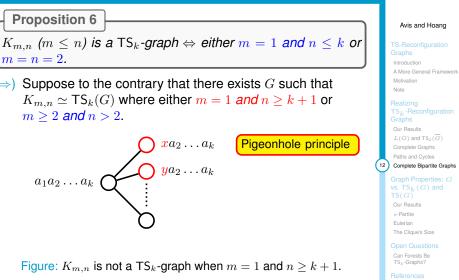
Figure: $K_{m,n}$ is not a TS_k-graph when m = 1 and n > k + 1.

Proposition 6

 $m \geq 2$ and $n \geq 2$.

 $a_1a_2\ldots a_k$

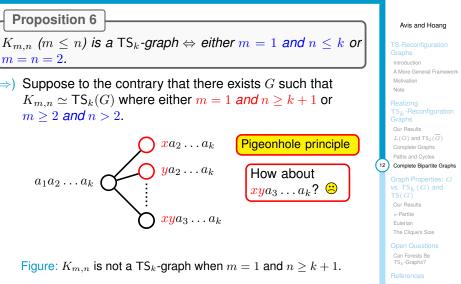
m = n = 2.



Pigeonhole principle

Proposition 6

m = n = 2.



 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and n > k + 1 or $m \geq 2$ and $n \geq 2$.

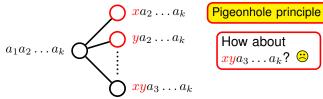
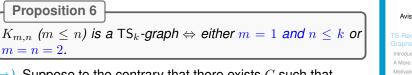
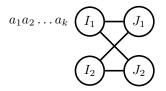


Figure: $K_{m,n}$ is not a TS_k-graph when m = 1 and n > k + 1.



(⇒) Suppose to the contrary that there exists *G* such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and $n \ge k + 1$ or $m \ge 2$ and n > 2.



How	can	we
label	the	rest?

Figure: $K_{m,n}$ is not a TS_k-graph when $m \ge 2$ and n > 2.

Avis and Hoang

TS-Reconfiguration Graphs Introduction A More General Framework

A More General Framewor Motivation Note

 $\begin{array}{l} \mbox{Realizing} \\ \mbox{TS}_k\mbox{-Reconfiguration} \\ \mbox{Graphs} \\ \mbox{Our Results} \\ \mbox{L}(G) \mbox{ and } \mbox{TS}_2(\overline{G}) \\ \mbox{Complete Graphs} \end{array}$

Paths and Cycles Complete Bipartite Graphs

Graph Properties: G vs. $TS_k(G)$ and TS(G)Our Results

s-Partite

Eulerian

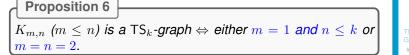
The Clique's Size

Open Questions

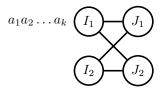
Can Forests Be TS_k-Graphs?

References

24

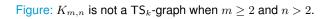


(⇒) Suppose to the contrary that there exists *G* such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and $n \ge k + 1$ or $m \ge 2$ and n > 2.



How can we label the rest?

At most two tokens can move from their original positions



Avis and Hoang

S-Reconfiguration Graphs

A More General Framework Motivation Note

Realizing TS k-Reconfiguration Graphs Our Results L(G) and TS $_2(\overline{G})$ Complete Graphs

Paths and Cycles Complete Bipartite Graphs

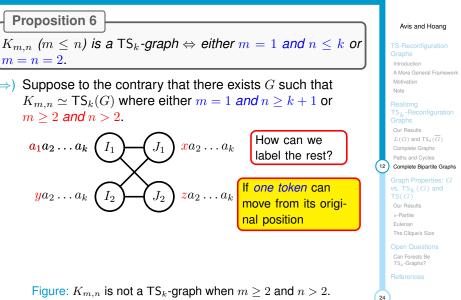
```
Graph Properties: G
vs. TS_k(G) and TS(G)
Our Results
s-Partite
Eulerian
The Clique's Size
```

Open Questions

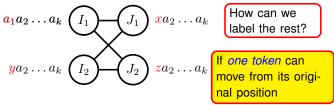
Can Forests Be TS_k-Graphs?

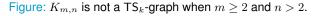
Proposition 6

m = n = 2.



