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Introduction to Reconfiguration

Reconfiguration Setting }

> A description of what states (= configurations) are

> One or more allowed moves between states (= reconfiguration

rule(s))

Reconfiguration Reconfiguration Example
Process Graph RuBIK’S CUBE
state node

move edge Y o a
[reconfiguration rule]
sequence of moves path L o L o
[reconfiguration sequence]

Figure: Reconfiguration Setting
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Introduction to Reconfiguration

> Reconfiguration vs. Solution Space

% For a computational problem P (e.g., INDEPENDENT SET, CLIQUE,
DOMINATING SET, VERTEX-COLORING, etc.)

» P is often called the source problem (of the reconfiguration setting)

Reconfiguration Solution Space
w0 States/Configurations Feasible solutions of P
§ Allowed Moves Slight modifications of a solution
- without changing its feasibility
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Introduction to Reconfiguration

> Reconfiguration vs. Solution Space

»

For a computational problem P (e.g., INDEPENDENT SET, CLIQUE,
DOMINATING SET, VERTEX-COLORING, etc.)

Reconfiguration Solution Space
States/Configurations Feasible solutions of P
Allowed Moves Slight modifications of a solution
without changing its feasibility

» P is often called the source problem (of the reconfiguration setting)

> Some Related Areas

»
»

»

»

»

»

Recreational Math (puzzles, games, etc. involving reconfiguration)
Enumeration (generate all solutions one by one, with small changes
between “adjacent” solutions)

Reoptimization (update an optimal solution after a small change to the
input)

Solution Sampling (randomly sample solutions via small changes)
Solution Discovery (discover a solution “close enough” to a given initial
state (which is not necessarily a solution)) (recently introduced by
[Fellows et al. 2023])

and so on
4/14



Duc A. Hoang

0
o
=

g

(9]

o
o
)

<
[
©
&

o
c

.0

=t
©
&
=
B0

=
=
o
5]
9]

o

Introduction to Reconfiguration

> Algorithmic Questions

> REACHABILITY: Given two states S and 7', is there a sequence of
moves that transforms S into T?

»» SHORTEST TRANSFORMATION: Given two states S and T" and a
positive integer ¢, is there a sequence of moves that transforms S into
T using at most ¢ moves?

» CONNECTIVITY: ls there a sequence of moves between any pair of
states?

» and so on
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Introduction to Reconfiguration

> Algorithmic Questions

»

»

»

»

REACHABILITY: Given two states S and T, is there a sequence of
moves that transforms S into T?

SHORTEST TRANSFORMATION: Given two states S and T" and a
positive integer ¢, is there a sequence of moves that transforms S into
T using at most ¢ moves?

CONNECTIVITY: Is there a sequence of moves between any pair of
states?

and so on

> Graph-Theoretic Questions [Focus of this talk]

»

»

»

»

Structural properties of the reconfiguration graph (e.g., connectivity,
diameter, etc.)

Classification of the reconfiguration graph (e.g., which graphs can be
realized as reconfiguration graphs under certain rules?)

Original graph vs. reconfiguration graph (e.g., how properties of the
original graph relate to those of the reconfiguration graph?)

and so on
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Introduction to Reconfiguration

> General Surveys

% Jan van den Heuvel (2013). “The Complexity of Change”. In: Surveys
in Combinatorics. Vol. 409. London Mathematical Society Lecture Note
Series. Cambridge University Press, pp. 127-160. DOI:
10.1017/cbo9781139506748.005

» Naomi Nishimura (2018). “Introduction to Reconfiguration”. In:
Algorithms 11.4, p. 52. DOI: 10.3390/211040052

% C.M. Mynhardt and S. Nasserasr (2019). “Reconfiguration of
Colourings and Dominating Sets in Graphs”. In: 50 years of
Combinatorics, Graph Theory, and Computing. Ed. by Fan Chung et al.
1st. CRC Press, pp. 171-191. DOI: 10.1201/9780429280092-10

» Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and
Sebastian Siebertz (2024). “A survey on the parameterized complexity
of reconfiguration problems”. In: Computer Science Review 53. (article
100663). DOI: 10.1016/j.cosrev.2024.100663

> Online Wiki: https://reconf.wikidot.com/
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Background and Motivation

,-[ Reconfiguration Setting }

> Source Problem: CLIQUE
» Each clique is considered as a set of tokens placed on the vertices

> Reconfiguration Rule:

» TS: Token Sliding
» TJ: Token Jumping
» TAR: Token Addition/Removal

Example 1 (TS5(K4))

