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Some Definitions
Two vertex subsets 𝐼 and 𝐽 of a graph 𝐺 are adjacent under Token
Jumping (TJ) if there exist 𝑢, 𝑣 ∈ 𝑉 (𝐺) such that 𝐼 \ 𝐽 = {𝑢} and
𝐽 \ 𝐼 = {𝑣}. If 𝑢𝑣 ∈ 𝐸 (𝐺), we say that 𝐼 and 𝐽 are adjacent under Token
Sliding (TS).

Token SlidingToken Jumping
Figure: An example of TS and TJ.

An independent set (IS) of 𝐺 is a vertex subset 𝐼 ⊆ 𝑉 (𝐺) such that for
each 𝑢, 𝑣 ∈ 𝐼, we have 𝑢𝑣 ∉ 𝐸 (𝐺).
A double-broom graph 𝐷𝑛1,𝑛,𝑛2 is the graph obtained by attaching 𝑛1
leaves at one endpoint of 𝑃𝑛 and 𝑛2 leaves at the other endpoint.
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Token Sliding Graphs
Given a graph 𝐺 and a positive integer 𝑘 .

The TS𝑘-graph of 𝐺, denoted by TS𝑘 (𝐺), is the graph whose nodes are
independent sets of 𝐺 and edges are defined under Token Sliding (TS).

Avis and Hoang 2022

TS𝑘 (𝐺) is a forest ⇔ 𝐺 satisfies?

The question remains open even when 𝐺
is a forest.
Known: If 𝐺 is a forest, TS2(𝐺) is a
forest ⇔ 𝐺 has no induced 2𝐾2 and
𝐷2,2,2.
Conjecture: If 𝐺 is a forest, TS𝑘 (𝐺)
(𝑘 ≥ 3) is a forest ⇔ 𝐺 has no induced
2𝐾2 + (𝑘 − 2)𝐾1, 𝐷2,2,2 + (𝑘 − 2)𝐾1, and
𝐷2,4,2 + (𝑘 − 3)𝐾1.

Figure: TS2 (𝐶5) .
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Token Sliding Graphs
Given a graph 𝐺 and a positive integer 𝑘 .

The TS𝑘-graph of 𝐺, denoted by TS𝑘 (𝐺), is the graph whose nodes are
independent sets of 𝐺 and edges are defined under Token Sliding (TS).

Avis and Hoang 2022

Given a graph 𝐺, what are the necessary and
sufficient conditions for 𝐺 to be a TS𝑘-graph
(of some graph 𝐻)?

Solved for complete graphs, paths,
cycles, complete bipartite graphs, and
connected split graphs.
How about other graphs?

Figure: TS2 (𝐶5) .
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Distance-𝑑 Independent Set Reconfiguration
A distance-𝑑 independent set (D𝑑IS) of 𝐺 a vertex subset 𝐼 ⊆ 𝑉 (𝐺) such that
for each 𝑢, 𝑣 ∈ 𝐼, their distance (i.e., the length of a shortest 𝑢𝑣-path) in 𝐺 is
at least 𝑑, for some given positive integer 𝑑 ≥ 2. 𝐼 is a D2IS if and only if 𝐼 is
an IS.

Distance-𝑑 Independent Set Reconfiguration (D𝑑ISR) under R (𝑑 ≥ 2)
Input: (𝐺, 𝐼, 𝐽,R) where 𝐼, 𝐽 are D𝑑ISs of 𝐺 and R ∈ {TS, TJ}
Question: Does there exist a sequence of adjacent D𝑑ISs under R between
𝐼 and 𝐽?

It has been shown in [Hoang 2022a] that:
On chordal graphs, under TJ, D𝑑ISR is in P when 𝑑 is even and
PSPACE-complete when 𝑑 is odd.
On split graphs, under TS, D𝑑ISR is PSPACE-complete when 𝑑 = 2 and
in P when 𝑑 ≥ 3, while under TJ, it is in P when 𝑑 ≠ 3 and is
PSPACE-complete when 𝑑 = 3.
D𝑑ISR remains PSPACE-complete for 𝑑 ≥ 3 on general graphs, perfect
graphs, and planar graphs of maximum degree 3 and bounded bandwidth.
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Distance-𝑑 Independent Set Reconfiguration

Hoang 2022a

Is D𝑑ISR under TS on trees in P for 𝑑 ≥ 3?

Let (𝑇, 𝐼, 𝐽, TS, 𝑑) be a D𝑑ISR’s instance under TS on a tree 𝑇 . Suppose that
for every token 𝑡 on some 𝑢 ∈ 𝐼 ∪ 𝐽, there is a TS-sequence in 𝑇 that slides 𝑡 to
one of 𝑢’s neighbors, i.e., every token can be moved out of its original position.

For 𝑑 = 2, it is always a yes-instance, and the problem can be solved in
linear time [Demaine et al. 2015].
For 𝑑 ≥ 3, there exists a no-instance.

𝑢

Figure: A no-instance (𝑇 , 𝐼 , 𝐽 , TS, 𝑑) (𝑑 ≥ 3) where every token is “movable”. Tokens in 𝐼 (resp., 𝐽 ) are
marked with the black (resp. gray) color. All tokens are of distance 𝑑 − 1 from 𝑢.
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𝑘-Path Vertex Cover Reconfiguration
A 𝑘-path vertex cover (𝑘-PVC) of 𝐺 is a vertex subset 𝐼 ⊆ 𝑉 (𝐺) such that
each path on 𝑘 vertices contains at least one vertex in 𝐼, for some given
positive integer 𝑘 ≥ 2. 𝐼 is a 2-PVC if and only if 𝑉 (𝐺) \ 𝐼 is an IS.
𝑘-Path Vertex Cover Reconfiguration (𝑘-PVCR) under R
Input: (𝐺, 𝐼, 𝐽,R) where 𝐼, 𝐽 are 𝑘-PVCs of 𝐺 and R ∈ {TS, TJ}
Question: Does there exist a sequence of adjacent 𝑘-PVCs under R between
𝐼 and 𝐽?

Hoang, Suzuki, and Yagita 2022

What is the complexity of 𝑘-PVCR
under TS/TJ on bipartite graphs?
under TS on trees?

𝑘-PVCR under TJ on trees is in P [Hoang, Suzuki, and Yagita 2022].
The second question has been partially answered in [Hoang 2022b] on
caterpillars (i.e., trees obtained by attaching leaves to a path) for 𝑘 ≥ 4.
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