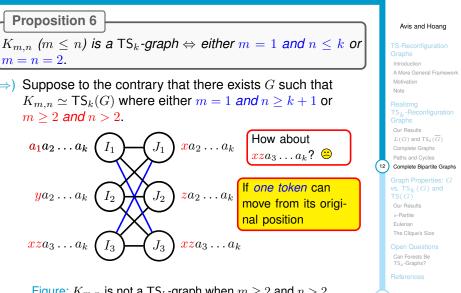
 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and n > k+1 or $m \geq 2$ and $n \geq 2$.





Proposition 6

m = n = 2.



24

 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and n > k+1 or $m \geq 2$ and $n \geq 2$.

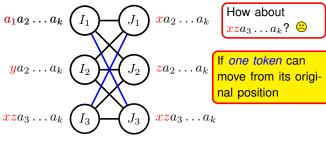
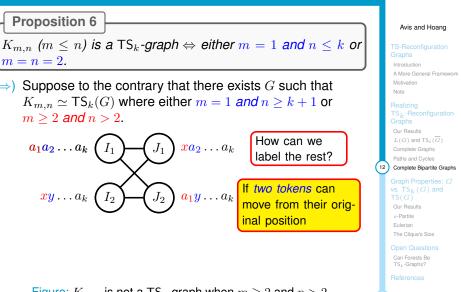


Figure: $K_{m,n}$ is not a TS_k-graph when m > 2 and n > 2.

Proposition 6

m = n = 2.



24

 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$ where either m = 1 and n > k+1 or $m \geq 2$ and $n \geq 2$.

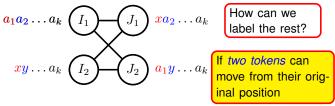
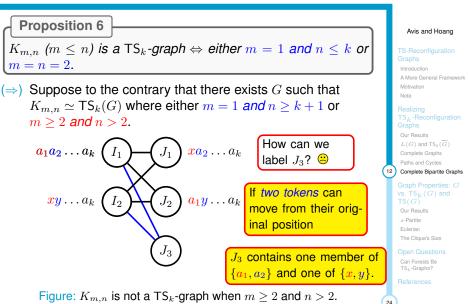
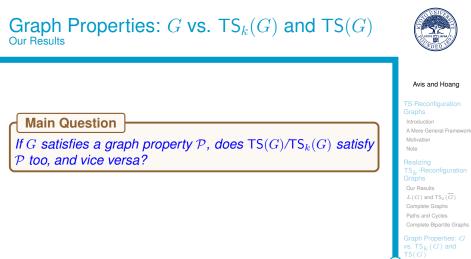


Figure: $K_{m,n}$ is not a TS_k-graph when m > 2 and n > 2.





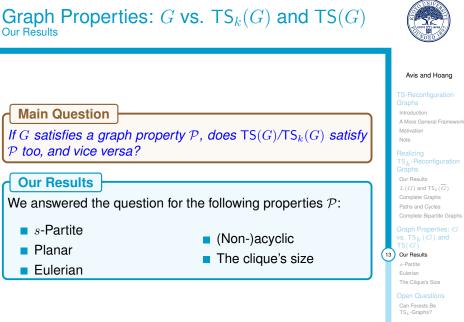
Our Results

13

s-Partite Eulerian The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?



References

\mathcal{P}	G	(a)	(b)	(C)	(d)
<i>s</i> -partite	general	ves no			
planar	P_n	yes, iff $n \le 8$		yes, iff $k = 2, n \ge 3$ or $k \ge 3, n \le 8$	
	tree	$\frac{1}{2} \text{ or } k \ge 3, n \ge 6$ $\text{yes, iff } n \le 7$			
	C _n	yes, iff $n \le 6$			
Eulerian	C_n	no	yes	yes	
	general	no	yes	no	no
acyclic	P_n	yes, iff $n \le 4$			
non-acyclic	C_n	no yes, iff $1 \le k < n/2$			
having K_s	general	yes		no	yes

Table: Some properties of (reconfiguration) graphs. Here n = |V(G)|. There are four cases: (a) $\mathcal{P}(G) \Rightarrow \mathcal{P}(\mathsf{TS}(G))$, (b) $\mathcal{P}(\mathsf{TS}(G)) \Rightarrow \mathcal{P}(G)$, (c) $\mathcal{P}(G) \Rightarrow \mathcal{P}(\mathsf{TS}_k(G))$, and (d) $\mathcal{P}(\mathsf{TS}_k(G)) \Rightarrow \mathcal{P}(G)$. ($\mathcal{P}(G) \Rightarrow \mathcal{P}(H)$ means if *G* satisfies property \mathcal{P} then *H* satisfies \mathcal{P} .)

