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Examples of Reconfiguration

© Anna Lubiw, in Part I of her tutorial “Reconfiguration and geometry”
at CoRe2019.
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We are given ...

The Input

A description of configurations.
A pre-defined reconfiguration rule.

Note
The whole set of configurations is not part of the input.
Each (valid) reconfiguration step involves transforming

one configuration (into another) by applying the given
reconfiguration rule exactly once. A sequence of valid
reconfiguration steps is called a reconfiguration
sequence.
There is a polynomial-time algorithm to check

whether a given object is actually a configuration.
given two configurations, whether one can be obtained

from the other by a single valid reconfiguration step.

1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15-PUZZLE [Story 1879].
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We are given ...

Reconfiguration Graphs

Each configuration corresponds to a vertex/node.
The reconfiguration rule defines adjacent nodes.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

1 2 3 4

5 6 8

9 10 7 12

13 14 11 15

1 2 3 4

5 6 7 8

9 10 12

13 14 11 15

Part of the reconfiguration graph for 15-PUZZLE.
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Given a reconfiguration graph, we may ask ...
REACHABILITY: Is there a path between two given nodes?
SHORTEST TRANSFORMATION: If REACHABILITY is yes,

can we find a shortest path?
BOUNDED TRANSFORMATION: Is there a path of length at

most some given positive integer ` between two given
nodes?
CONNECTIVITY: Is there a path between any two given

nodes?
DIAMETER: Is the maximum distance between any two

nodes bounded?
and so on.

Note: Equivalence of Notations

A path between two nodes of the reconfiguration graphs is also
a reconfiguration sequence between the corresponding config-
urations.
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Remind: Independent Set and Vertex Cover

An independent set of a graph G = (V, E) is a set I of vertices
such that for any pair u, v ∈ I ⊆ V , uv /∈ E.
A vertex cover of G is a set J of vertices such that for every
edge uv ∈ E, the set {u, v} ∩ J is not empty.

Example of an independent set whose members are depicted with
black tokens.

Lemma 1: (folklore)

I is an independent set⇔ V \ I is a vertex cover.
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Reconfiguration Rules

For any reconfiguration rule R, a valid R-move transforms
one independent set into another.
Three main reconfiguration rules have been studied:

Token Sliding (TS).
Token Jumping (TJ).
Token Addition/Removal (TAR(u)).
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Token Sliding (TS)
First introduced in [Hearn and Demaine 2005].
Each TS-move involves removing a member and adding

one of its neighbors.

I

J

A sequence of valid TS-moves between I into J .
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Token Jumping (TJ)
First introduced in [Kamiński et al. 2012].
Each TJ-move involves removing a member and adding

one non-member vertex.

I

J

A sequence of valid TJ-moves between I into J .
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Token Addition/Removal (TAR(u))
First introduced in [Ito et al. 2011].
Each TAR(u)-move involves adding a non-member or

removing a member s.t. each set has ≥ u members.

I

J

A sequence of valid TAR(2)-moves between I into J .
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Known Research Directions

Classic Complexity.
Parameterized Complexity.
Structure of Reconfiguration Graphs.
Optimization.
Distributed Reconfiguration.
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Classic Complexity

Under any of the described rules, one may ask
REACHABILITY [main question in this talk]
SHORTEST TRANSFORMATION

BOUNDED TRANSFORMATION

CONNECTIVITY

DIAMETER

and so on.

Note
The classic complexity results on reconfiguring independent
sets and vertex covers can be interchanged . See Section 4
of [Nishimura 2018] for more details.
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Parameterized Complexity
Given one or more parameter(s), in addition to the original

input:
A bound s on the size of the independent sets;
The length ` of a reconfiguration sequence;
The treewidth tw of the input graph;
The maximum degree ∆ of the input graph;
and so on.

A problem is fixed-parameter tractable (FPT) if it can be
solved in poly(original input size) ? f(parameter) time,
where f is a computable function.
Complexity hierarchy:
FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.
FPT (W[1]-hard) is the parameterized complexity analog

of P (NP-hard).

