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Introduction to Reconfiguration

Reconfiguration Setting
� A description of what states (≡ configurations) are
� One or more allowed moves between states (≡ reconfiguration

rule(s))

Reconfiguration
Process

Reconfiguration
Graph

Example
Rubik’s Cube

state node

move
[reconfiguration rule]

edge

sequence of moves
[reconfiguration sequence]

path

Figure: Reconfiguration Setting
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Introduction to Reconfiguration
� Reconfiguration vs. Solution Space

� For a computational problem P (e.g., Independent Set, Clique,
Dominating Set, Vertex-Coloring, etc.)

Reconfiguration Solution Space
States/Configurations Feasible solutions of P

Allowed Moves Slight modifications of a solution
without changing its feasibility

� P is often called the source problem (of the reconfiguration setting)

� Some Related Areas
� Recreational Math (puzzles, games, etc. involving reconfiguration)
� Enumeration (generate all solutions one by one, with small changes

between “adjacent” solutions)
� Reoptimization (update an optimal solution after a small change to the

input)
� Solution Sampling (randomly sample solutions via small changes)
� Solution Discovery (discover a solution “close enough” to a given initial

state (which is not necessarily a solution)) (recently introduced by
[Fellows et al. 2023])

� and so on
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Introduction to Reconfiguration

� Algorithmic Questions
� Reachability: Given two states S and T , is there a sequence of

moves that transforms S into T ?
� Shortest Transformation: Given two states S and T and a

positive integer ℓ, is there a sequence of moves that transforms S into
T using at most ℓ moves?

� Connectivity: Is there a sequence of moves between any pair of
states?

� and so on

� Graph-Theoretic Questions [Focus of this talk]
� Structural properties of the reconfiguration graph (e.g., connectivity,

diameter, etc.)
� Classification of the reconfiguration graph (e.g., which graphs can be

realized as reconfiguration graphs under certain rules?)
� Original graph vs. reconfiguration graph (e.g., how properties of the

original graph relate to those of the reconfiguration graph?)
� and so on
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Introduction to Reconfiguration

� General Surveys
� Jan van den Heuvel (2013). “The Complexity of Change”. In: Surveys

in Combinatorics. Vol. 409. London Mathematical Society Lecture Note
Series. Cambridge University Press, pp. 127–160. doi:
10.1017/cbo9781139506748.005

� Naomi Nishimura (2018). “Introduction to Reconfiguration”. In:
Algorithms 11.4, p. 52. doi: 10.3390/a11040052

� C.M. Mynhardt and S. Nasserasr (2019). “Reconfiguration of
Colourings and Dominating Sets in Graphs”. In: 50 years of
Combinatorics, Graph Theory, and Computing. Ed. by Fan Chung et al.
1st. CRC Press, pp. 171–191. doi: 10.1201/9780429280092-10

� Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and
Sebastian Siebertz (2024). “A survey on the parameterized complexity
of reconfiguration problems”. In: Computer Science Review 53. (article
100663). doi: 10.1016/j.cosrev.2024.100663

� Online Wiki: https://reconf.wikidot.com/

https://doi.org/10.1017/cbo9781139506748.005
https://doi.org/10.3390/a11040052
https://doi.org/10.1201/9780429280092-10
https://doi.org/10.1016/j.cosrev.2024.100663
https://reconf.wikidot.com/
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Background and Motivation
Reconfiguration Setting
� Source Problem: Clique

� Each clique is considered as a set of tokens placed on the vertices
� Reconfiguration Rule:

� TS: Token Sliding
� TJ: Token Jumping
� TAR: Token Addition/Removal

Example 1 (TS3(K4))

TS3(K4)

Reconfiguration rule

Size of token-set
(Lower bound under TAR)

Original graph

Reconfiguration graph
of 3-Cliques in K4

under TS
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Background and Motivation
� Algorithmic Perspective:

� Reachability under TS, TJ, and TAR is PSPACE-complete on
perfect graphs and in P on even-hole-free graphs and cographs [Ito,
Ono, and Otachi 2023]

� Shortest Transformation is in P when the input graph is chordal,
bipartite, planar, or has bounded treewidth

� Graph-Theoretic Perspective:
� Under TAR: studied since 1989 under the name simplex

graphs [Bandelt and van de Vel 1989]
� Under TS and TJ: no systematic study except for TSk(Kn) which

relates to token graphs [Fabila-Monroy et al. 2012] and Johnson
graphs [Holton and Sheehan 1993]

This Talk
We study structural properties of reconfiguration graphs of cliques mainly
under TS and TJ

Our Results
� We derived a number of structural properties of TSk(G) and TJk(G)
� We mention some interesting results in this talk
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Our Results
Clique number relationship with original graph
Theorem 2

ω(TSk(G)) =


0, k > ω(G),
1, k = ω(G),
max{k + 1, ω(G) − k + 1}, k < ω(G).

