

Duc A. Hoang

hoanganhduc@hus.edu.vn

*VNU University of Science
Hanoi, Vietnam*

February 12–14, 2026

A Note on Reconfiguration Graphs of Cliques

in collaboration with

Huu-An Phan (Nanyang Technological University, Singapore)

Quan N. Lam (Université Gustave Eiffel, Champs-sur-Marne, France)

Contents

1 Introduction to Reconfiguration
2 Background and Motivation

3 Our Results
4 Open Questions

1 Introduction to Reconfiguration

2 Background and Motivation

3 Our Results

- Clique Number Relationship with Original Graph
- Chromatic Number Relationship with Johnson Graph
- Relating $TJ_{\omega(G)}(G)$ to $TS_{\omega(G)-1}(G)$
- Planarity Preservation

4 Open Questions

Introduction to Reconfiguration

Reconfiguration Setting

- A description of what *states* (\equiv *configurations*) are
- One or more *allowed moves* between states (\equiv *reconfiguration rule(s)*)

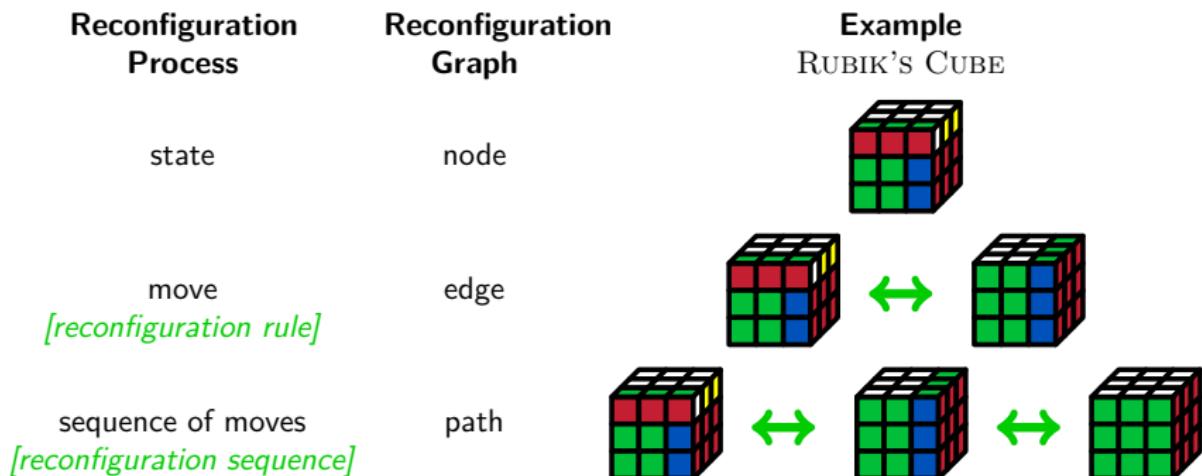


Figure: Reconfiguration Setting

Introduction to Reconfiguration

➤ Reconfiguration vs. Solution Space

- » For a computational problem \mathcal{P} (e.g., INDEPENDENT SET, CLIQUE, DOMINATING SET, VERTEX-COLORING, etc.)

Reconfiguration	Solution Space
States/Configurations	Feasible solutions of \mathcal{P}
Allowed Moves	Slight modifications of a solution <i>without changing its feasibility</i>

- » \mathcal{P} is often called the *source problem* (of the reconfiguration setting)

Introduction to Reconfiguration

➤ Reconfiguration vs. Solution Space

- » For a computational problem \mathcal{P} (e.g., INDEPENDENT SET, CLIQUE, DOMINATING SET, VERTEX-COLORING, etc.)