Note
See Section 5 of [Nishimura 2018] for more details.
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Structure of Reconfiguration Graphs
Under any of the described rules, one may ask

Which graph can be a reconfiguration graph for
INDEPENDENT SET RECONFIGURATION?
Which reconfiguration graph for INDEPENDENT SET

RECONFIGURATION is isomorphic to the input graph itself?
Which reconfiguration graph for INDEPENDENT SET

RECONFIGURATION are in the same class with the input
graph itself?
Can we find a graph that is not a reconfiguration graph for

INDEPENDENT SET RECONFIGURATION in any input graph?
and so on.

Note
Similar questions have been studied extensively for DOMINAT-
ING SET RECONFIGURATION and VERTEX-COLOR RECONFIG-
URATION [Mynhardt and Nasserasr 2019].
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Optimization

Under any of the described rules, one may ask
If I can be reconfigured into J , can we find a

reconfiguration sequence between them with smallest
number of moves? (≡ SHORTEST TRANSFORMATION)
If p tokens can be moved simultaneously , what is the

smallest value of p such that one can always transform one
independent set into another? (e.g., see [de Berg et al.
2018].)
(Only under TAR(u)) Starting from an independent set I,

what is the largest independent set one can reach? (e.g.,
see [Ito et al. 2019].)
and so on.
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Distributed Reconfiguration
First introduced in [Censor-Hillel and Rabie 2019].
Their work employs the LOCAL model of computation.

Simple, undirected, unweighted, n-node graph G = (V, E).
The algorithms work in synchronous rounds.
Per round , each node can

send a message to its neighbors;
receive messages sent from its neighbors;
do some computation.

Each node knows whether it is selected . The set of
selected nodes forms a maximal independent set.

Reconfiguration rule: TAR.
No lower bound on the number of tokens (i.e., selected

nodes).
In each TAR-step, both adding and removing multiple

tokens are allowed.
No two neighbors change their membership status at the

same step: if J is obtained from I by a single TAR-step,
their symmetric difference I∆J = (I \ J) ∪ (J \ I) must be
independent.
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Reconfiguring Independent Sets under Token Sliding

In this talk, we shall mention the following questions:

REACHABILITY

Input: (G, I, J).
Question: Is there a sequence of valid TS-moves that

reconfigures I into J in G?

SHORTEST TRANSFORMATION

Input: A YES-instance (G, I, J) of REACHABILITY.
Question: Can we find a shortest sequence of valid
TS-moves that reconfigures I into J in G?
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Reconfiguring Independent Sets under Token Sliding

general
[Ito et al. 2011]

even-hole-free

cograph
[Bonsma 2014]

perfect
[Kamiński et al. 2012]

chordal

interval
[Bonamy and Bousquet 2017]

split
[Belmonte et al. 2019]

bipartite
[Lokshtanov and Mouawad 2018]

bipartite permutation
[Fox-Epstein et al. 2015]

bipartite distance-hereditary
[Fox-Epstein et al. 2015]

claw-free
[Bonsma et al. 2014]

planar

subcubic planar
[Hearn and Demaine 2005]

subcubic planar
and bounded treewidth

[van der Zanden 2015]

cactus
[Hoang and Uehara 2016]

tree
[Demaine et al. 2014]

bounded treewidth
[Wrochna 2014]

PSPACE-complete

Poly-time

Complexity of REACHABILITY for some graphs. Our results are
marked with the cyan color.

See [Nishimura 2018] for more information on problems under
TJ and TAR(u).
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Reconfiguring Independent Sets under Token Sliding

Our Approach

Characterize forbidden structures that obstruct the
reconfiguration from one independent set into another.
Design reconfiguration sequence in polynomial time

when those forbidden structures do not exist.

For example, in trees, the forbidden structure is the tokens that
cannot be moved at all (called the rigid tokens).