Proof Sketch.
� First two cases are straigtforward
� Last case:

� Lower bound: from (k+1)-clique A and a maximum clique B give
cliques of sizes k+1 and ω(G) − k + 1 in TSk(G)

Imagine A has k tokens and one empty slot ⇒ Kk+1 in TSk(G)
Imagine B (of size ω(G)) has k − 1 fixed tokens and one movable token
which can move around “empty slots” in B ⇒ Kω(G)−k+1 in TSk(G)

� Upper bound: any m-clique A1, . . . , Am in TSk(G) with m > k+1
implies a clique of size m+k−1 in G

When m = ω(TSk(G)) > k + 1, there must be a (k − 1)-clique C such
that Ai = C + ai for 1 ≤ i ≤ m and distinct a1, . . . , am in G ⇒
C + {a1, . . . , am} is a clique of size m + k − 1 ≤ ω(G) in G
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Our Results
Chromatic number relationship with Johnson graph
Theorem 3

� Upper bound: χ(TSk(G)) ≤ χ(J(χ(G), k)).
� Lower bound: χ(TSk(G)) ≥ χ(J(ω(G), k)).

� A Johnson graph J(n, k) is a graph whose vertices are size-k subsets of
an n-element set and two vertices are adjacent if their intersection is of
size exactly k − 1.

Proof Sketch.
� Upper bound: a k-clique uses k distinct vertex-colors, and a slide

changes exactly one vertex, hence changing exactly one used color;
therefore TSk(G) is a subgraph of the Johnson graph on color-sets, so
any coloring of that Johnson graph induces a coloring of TSk(G).

� Lower bound: For a maximum clique H in G, every k-clique in H is a
k-subset of V (H), and a slide replaces exactly one chosen vertex, so
the induced reconfiguration graph TSk(H) is J(ω(G), k). Since this
Johnson graph appears as a subgraph of TSk(G), TSk(G) must need
at least as many colors as χ(J(ω(G), k)).
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Our Results
Relating TJω(G)(G) to TSω(G)−1(G)

Theorem 4
Given k = ω(G) and the graph TJk(G) without any “predefined
vertex-labels”, one can construct a graph H in k2 · poly(|TJk(G)|) time
such that

TSk−1(G) ∼= H + cK1,

i.e., one can recover TSk−1(G) (from TJk(G)) up to isolated vertices.

� AB ∈ E(TSk−1(G)) if and only if A ∪ B ∈ V (TJk(G))
� Consequently,

� Constructing TJk(G) from TSk−1(G) is easy: we have vertices of
TJk(G) from this equivalence and then their adjcencies can be inferred
easily

� If vertices of TJk(G) are labeled by the corresponding k-cliques of G,
then recovering TSk−1(G) up to isolated vertices is also easy

� Without labels, recovering TSk−1(G) from TJk(G) up to isolated
vertices is non-trivial
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Our Results
Relating TJω(G)(G) to TSω(G)−1(G)

What information is hidden in TJk(G) when k = ω(G)?

� Each vertex of T = TJk(G) represents a maximum k-clique of G.
Two vertices U, V are adjacent in T iff the corresponding k-cliques
differ by exactly one vertex (they overlap in k − 1 vertices).

� Locally, from a maximum clique U , every neighbor (in TJk(G)) is
obtained by: Choosing one vertex of U to throw away, and replace it
with some other vertex to get another maximum clique.

� There are exactly k choices of which vertex of U got thrown away ⇒
Expect k neighbor-types.

Two-phase Strategy to recover TSk−1(G)

� Phase 1: Detect the k “swap positions” around each vertex (the
k-good test)

� Phase 2: Group maximum cliques that share the same
“(k − 1)-core”, and then connects these cores in TSk−1(G) when
they coexist inside a maximum clique
� Allow rebuilding TSk−1(G) except for (k − 1)-cliques that never

extend to a maximum clique (which become isolated vertices).
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Our Results
Planarity Preservation
Theorem 5

� If G is planar then TSk(G) is planar (1 ≤ k ≤ ω(G) ≤ 4).
� Let F3, F4 be respectively the numbers of K3, K4 in G. Then,

F3 ≤ |E| − 2, F3 ≤ 3|V | − 8, and 2F4 ≤ F3 − 2

� The theorem is “tight”: planar graphs have max. clique size ≤ 4
� The reverse does not hold

� Take G = K3,3 (ω(G) = 2) then TS2(G) ∼= 9K1 is planar but G is not
� We re-prove the known upper bounds on the number of triangles in

planar graphs (e.g., see [Wood 2007]) using properties of
reconfiguration graphs. There exists a better bound (F4 ≤ |V | − 3) on
the number of K4 in planar graphs (see [Wood 2007])

Proof Sketch.
� k = 1 and k = 4 are trivial
� k = 2: We create a planar drawing of TS2(G) from that of G

� k = 3: TJ4(G) is acyclic + max. degree ≤ 4. Use Theorem 4 to
recover TS3(G) (up to isolated vertices) from TJ4(G)

� Counting k-cliques in G is ⇔ counting vertices in TSk(G)
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Open Questions

� More structural properties: e.g., Eulerianity, Hamiltonicity,
Connectivity, etc.?

� More classification: which graphs can be realized as TSk(G) or TJk(G)
for some G and k?

� Proving properties of original graphs using properties of corresponding
reconfiguration graphs?



Thank you for your attention!

Partially supported by
The 12th Annual International Conference

on Algorithms and Discrete Applied Mathematics
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