Reconfiguration	Solution Space
States/Configurations	Feasible solutions of \mathcal{P}
Allowed Moves	Slight modifications of a solution <i>without changing its feasibility</i>

- » \mathcal{P} is often called the *source problem* (of the reconfiguration setting)

➤ Some Related Areas

- » Recreational Math (puzzles, games, etc. involving reconfiguration)
- » Enumeration (generate all solutions one by one, with small changes between “adjacent” solutions)
- » Reoptimization (update an optimal solution after a small change to the input)
- » Solution Sampling (randomly sample solutions via small changes)
- » Solution Discovery (discover a solution “close enough” to a given initial state (which is not necessarily a solution)) (recently introduced by [Fellows et al. 2023])
- » and so on

Introduction to Reconfiguration

» Algorithmic Questions

- » REACHABILITY: Given two states S and T , is there a sequence of moves that *transforms S into T* ?
- » SHORTEST TRANSFORMATION: Given two states S and T and a positive integer ℓ , is there a sequence of moves that *transforms S into T using at most ℓ moves*?
- » CONNECTIVITY: Is there a sequence of moves *between any pair of states*?
- » and so on

Introduction to Reconfiguration

» Algorithmic Questions

- » REACHABILITY: Given two states S and T , is there a sequence of moves that *transforms S into T* ?
- » SHORTEST TRANSFORMATION: Given two states S and T and a positive integer ℓ , is there a sequence of moves that *transforms S into T using at most ℓ moves*?
- » CONNECTIVITY: Is there a sequence of moves *between any pair of states*?
- » and so on

» Graph-Theoretic Questions [Focus of this talk]

- » *Structural properties* of the reconfiguration graph (e.g., connectivity, diameter, etc.)
- » *Classification* of the reconfiguration graph (e.g., which graphs can be realized as reconfiguration graphs under certain rules?)
- » *Original graph vs. reconfiguration graph* (e.g., how properties of the original graph relate to those of the reconfiguration graph?)
- » and so on

Introduction to Reconfiguration

› General Surveys

- » Jan van den Heuvel (2013). "The Complexity of Change". In: *Surveys in Combinatorics*. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: [10.1017/cbo9781139506748.005](https://doi.org/10.1017/cbo9781139506748.005)
- » Naomi Nishimura (2018). "Introduction to Reconfiguration". In: *Algorithms* 11.4, p. 52. DOI: [10.3390/a11040052](https://doi.org/10.3390/a11040052)
- » C.M. Mynhardt and S. Nasserasr (2019). "Reconfiguration of Colourings and Dominating Sets in Graphs". In: *50 years of Combinatorics, Graph Theory, and Computing*. Ed. by Fan Chung et al. 1st. CRC Press, pp. 171–191. DOI: [10.1201/9780429280092-10](https://doi.org/10.1201/9780429280092-10)
- » Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz (2024). "A survey on the parameterized complexity of reconfiguration problems". In: *Computer Science Review* 53. (article 100663). DOI: [10.1016/j.cosrev.2024.100663](https://doi.org/10.1016/j.cosrev.2024.100663)

› **Online Wiki:** <https://reconf.wikidot.com/>

Background and Motivation

Reconfiguration Setting

➤ Source Problem: CLIQUE

» Each clique is considered as a set of tokens placed on the vertices

➤ Reconfiguration Rule:

» TS: Token Sliding

» TJ: Token Jumping

» TAR: Token Addition/Removal

Example 1 ($TS_3(K_4)$)

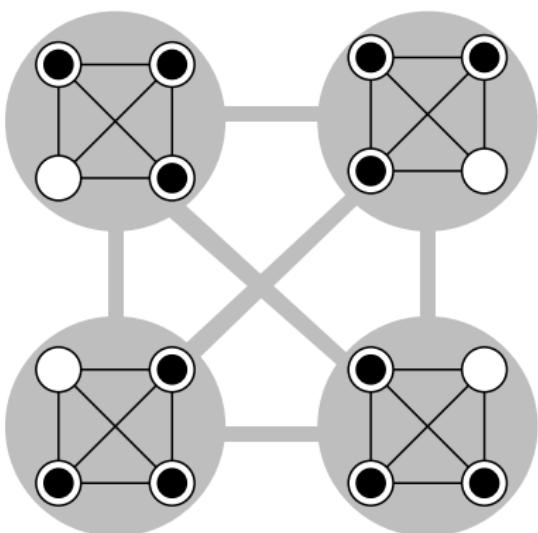
Reconfiguration graph
of 3-Cliques in K_4
under TS