I J
I can not be reconfigured into J , and vice versa. They have different

rigid tokens: I contains no rigid tokens, while J has two.
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Reconfiguring Independent Sets under Token Sliding

Lemma 2: [Demaine et al. 2014]

In a tree T , one can decide in O(|V (T )|) time if a token is rigid.

T u
v1 T u

v2 T u
vk

T u
w1 T u

w2 T u
wk

u

v1

w1

v2

w2

vk

wk

Hint: The token on u is rigid in T ⇔ For each neighbor vi of u
(i ∈ {1, 2, . . . , k}), there exists a neighbor wi of vi whose
corresponding token is rigid in the tree T u

wi
.
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Reconfiguring Independent Sets under Token Sliding

Lemma 3: [Demaine et al. 2014]

Suppose that there are no rigid tokens in two independent sets
I, J of a tree T . Then, a sequence of TS-moves between them
can be constructed in O(|V (T )|2) time.

Note: Detours
v5

v4

v3

v1 v2
I

v5

v4

v3

v1 v2

v5

v4

v3

v1 v2

v5

v4

v3

v1 v2

v5

v4

v3

v1 v2
J

The token on v4 was already placed at its final destination, but
needs to “move away” to allow the token on v1 to move to v2.

Pick a safe leaf v in T .
For each of I and J , move

a token to v. Then, remove
v and its neighbor u.
Repeat with the only

resulting component T ′

having more than one
vertex (if it exists).

T v
w2

v

u

w1w2wk

v is safe: only T ′ = T v
w2

has more
than one vertex.
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Reconfiguring Independent Sets under Token Sliding

SHORTEST TRANSFORMATION

Can we find a shortest sequence of TS-moves (if it exists)?

In general,

Theorem 4: [Kamiński et al. 2012]

Deciding if there is a sequence of at most ` TS-moves between
two given independent sets in a perfect graph is NP-hard.

On the other hand, it can be solved in polynomial time for some
sub-classes of trees: caterpillar [Yamada and Uehara 2016]
and spider tree [Hoang et al. 2018].
Recently, it has been shown that

Theorem 5: [Sugimori 2019]

One can find in O(n5) time a shortest sequence of TS-moves
(if it exists) between two independent sets in a n-vertex tree.
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Remind: k-Path Vertex Cover

A k-path vertex cover (k-PVC, first introduced in [Brešar et al.
2011]) of a graph G = (V, E) is a set K of vertices such that for
any path P in G on k vertices, the set K ∩ V (P ) is not empty. A
2-path vertex cover is indeed a vertex cover .

A 3-PVC
Also a 2-PVC

A 3-PVC
Not a 2-PVC

Not a 3-PVC
Not a 2-PVC
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Reconfiguring k-Path Vertex Covers in Graphs

general

chordal bipartite

tree

planar

planar and
bounded treewidth

subcubic planar and
bounded treewidth

path cycle

bounded treewidth

TS
Poly-time

TS
Unknown

TS
PSPACE-complete

TJ/TAR(u)
Poly-time

TJ/TAR(u)
Unknown

TJ/TAR(u)
NP-hard

TJ/TAR(u)
PSPACE-complete

Complexity of REACHABILITY for some graphs [Hoang et al. 2020].
The graphs we considered are marked with the cyan color. Our
reduction from MINIMUM VERTEX COVER RECONFIGURATION for

general graphs implies the hardness on many other graphs.
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Reconfiguring k-Path Vertex Covers in Graphs
Theorem 6: [Hoang et al. 2020]

REACHABILITY for k-PATH VERTEX COVER RECONFIGURATION is
PSPACE-hard under each of TS, TJ, and TAR(u).

Hint: Reduction from MINIMUM VERTEX COVER

RECONFIGURATION – a known PSPACE-complete problem.
Each instance (G, I, J) of MINIMUM VERTEX COVER

RECONFIGURATION corresponds to an instance (G′, I, J) of
MINIMUM k-PATH VERTEX COVER RECONFIGURATION.
G′ is constructed from G by attaching to each vertex of G a

new path on b(k − 1)/2c vertices.