Duc A. Hoang

Reconfiguration graph
of 3-Cliques in Ky
under TS

1
TS3(Ky)
~N

Original graph
Size of token-set
(Lower bound under TAR)

Reconfiguration rule
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Background and Motivation

> Algorithmic Perspective:
> REACHABILITY under TS, TJ, and TAR is PSPACE-complete on
perfect graphs and in P on even-hole-free graphs and cographs [lto,
Ono, and Otachi 2023]
> SHORTEST TRANSFORMATION is in P when the input graph is chordal,
bipartite, planar, or has bounded treewidth
> Graph-Theoretic Perspective:
»» Under TAR: studied since 1989 under the name simplex
graphs [Bandelt and van de Vel 1989]
» Under TS and TJ: no systematic study except for TSy (K, ) which
relates to token graphs [Fabila-Monroy et al. 2012] and Johnson
graphs [Holton and Sheehan 1993]
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Background and Motivation

> Algorithmic Perspective:
> REACHABILITY under TS, TJ, and TAR is PSPACE-complete on
perfect graphs and in P on even-hole-free graphs and cographs [lto,
Ono, and Otachi 2023]
> SHORTEST TRANSFORMATION is in P when the input graph is chordal,
bipartite, planar, or has bounded treewidth
> Graph-Theoretic Perspective:
»» Under TAR: studied since 1989 under the name simplex
graphs [Bandelt and van de Vel 1989]
» Under TS and TJ: no systematic study except for TSy (K, ) which
relates to token graphs [Fabila-Monroy et al. 2012] and Johnson
graphs [Holton and Sheehan 1993]

F| This Talk i w

We study structural properties of reconfiguration graphs of cliques mainly
under TS and TJ

r'| Our Results

> We derived a number of structural properties of TS;(G) and TJy(G)
> We mention some interesting results in this talk

\.
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Our Results

Clique number relationship with original graph

0, k> w(G),
w(TSk(G)) =<1, k=w(Q),
max{k + 1, w(G) —k+1}, k<w(G).
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Our Results

Clique number relationship with original graph

0, k> w(Q),
w(TSk(G)) =<1, k=w(G),

max{k + 1, w(G) —k+1}, k<w(G).

Proof Sketch.
> First two cases are straigtforward

Duc A. Hoang

> Last case:
» Lower bound: from (k+1)-clique A and a maximum clique B give
cliques of sizes k+1 and w(G) — k + 1 in TSk(G)
B Imagine A has k tokens and one empty slot = Kj11 in TS (G)
m Imagine B (of size w(G)) has k — 1 fixed tokens and one movable token
which can move around “empty slots” in B = K,,(g)—k+1 in TSx(G)
» Upper bound: any m-clique A1,..., Ap in TSx(G) with m > k+1
implies a clique of size m+k—1 in G
B When m = w(TS;(G)) > k + 1, there must be a (k — 1)-clique C such
that A; = C + a; for 1 < i <m and distinct a1,...,am in G =
C+{a1,...,am} is a clique of size m+ k — 1 <w(G) in G
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Our Results

Chromatic number relationship with Johnson graph
> Upper bound: x(TSk(GQ)) < x(J(x(G),k)).
> Lower bound: x(TSk(G)) > x(J(w(G), k)).

> A Johnson graph J(n, k) is a graph whose vertices are size-k subsets of
an n-element set and two vertices are adjacent if their intersection is of
size exactly k — 1.
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Our Results

Chromatic number relationship with Johnson graph
> Upper bound: x(TSk(GQ)) < x(J(x(G),k)).
> Lower bound: x(TSk(G)) > x(J(w(G), k)).

> A Johnson graph J(n, k) is a graph whose vertices are size-k subsets of
an n-element set and two vertices are adjacent if their intersection is of
size exactly k — 1.

Proof Sketch.
> Upper bound: a k-clique uses k distinct vertex-colors, and a slide
changes exactly one vertex, hence changing exactly one used color;

therefore TSy (G) is a subgraph of the Johnson graph on color-sets, so
any coloring of that Johnson graph induces a coloring of TS (G).

Duc A. Hoang

> Lower bound: For a maximum clique H in G, every k-clique in H is a
k-subset of V/(H), and a slide replaces exactly one chosen vertex, so
the induced reconfiguration graph TSy (H) is J(w(G), k). Since this
Johnson graph appears as a subgraph of TS, (G), TSk(G) must need
at least as many colors as x(J(w(G), k)).
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Our Results

Relating TJW(G)(G) to TSw(G)—l (@)

Theorem 4

Given k = w(G) and the graph TJy(G) without any “predefined
vertex-labels”, one can construct a graph H in k? - poly(|TJx(G)|) time
such that

TSk_1(G) = H+cKi,

Duc A. Hoang

i.e., one can recover TS;_1(G) (from TJi(G)) up to isolated vertices.