Reconfiguration rule

$TS_3(K_4)$

Original graph

Size of token-set
(Lower bound under TAR)



Background and Motivation

- › Algorithmic Perspective:
 - » REACHABILITY under TS, TJ, and TAR is PSPACE-complete on perfect graphs and in P on even-hole-free graphs and cographs [Ito, Ono, and Otachi 2023]
 - » SHORTEST TRANSFORMATION is in P when the input graph is chordal, bipartite, planar, or has bounded treewidth
- › Graph-Theoretic Perspective:
 - » Under TAR: studied since 1989 under the name *simplex graphs* [Bandelt and van de Vel 1989]
 - » Under TS and TJ: no systematic study except for $TS_k(K_n)$ which relates to *token graphs* [Fabila-Monroy et al. 2012] and *Johnson graphs* [Holton and Sheehan 1993]

Background and Motivation

- Algorithmic Perspective:
 - » REACHABILITY under TS, TJ, and TAR is PSPACE-complete on perfect graphs and in P on even-hole-free graphs and cographs [Ito, Ono, and Otachi 2023]
 - » SHORTEST TRANSFORMATION is in P when the input graph is chordal, bipartite, planar, or has bounded treewidth
- Graph-Theoretic Perspective:
 - » Under TAR: studied since 1989 under the name *simplex graphs* [Bandelt and van de Vel 1989]
 - » Under TS and TJ: no systematic study except for $TS_k(K_n)$ which relates to *token graphs* [Fabila-Monroy et al. 2012] and *Johnson graphs* [Holton and Sheehan 1993]

This Talk

We study structural properties of reconfiguration graphs of cliques mainly under TS and TJ

Our Results

- We derived a number of structural properties of $TS_k(G)$ and $TJ_k(G)$
- We mention some interesting results in this talk

Our Results

Clique number relationship with original graph

Theorem 2

$$\omega(\text{TS}_k(G)) = \begin{cases} 0, & k > \omega(G), \\ 1, & k = \omega(G), \\ \max\{k + 1, \omega(G) - k + 1\}, & k < \omega(G). \end{cases}$$

Our Results

Clique number relationship with original graph

Theorem 2

$$\omega(\text{TS}_k(G)) = \begin{cases} 0, & k > \omega(G), \\ 1, & k = \omega(G), \\ \max\{k+1, \omega(G)-k+1\}, & k < \omega(G). \end{cases}$$

Proof Sketch.

- First two cases are straightforward
- Last case:
 - » Lower bound: from $(k+1)$ -clique A and a maximum clique B give cliques of sizes $k+1$ and $\omega(G) - k + 1$ in $\text{TS}_k(G)$
 - Imagine A has k tokens and one empty slot $\Rightarrow K_{k+1}$ in $\text{TS}_k(G)$
 - Imagine B (of size $\omega(G)$) has $k-1$ fixed tokens and one movable token which can move around “empty slots” in $B \Rightarrow K_{\omega(G)-k+1}$ in $\text{TS}_k(G)$
 - » Upper bound: any m -clique A_1, \dots, A_m in $\text{TS}_k(G)$ with $m > k+1$ implies a clique of size $m+k-1$ in G
 - When $m = \omega(\text{TS}_k(G)) > k+1$, there must be a $(k-1)$ -clique C such that $A_i = C + a_i$ for $1 \leq i \leq m$ and distinct a_1, \dots, a_m in $G \Rightarrow C + \{a_1, \dots, a_m\}$ is a clique of size $m+k-1 \leq \omega(G)$ in G