Theorem 7: [Hoang et al. 2020]

For any two k-PVCs I, J of size s in a tree, one can always con-
struct a sequence of TJ-moves between them in linear time.

Hint: Construct an intermediate k-PVC that is reachable from both
I and J .
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Graphs of Treewidth ≤ 2?

It is well-known that

Theorem 8: [Wrochna 2014]; [Wrochna 2018]

There is a positive integer c such that INDEPENDENT SET RE-
CONFIGURATION under any of TS, TJ, or TAR(u) is PSPACE-
hard even in graphs of treewidth at most c.

For c = 1, the problems can be solved in polynomial time in
trees (see [Kamiński et al. 2012]; [Demaine et al. 2014]).

Open Question

For c = 2, is INDEPENDENT SET RECONFIGURATION under any
of TS, TJ, or TAR(u) solvable in polynomial time?

The question remains open even for outerplanar graphs.
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Reconfiguration Graph of Independent Sets?

Open Question

Which graph can be a reconfiguration graph for INDEPENDENT

SET RECONFIGURATION?

Alikhani and Fatehi [Alikhani and Fatehi 2017] initiated the
study of this question under TAR(u) rule.
How about TJ and TS rules?

Naturally, a first step may be to study the question on some
simple, restricted graphs.

Which graph can be a reconfiguration graph for
INDEPENDENT SET RECONFIGURATION under TS on
trees/cycles/cliques?
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Reconfiguration Graph of Independent Sets?
A partial answer may be:

Theorem 9
The reconfiguration graph for INDEPENDENT SET RECONFIG-
URATION under TS
(a) on cliques is clique;
(b) on trees is bipartite;
(c) on cycles is not bipartite.

Hint:
To see (b), suppose that J can be obtained from I by

sliding a single token, say from u to v. How do the tokens
placed at vertices in I \ {u, v} move?
To see (c), take C5 and consider only independent sets of

size 2. How does the corresponding reconfiguration graph
look like?

Conjecture 10

The reconfiguration graph for INDEPENDENT SET RECONFIG-
URATION under TS
(a) on trees is planar;
(b) on cycles is planar.
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Vertex Cover v.s. k-Path Vertex Cover?

Open Question

Intuitively, reconfiguring k-path vertex covers should be
“harder” than reconfiguring vertex covers. Can we find any
graph class to confirm this intuition?

Problems that we have not yet been able to solve in [Hoang
et al. 2020].

Reconfiguring k-path vertex covers on chordal graphs
under TJ/TAR(u)?

Note that reconfiguring vertex covers on chordal graphs
under TJ/TAR(u) is solvable in polynomial time [Kamiński
et al. 2012].

Reconfiguring k-path vertex covers on trees under TS?
Note that reconfiguring vertex covers on trees under TS is

solvable in polynomial time [Demaine et al. 2014].

Naturally, one may start with k = 3.
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Learn More About Reconfiguration
Surveys:

Jan van den Heuvel (2013). “The Complexity of Change”. In:
Surveys in Combinatorics. Vol. 409. London Mathematical
Society Lecture Note Series. Cambridge University Press,
pp. 127–160. DOI: 10.1017/cbo9781139506748.005.
arXiv: 1312.2816.
Naomi Nishimura (2018). “Introduction to Reconfiguration”. In:

Algorithms 11.4. (article 52). DOI: 10.3390/a11040052.
C.M. Mynhardt and S. Nasserasr (2019). “Reconfiguration of

colourings and dominating sets in graphs”. In: 50 years of
Combinatorics, Graph Theory, and Computing. Ed. by
Fan Chung et al. 1st. CRC Press, pp. 171–191. DOI:
10.1201/9780429280092-10. arXiv: 2003.05956.

Web: http://www.ecei.tohoku.ac.jp/alg/core/ and
http://reconf.wikidot.com/ (I occasionally maintain
this site).
Open Problems from CoRe2019: https://pagesperso.
g-scop.grenoble-inp.fr/~bousquen/CoRe_2019/
CoRe_2019_Open_Problems.pdf.
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