Avis and Hoang

TS-Reconfiguration Graphs

A More General Framework Motivation Note

Realizing TS_k -Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

s-Partite Eulerian The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

References

A proper *s*-coloring $f: V(G) \to \{0, \ldots, s-1\}$ of *G* is a mapping such that $f(u) \neq f(v)$ if $uv \in E(G)$. The *chromatic* number $\chi(G)$ of a graph *G* is the smallest *s* such that *G* has a proper *s*-coloring.

s-Partite

■ *G* is *s*-partite \Leftrightarrow TS(*G*) is *s*-partite. In other words, $\chi(G) = \chi(TS(G)) \ge \chi(TS_k(G))$.

• (by Masahiro TAKAHASHI.) Let $f: V(G) \rightarrow \{0, \dots, s-1\}$ be a proper *s*-coloring of *G*. Then $g: V(\mathsf{TS}(G)) \rightarrow \{0, \dots, s-1\}$ defined by

 $g(I) = \sum_{v \in I} f(v) \mod s$ is a proper *s*-coloring of $\mathsf{TS}(G)$.

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k -Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $\mathsf{TS}_k(G)$ and $\mathsf{TS}(G)$

Our Results

s-Partite

Eulerian The Clique's 9

Open Questions

Can Forests Be TS_k-Graphs?

References

A proper *s*-coloring $f : V(G) \to \{0, \ldots, s-1\}$ of *G* is a mapping such that $f(u) \neq f(v)$ if $uv \in E(G)$. The *chromatic* number $\chi(G)$ of a graph *G* is the smallest *s* such that *G* has a proper *s*-coloring.

■ *G* is *s*-partite \Leftrightarrow TS(*G*) is *s*-partite. In other words, $\chi(G) = \chi(TS(G)) \ge \chi(TS_k(G)).$

> • (by Masahiro TAKAHASHI.) Let $f: V(G) \rightarrow \{0, \dots, s-1\}$ be a proper *s*-coloring of *G*. Then $g: V(\mathsf{TS}(G)) \rightarrow \{0, \dots, s-1\}$ defined by

 $g(I) = \sum_{v \in I} f(v) \mod s$ is a proper *s*-coloring of TS(*G*).

- There exists a graph G such that $\chi(\mathsf{TS}_k(G)) < \chi(G)$.
 - Take a graph *G* having a vertex *v* that is adjacent to all other vertices and let G' = G v. We have $\chi(G) = \chi(G') + 1 \ge \chi(\mathsf{TS}_k(G')) + 1 = \chi(\mathsf{TS}_k(G)) + 1$.

A More General Framework Motivation Note

Realizing TS_k -Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: G vs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

Eulerian The Clique's Size

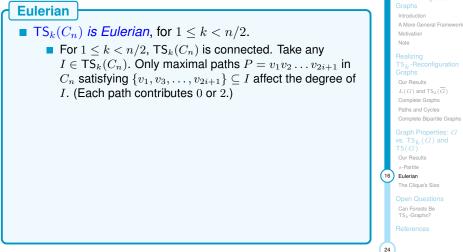
Open Questions

Can Forests Be TS_k-Graphs?

References

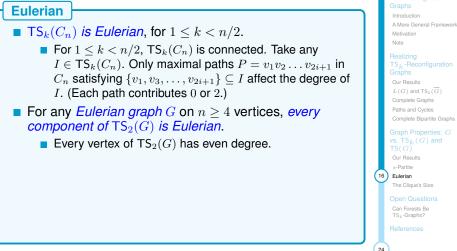
Avis and Hoang

A graph G is *Eulerian* \Leftrightarrow G is connected and all vertices of G have even degree.



Graph Properties: G vs. $TS_k(G)$ and TS(G)Fulerian

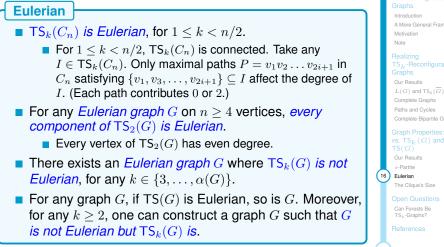
A graph G is *Eulerian* \Leftrightarrow G is connected and all vertices of G have even degree.