Our Results

Chromatic number relationship with Johnson graph

Theorem 3

- › *Upper bound:* $\chi(\text{TS}_k(G)) \leq \chi(J(\chi(G), k))$.
- › *Lower bound:* $\chi(\text{TS}_k(G)) \geq \chi(J(\omega(G), k))$.
- › A *Johnson graph* $J(n, k)$ is a graph whose vertices are size- k subsets of an n -element set and two vertices are adjacent if their intersection is of size exactly $k - 1$.

Our Results

Chromatic number relationship with Johnson graph

Theorem 3

- › *Upper bound:* $\chi(\text{TS}_k(G)) \leq \chi(J(\chi(G), k))$.
- › *Lower bound:* $\chi(\text{TS}_k(G)) \geq \chi(J(\omega(G), k))$.
- › A *Johnson graph* $J(n, k)$ is a graph whose vertices are size- k subsets of an n -element set and two vertices are adjacent if their intersection is of size exactly $k - 1$.

Proof Sketch.

- › Upper bound: a k -clique uses k distinct vertex-colors, and a slide changes exactly one vertex, hence changing exactly one used color; therefore $\text{TS}_k(G)$ is a subgraph of the Johnson graph on color-sets, so any coloring of that Johnson graph induces a coloring of $\text{TS}_k(G)$.
- › Lower bound: For a maximum clique H in G , every k -clique in H is a k -subset of $V(H)$, and a slide replaces exactly one chosen vertex, so the induced reconfiguration graph $\text{TS}_k(H)$ is $J(\omega(G), k)$. Since this Johnson graph appears as a subgraph of $\text{TS}_k(G)$, $\text{TS}_k(G)$ must need at least as many colors as $\chi(J(\omega(G), k))$.

Our Results

Relating $\text{TJ}_{\omega(G)}(G)$ to $\text{TS}_{\omega(G)-1}(G)$

Theorem 4

Given $k = \omega(G)$ and the graph $\text{TJ}_k(G)$ without any “predefined vertex-labels”, one can construct a graph H in $k^2 \cdot \text{poly}(|\text{TJ}_k(G)|)$ time such that

$$\text{TS}_{k-1}(G) \cong H + cK_1,$$

i.e., one can recover $\text{TS}_{k-1}(G)$ (from $\text{TJ}_k(G)$) up to isolated vertices.

- › $AB \in E(\text{TS}_{k-1}(G))$ if and only if $A \cup B \in V(\text{TJ}_k(G))$
- › Consequently,
 - » Constructing $\text{TJ}_k(G)$ from $\text{TS}_{k-1}(G)$ is easy: we have vertices of $\text{TJ}_k(G)$ from this equivalence and then their adjacencies can be inferred easily
 - » If vertices of $\text{TJ}_k(G)$ are labeled by the corresponding k -cliques of G , then recovering $\text{TS}_{k-1}(G)$ up to isolated vertices is also easy
- › Without labels, recovering $\text{TS}_{k-1}(G)$ from $\text{TJ}_k(G)$ up to isolated vertices is non-trivial

Our Results

Relating $\text{TJ}_{\omega(G)}(G)$ to $\text{TS}_{\omega(G)-1}(G)$

What information is hidden in $\text{TJ}_k(G)$ when $k = \omega(G)$?

- Each vertex of $T = \text{TJ}_k(G)$ represents a maximum k -clique of G . Two vertices U, V are adjacent in T iff the corresponding k -cliques differ by exactly one vertex (they overlap in $k - 1$ vertices).
- Locally, from a maximum clique U , every neighbor (in $\text{TJ}_k(G)$) is obtained by: *Choosing one vertex of U to throw away, and replace it with some other vertex to get another maximum clique.*
- There are exactly k choices of which vertex of U got thrown away \Rightarrow Expect k neighbor-types.

