Open Problems

Duc A．Hoang
Graduate School of Informatics，Kyoto University hoang．duc．8r＠kyoto－u．ac．jp
AFSA B01 SSSS 2022.09

September 30， 2022

1 Token Sliding Graphs
2 Distance－d Independent Set Reconfiguration
3 k－Path Vertex Cover Reconfiguration

Some Definitions

■ Two vertex subsets I and J of a graph G are adjacent under Token Jumping (TJ) if there exist $u, v \in V(G)$ such that $I \backslash J=\{u\}$ and $J \backslash I=\{v\}$. If $u v \in E(G)$, we say that I and J are adjacent under Token Sliding (TS).

Token Jumping

Token Sliding

Figure: An example of TS and TJ.

- An independent set (IS) of G is a vertex subset $I \subseteq V(G)$ such that for each $u, v \in I$, we have $u v \notin E(G)$.
■ A double-broom graph $D_{n_{1}, n, n_{2}}$ is the graph obtained by attaching n_{1} leaves at one endpoint of P_{n} and n_{2} leaves at the other endpoint.

Token Sliding Graphs

Given a graph G and a positive integer k.
■ The TS_{k}-graph of G, denoted by $\mathrm{TS}_{k}(G)$, is the graph whose nodes are independent sets of G and edges are defined under Token Sliding (TS).

Avis and Hoang 2022

$\mathrm{TS}_{k}(G)$ is a forest $\Leftrightarrow G$ satisfies?

- The question remains open even when G is a forest.
■ Known: If G is a forest, $\mathrm{TS}_{2}(G)$ is a forest $\Leftrightarrow G$ has no induced $2 K_{2}$ and $D_{2,2,2}$.
■ Conjecture: If G is a forest, $\mathrm{TS}_{k}(G)$ ($k \geq 3$) is a forest $\Leftrightarrow G$ has no induced $2 K_{2}+(k-2) K_{1}, D_{2,2,2}+(k-2) K_{1}$, and

Figure: $\mathrm{TS}_{2}\left(C_{5}\right)$. $D_{2,4,2}+(k-3) K_{1}$.

Token Sliding Graphs

Given a graph G and a positive integer k.
■ The TS_{k}-graph of G, denoted by $\mathrm{TS}_{k}(G)$, is the graph whose nodes are independent sets of G and edges are defined under Token Sliding (TS).

Avis and Hoang 2022

Given a graph G, what are the necessary and sufficient conditions for G to be a TS_{k}-graph (of some graph H)?

- Solved for complete graphs, paths, cycles, complete bipartite graphs, and connected split graphs.
- How about other graphs?

Figure: $\mathrm{TS}_{2}\left(C_{5}\right)$.

Distance- d Independent Set Reconfiguration

A distance-d independent set (DdIS) of G a vertex subset $I \subseteq V(G)$ such that for each $u, v \in I$, their distance (i.e., the length of a shortest uv-path) in G is at least d, for some given positive integer $d \geq 2$. I is a D2IS if and only if I is an IS.
Distance- d Independent Set Reconfiguration (D d ISR) under $\mathrm{R}(d \geq 2)$
Input: (G, I, J, R) where I, J are $\mathrm{D} d \mathrm{ISs}$ of G and $\mathrm{R} \in\{\mathrm{TS}, \mathrm{TJ}\}$
Question: Does there exist a sequence of adjacent $\mathrm{D} d \mathrm{ISs}$ under R between I and J ?

It has been shown in [Hoang 2022a] that:

- On chordal graphs, under TJ, D $d \mathrm{ISR}$ is in P when d is even and PSPACE-complete when d is odd.
■ On split graphs, under TS, D d ISR is PSPACE-complete when $d=2$ and in P when $d \geq 3$, while under TJ , it is in P when $d \neq 3$ and is PSPACE-complete when $d=3$.
- D d ISR remains PSPACE-complete for $d \geq 3$ on general graphs, perfect graphs, and planar graphs of maximum degree 3 and bounded bandwidth.

Distance- d Independent Set Reconfiguration

Hoang 2022a

Is $\mathrm{D} d$ ISR under TS on trees in P for $d \geq 3$?

Let $(T, I, J, \mathrm{TS}, d)$ be a $\mathrm{D} d \mathrm{ISR}$'s instance under TS on a tree T. Suppose that for every token t on some $u \in I \cup J$, there is a TS-sequence in T that slides t to one of u 's neighbors, i.e., every token can be moved out of its original position.

■ For $d=2$, it is always a yes-instance, and the problem can be solved in linear time [Demaine et al. 2015].
■ For $d \geq 3$, there exists a no-instance.

Figure: A no-instance $(T, I, J, \mathrm{TS}, d)(d \geq 3)$ where every token is "movable". Tokens in I (resp., $J)$ are marked with the black (resp. gray) color. All tokens are of distance $d-1$ from u.

k-Path Vertex Cover Reconfiguration

A k-path vertex cover $(k-P V C)$ of G is a vertex subset $I \subseteq V(G)$ such that each path on k vertices contains at least one vertex in I, for some given positive integer $k \geq 2$. I is a 2-PVC if and only if $V(G) \backslash I$ is an IS.
k-Path Vertex Cover Reconfiguration (k-PVCR) under R
Input: (G, I, J, R) where I, J are k-PVCs of G and $\mathrm{R} \in\{\mathrm{TS}, \mathrm{TJ}\}$
Question: Does there exist a sequence of adjacent k-PVCs under R between I and J ?

Hoang, Suzuki, and Yagita 2022

What is the complexity of k-PVCR

- under TS/TJ on bipartite graphs?
- under TS on trees?

■ k-PVCR under TJ on trees is in P [Hoang, Suzuki, and Yagita 2022].

- The second question has been partially answered in [Hoang 2022b] on caterpillars (i.e., trees obtained by attaching leaves to a path) for $k \geq 4$.

References

R
Avis, D. and D. A. Hoang (2022). "On Reconfiguration Graph of Independent Sets under Token Sliding". In: arXiv preprint. arXiv:
2203.16861.

R
Hoang, D. A. (2022a). "On The Complexity of Distance- d Independent Set Reconfiguration". In: arXiv preprint. arXiv: 2208.07199.
Hoang, D. A. (2022b). "TS-Reconfiguration of k-Path Vertex Covers in Caterpillars for $k \geq 4$ ". In: arXiv preprint. arXiv: 2203.11667. Hoang, D. A., A. Suzuki, and T. Yagita (2022). "Reconfiguring k-Path Vertex Covers". In: IEICE Transactions on Information and Systems E105-D.7, pp. 1258-1272. Doi: 10.1587/transinf. 2021 EDP7177. Demaine, E. D., M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi, R. Uehara, and T. Yamada (2015). "Linear-Time Algorithm for Sliding Tokens on Trees". In: Theoretical Computer Science 600, pp. 132-142. Doi: 10.1016/j.tcs.2015.07.037.