Avis and Hoang

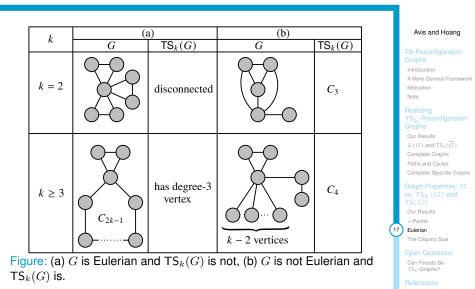
Graph Properties: G vs. $\mathsf{TS}_k(G)$ and $\mathsf{TS}(G)$

A graph *G* is *Eulerian* \Leftrightarrow *G* is connected and all vertices of *G* have even degree.



Avis and Hoang

TS-Reconfiguration



Graph Properties: G vs. $\mathsf{TS}_k(G)$ and $\mathsf{TS}(G)$

The Clique's Size The Clique's Size Avis and Hoang • G has a $K_n \Leftrightarrow \mathsf{TS}(G)$ has a K_n $(n \geq 3)$. If $\mathsf{TS}_k(G)$ has a K_3 , so does G. A More General Framework $I_1 = \{a_1, a_2, \dots, a_k\}$ $I_2 = \{x, a_2, \dots, a_k\}$ Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles $I_3 = \{y, a_2, \dots, a_k\}$ $I_3 = \{x, z, \dots, a_k\}$ Complete Bipartite Graphs Our Results «-Partite The Clique's Size Can Forests Be TS: -Graphs? 24

Graph Properties: G vs. $TS_k(G)$ and TS(G)

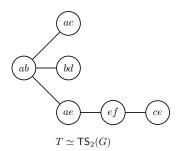
The Clique's Size Avis and Hoang • G has a $K_n \Leftrightarrow \mathsf{TS}(G)$ has a K_n $(n \geq 3)$. If $\mathsf{TS}_k(G)$ has a K_3 , so does G. A More General Framework $I_1 = \{a_1, a_2, \dots, a_k\}$ $I_2 = \{x, a_2, \dots, a_k\}$ Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles $I_3 = \{y, a_2, \dots, a_k\}$ $I_3 = \{x, z, \dots, a_k\}$ There exists a graph G s.t. G has a K_n and $\mathsf{TS}_k(G)$ $(k \geq 2)$ does not. Our Results > k vertices «-Partite The Clique's Size Can Forests Be TS: -Graphs? K_n 24

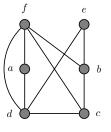
Graph Properties: G vs. $\mathsf{TS}_k(G)$ and $\mathsf{TS}(G)$ The Clique's Size

Open Question

A forest T is a TS_k -graph \Leftrightarrow ?

Remark: "Being a TS_k -graph" is not hereditary even for trees. For example, $K_{1,3}$ is not a TS_2 -graph, but the graph obtained by replacing an edge of $K_{1,3}$ by a P_4 is.





G

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k -Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)Our Results *s*-Partite Eulerian The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

References

Avis and Hoang

A More General Framework

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles

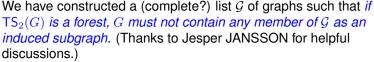
Our Results

«-Partite

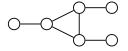
The Clique's Size

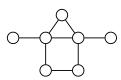
Can Forests Be TS1-Graphs?

24

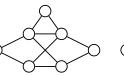


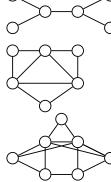
- $\Box \overline{C_n}$ (n > 4),
- and the following graphs:





 $\overline{}$





Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

Eulerian

The Clique's Size

Open Questions

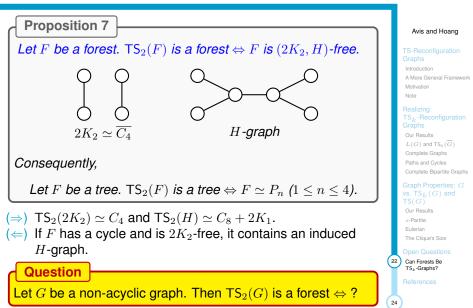
Can Forests Be TS_k-Graphs?