Our Results

Relating $\text{TJ}_{\omega(G)}(G)$ to $\text{TS}_{\omega(G)-1}(G)$

What information is hidden in $\text{TJ}_k(G)$ when $k = \omega(G)$?

- Each vertex of $T = \text{TJ}_k(G)$ represents a maximum k -clique of G . Two vertices U, V are adjacent in T iff the corresponding k -cliques differ by exactly one vertex (they overlap in $k - 1$ vertices).
- Locally, from a maximum clique U , every neighbor (in $\text{TJ}_k(G)$) is obtained by: *Choosing one vertex of U to throw away, and replace it with some other vertex to get another maximum clique.*
- There are exactly k choices of which vertex of U got thrown away \Rightarrow Expect k neighbor-types.

Two-phase Strategy to recover $\text{TS}_{k-1}(G)$

- Phase 1:** Detect the k “swap positions” around each vertex (the k -good test)
- Phase 2:** Group maximum cliques that share the same “ $(k - 1)$ -core”, and then connects these cores in $\text{TS}_{k-1}(G)$ when they coexist inside a maximum clique
 - Allow rebuilding $\text{TS}_{k-1}(G)$ except for $(k - 1)$ -cliques that never extend to a maximum clique (which become isolated vertices).

Our Results

Planarity Preservation

Theorem 5

- › If G is planar then $\text{TS}_k(G)$ is planar ($1 \leq k \leq \omega(G) \leq 4$).
- › Let F_3, F_4 be respectively the numbers of K_3, K_4 in G . Then, $F_3 \leq |E| - 2$, $F_3 \leq 3|V| - 8$, and $2F_4 \leq F_3 - 2$
- › The theorem is “tight”: planar graphs have max. clique size ≤ 4
- › The reverse does not hold
 - » Take $G = K_{3,3}$ ($\omega(G) = 2$) then $\text{TS}_2(G) \cong 9K_1$ is planar but G is not
- › We re-prove the known upper bounds on the number of triangles in planar graphs (e.g., see [Wood 2007]) using properties of reconfiguration graphs. There exists a better bound ($F_4 \leq |V| - 3$) on the number of K_4 in planar graphs (see [Wood 2007])

Our Results

Planarity Preservation

Theorem 5

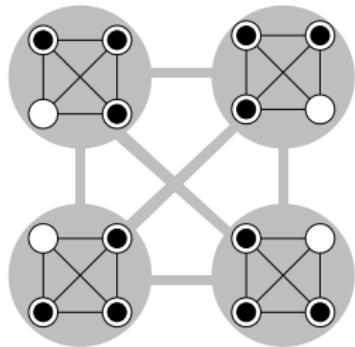
- › If G is planar then $\text{TS}_k(G)$ is planar ($1 \leq k \leq \omega(G) \leq 4$).
- › Let F_3, F_4 be respectively the numbers of K_3, K_4 in G . Then, $F_3 \leq |E| - 2$, $F_3 \leq 3|V| - 8$, and $2F_4 \leq F_3 - 2$
- › The theorem is “tight”: planar graphs have max. clique size ≤ 4
- › The reverse does not hold
 - » Take $G = K_{3,3}$ ($\omega(G) = 2$) then $\text{TS}_2(G) \cong 9K_1$ is planar but G is not
- › We re-prove the known upper bounds on the number of triangles in planar graphs (e.g., see [Wood 2007]) using properties of reconfiguration graphs. There exists a better bound ($F_4 \leq |V| - 3$) on the number of K_4 in planar graphs (see [Wood 2007])

Proof Sketch.