> AB € E(TS;-1(G)) if and only if AU B € V(TJx(G))
> Consequently,

% Constructing TJ(G) from TS,_1(G) is easy: we have vertices of
TJi(G) from this equivalence and then their adjcencies can be inferred
easily

» If vertices of TJ,(G) are labeled by the corresponding k-cliques of G,
then recovering TSy_1(G) up to isolated vertices is also easy

> Without labels, recovering TSj_1(G) from TJ;(G) up to isolated
vertices is non-trivial
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Our Results

Relating TJW(G)(G) to TSW(G)fl(G)
,-[ What information is hidden in TJ;(G) when k = w(G)? ]—

> Each vertex of T' = TJi(G) represents a maximum k-clique of G.
Two vertices U, V' are adjacent in T iff the corresponding k-cliques
differ by exactly one vertex (they overlap in k — 1 vertices).

> Locally, from a maximum clique U, every neighbor (in TJx(G)) is
obtained by: Choosing one vertex of U to throw away, and replace it
with some other vertex to get another maximum clique.

Duc A. Hoang

> There are exactly k choices of which vertex of U got thrown away =
Expect k neighbor-types.
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Our Results

Relating TJW(G>(G) to TSW(G)fl(G)
,[ What information is hidden in TJ;(G) when k = w(G)? ]—
> Each vertex of T' = TJi(G) represents a maximum k-clique of G.

Two vertices U, V' are adjacent in T iff the corresponding k-cliques
differ by exactly one vertex (they overlap in k — 1 vertices).

> Locally, from a maximum clique U, every neighbor (in TJx(G)) is
obtained by: Choosing one vertex of U to throw away, and replace it
with some other vertex to get another maximum clique.

> There are exactly k choices of which vertex of U got thrown away =
Expect k neighbor-types.

f[ Two-phase Strategy to recover TS;_;(G) } |

> Phase 1: Detect the k “swap positions” around each vertex (the
k-good test)
> Phase 2: Group maximum cliques that share the same

“(k — 1)-core”, and then connects these cores in TS;_1(G) when
they coexist inside a maximum clique

% Allow rebuilding TS;—_1(G) except for (k — 1)-cliques that never

extend to a maximum clique (which become isolated vertices).

‘14



Our Results

Planarity Preservation
Theorem 5
> If G is planar then TSy (G) is planar (1 < k < w(G) < 4).

> Let F3, Fy be respectively the numbers of K3, K4 in G. Then,
F3<|E| -2, F3<3|V| -8, and 2F; < F3 — 2

> The theorem is “tight”: planar graphs have max. clique size < 4
> The reverse does not hold
» Take G = K33 (w(G) = 2) then TS2(G) = 9K is planar but G is not
> We re-prove the known upper bounds on the number of triangles in
planar graphs (e.g., see [Wood 2007]) using properties of
reconfiguration graphs. There exists a better bound (Fy < |[V| —3) on
the number of K, in planar graphs (see [Wood 2007])
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Our Results

Planarity Preservation
Theorem 5
> If G is planar then TSy (G) is planar (1 < k < w(G) < 4).

> Let F3, Fy be respectively the numbers of K3, K4 in G. Then,
F3<|E| -2, F3<3|V| -8, and 2F; < F5 — 2

> The theorem is “tight”: planar graphs have max. clique size < 4
> The reverse does not hold
» Take G = K33 (w(G) = 2) then TS2(G) = 9K is planar but G is not

> We re-prove the known upper bounds on the number of triangles in
planar graphs (e.g., see [Wood 2007]) using properties of
reconfiguration graphs. There exists a better bound (Fy < |[V| —3) on
the number of K, in planar graphs (see [Wood 2007])

Proof Sketch.
> k=1 and k = 4 are trivial
> k = 2: We create a planar drawing of TS3(G) from that of G

> k=3: TJy(G) is acyclic + max. degree < 4. Use Theorem 4 to
recover TS3(G) (up to isolated vertices) from TJ4(G)

> Counting k-cliques in G is < counting vertices in TS.(G) 13/14
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Open Questions

> More structural properties: e.g., Eulerianity, Hamiltonicity,
Connectivity, etc.?

> More classification: which graphs can be realized as TS;(G) or TJ,(G)
for some G and k7

> Proving properties of original graphs using properties of corresponding
reconfiguration graphs?
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