References

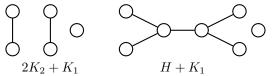
Note f
$$TS_2(G)$$
 is a forest, G is a weakly chordal graph (\subseteq perfect graph).

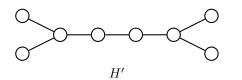
- G is $\overline{C_4}$ -free \Leftrightarrow G is $2K_2$ -free \Rightarrow G is C_n -free $(n \ge 6)$.
- G is $\overline{C_n}$ -free $(n \ge 4) \Rightarrow G$ is $(C_n, \overline{C_n})$ -free $(n \ge 5) \Leftrightarrow G$ is weakly chordal (\subseteq perfect).

Open Questions Can Forests Be TS_k-Graphs?



■ Let *F* be a forest. If TS₃(*F*) is a forest, *F* does not contain any of the following graphs as an induced subgraph





Question

If $TS_3(F)$ has a cycle, does F contain one of the above graphs as an induced subgraph?

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

$\begin{array}{l} \mbox{Realizing} \\ \mbox{TS}_k\mbox{-Reconfiguration} \\ \mbox{Graphs} \end{array}$

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: G vs. $TS_k(G)$ and TS(G)

Our Results

s-Partite

Eulerian

The Clique's Size

Open Questions

Can Forests Be TS_k-Graphs?

References

References

Avis and Hoang

TS-Reconfiguration Graphs

Introduction A More General Framework Motivation Note

Realizing TS_k-Reconfiguration Graphs

Our Results L(G) and $TS_2(\overline{G})$ Complete Graphs Paths and Cycles Complete Bipartite Graphs

Graph Properties: Gvs. $TS_k(G)$ and TS(G)

Our Results s-Partite Eulerian The Clique's Size

.....

Open Questions

Can Forests Be TS_k-Graphs?

24 References

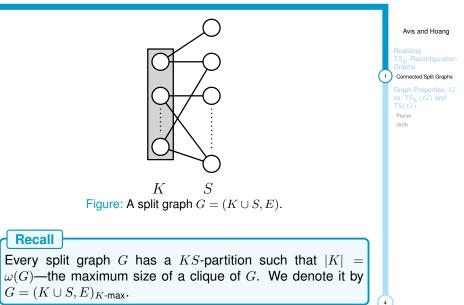
24

Nishimura, Naomi (2018). "Introduction to Reconfiguration". In: *Algorithms* 11.4, p. 52. DOI: 10.3390/a11040052.

Alavi, Yousef, Mehdi Behzad, Paul Erdős, and Don R. Lick (1991). "Double Vertex Graphs". In: *Journal of Combinatorics, Information & System Sciences* 16.1, pp. 37–50.