- › $k = 1$ and $k = 4$ are trivial
- › $k = 2$: We create a planar drawing of $\text{TS}_2(G)$ from that of G
- › $k = 3$: $\text{TJ}_4(G)$ is acyclic + max. degree ≤ 4 . Use Theorem 4 to recover $\text{TS}_3(G)$ (up to isolated vertices) from $\text{TJ}_4(G)$
- › Counting k -cliques in G is \Leftrightarrow counting vertices in $\text{TS}_k(G)$

Open Questions

- More structural properties: e.g., Eulerianity, Hamiltonicity, Connectivity, etc.?
- More classification: which graphs can be realized as $\text{TS}_k(G)$ or $\text{TJ}_k(G)$ for some G and k ?
- Proving properties of original graphs using properties of corresponding reconfiguration graphs?



Partially supported by

Thank you for your attention!

References I

- Bousquet, Nicolas, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz (2024). "A survey on the parameterized complexity of reconfiguration problems". In: *Computer Science Review* 53. (article 100663). DOI: [10.1016/j.cosrev.2024.100663](https://doi.org/10.1016/j.cosrev.2024.100663).
- Fellows, Michael R., Mario Grobler, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Frances A. Rosamond, Daniel Schmand, and Sebastian Siebertz (2023). "On Solution Discovery via Reconfiguration". In: *Proceedings of ECAI 2023*. Vol. 372. Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 700–707. DOI: [10.3233/FAIA230334](https://doi.org/10.3233/FAIA230334).
- Ito, Takehiro, Hirotaka Ono, and Yota Otachi (2023). "Reconfiguration of Cliques in a Graph". In: *Discrete Applied Mathematics* 333, pp. 43–58. DOI: [10.1016/j.dam.2023.01.026](https://doi.org/10.1016/j.dam.2023.01.026).

References II

- Mynhardt, C.M. and S. Nasserasr (2019). "Reconfiguration of Colourings and Dominating Sets in Graphs". In: *50 years of Combinatorics, Graph Theory, and Computing*. Ed. by Fan Chung, Ron Graham, Frederick Hoffman, Ronald C. Mullin, Leslie Hogben, and Douglas B. West. 1st. CRC Press, pp. 171–191. DOI: [10.1201/9780429280092-10](https://doi.org/10.1201/9780429280092-10).
- Nishimura, Naomi (2018). "Introduction to Reconfiguration". In: *Algorithms* 11.4, p. 52. DOI: [10.3390/a11040052](https://doi.org/10.3390/a11040052).
- Heuvel, Jan van den (2013). "The Complexity of Change". In: *Surveys in Combinatorics*. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: [10.1017/cbo9781139506748.005](https://doi.org/10.1017/cbo9781139506748.005).
- Fabila-Monroy, Ruy, David Flores-Peñaloza, Clemens Huemer, Ferran Hurtado, Jorge Urrutia, and David R. Wood (2012). "Token Graphs". In: *Graphs and Combinatorics* 28.3, pp. 365–380. ISSN: 0911-0119, 1435-5914. DOI: [10.1007/s00373-011-1055-9](https://doi.org/10.1007/s00373-011-1055-9).
- Wood, David R. (2007). "On the Maximum Number of Cliques in a Graph". In: *Graphs and Combinatorics* 23.3, pp. 337–352. ISSN: 0911-0119, 1435-5914. DOI: [10.1007/s00373-007-0738-8](https://doi.org/10.1007/s00373-007-0738-8).

References III

- Holton, D. A. and J. Sheehan (1993). "8. The Johnson graphs and even graphs". In: *The Petersen Graph*. Vol. 7. Australian Mathematical Society Lecture Series. Cambridge University Press, p. 300. DOI: [10.1017/CBO9780511662058.010](https://doi.org/10.1017/CBO9780511662058.010).
- Bandelt, H.-J. and M. van de Vel (May 1989). "Embedding Topological Median Algebras in Products of Dendrons". In: *Proceedings of the London Mathematical Society* s3-58.3, pp. 439–453. DOI: [10.1112/plms/s3-58.3.439](https://doi.org/10.1112/plms/s3-58.3.439).