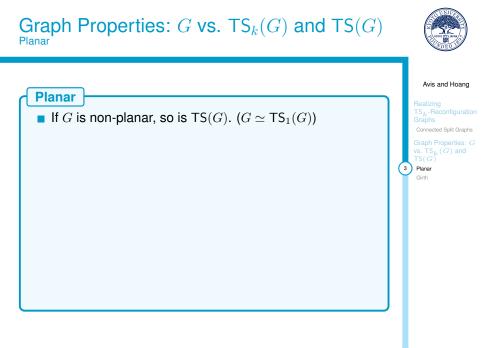
Part I Appendix

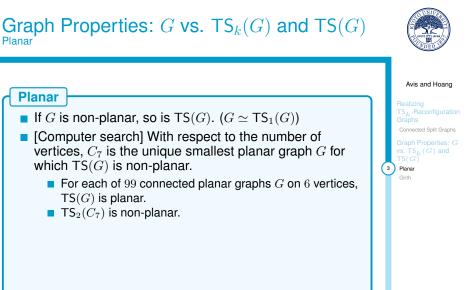
Realizing TS_k-Reconfiguration Graphs

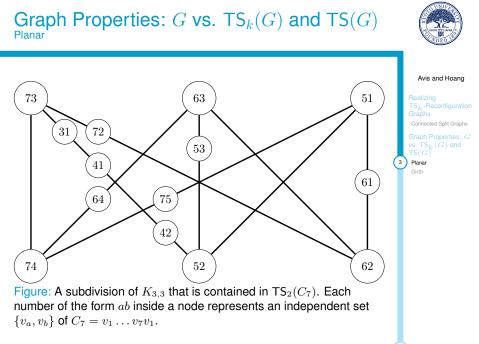


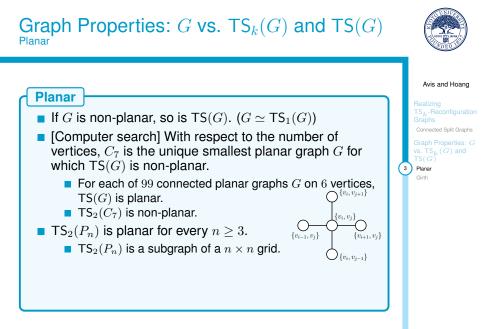
Realizing TS_k-Reconfiguration Graphs **Connected Split Graphs Proposition 8** Avis and Hoang A connected $G = (K \cup S, E)_{K-max}$ is a TS_k-graph \Leftrightarrow every $v \in K$ has at most k - 1 neighbors in S and every $w \in S$ has Connected Split Graphs exactly one neighbor in K. (\Leftarrow) We construct a graph H such that $G = \mathsf{TS}_k(H)$. (\Rightarrow) How do we label G here? a_1 a_2 $a_{n_1} a_{n_m} a_{k-1}$ $x_1^1 a_2 \dots a_{n_1} \dots b_1$ $\sum_{a_1x_2^1\dots a_{n_1}\dots b_1}$ $a_1 a_2 \dots a_{k-1} b_1$ $a_1 a_2 \dots a_{k-1} b_2$ $a_1 a_2 \dots x_{n_1}^1 \dots b_1$ K_n $\mathbf{y}_{\mathbf{x}_{1}^{m}a_{2}\ldots a_{n_{m}}\ldots b_{m}}$ $a_1a_2\ldots a_{k-1}b_m$ $a_1a_2\ldots x_{n_m}^m\ldots b_m$ K_m K h b_2 b_{m-1} b_m $G = (K \cup S, E)_{K-max}$ Η

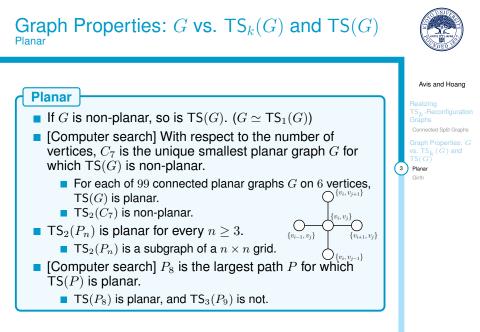
Figure: Construction of a graph *H* such that $G \simeq \mathsf{TS}_k(H)$.







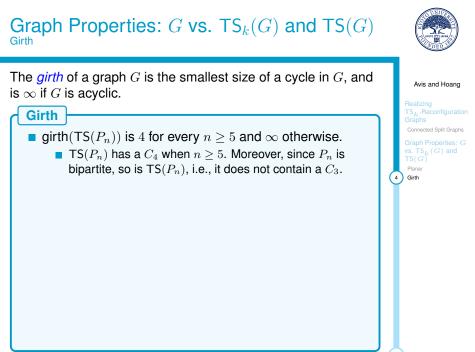


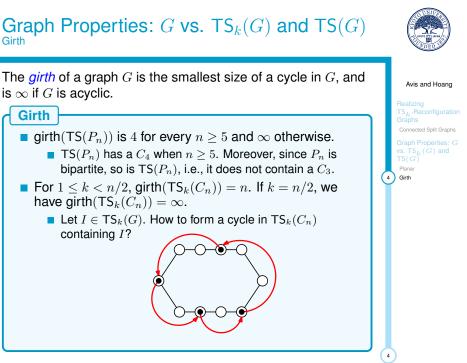


Graph Properties: G vs. $TS_k(G)$ and TS(G)Planar Avis and Hoang Connected Split Graphs Planar 468 Figure: A planar drawing of $TS_3(P_8)$. Each number of the form *abc* inside a node represents an independent set $\{v_a, v_b, v_c\}$ of $P_8 = v_1 \dots v_8.$

Graph Properties: G vs. $TS_k(G)$ and TS(G)Planar Avis and Hoang Connected Split Graphs Planar Figure: A subdivision of $K_{3,3}$ that is contained in TS₃(P_9). Each

number of the form *abc* inside a node represents an independent set $\{v_a, v_b, v_c\}$ of $P_9 = v_1 \dots v_9$.





Girth