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First problem We are interested in the reachabilty problem of Vertex
Cover Reconfiguration under the TAR rule. More precisely, the problem is
the following: we are given a graph G and two vertex covers Cs and Ct (each
of size at most k) and we want to decide if there is a TAR-sequence between
them such that each intermediate solution has also size at most k. What is the
complexity of this decision problem if G has treewidth at most 2? Or more sim-
ply if G is an outerplanar graph: is it polynomial-time solvable, NP-complete
or PSPACE-complete? Actually, this is not clear even if G is a cycle with few
chords that do not intersect.

Second problem Here, we are interested in the parameterized complexity of
(s − t)-cuts reconfiguration under the token jumping rule. More formally, we
are given a graph, two vertices s and t and two (s− t)-cuts S1 and S2 of size at
most k. Is this problem FPT when parameterized by k? Does it have a kernel
parameterized by k or is it NP-complete?

Update: (s− t)-cuts is NP-complete. The reduction is from Vertex Cover
Reconfiguration on bipartite graphs.

Jan van den Heuvel

A k-coloring with deficiency D of a graph G is a (not necessarily proper) vertex-
coloring of G with at most k colors such that the graph induced by each color
class has maximum degree D. Given a graph class, what is the smallest integer
k such that there exists a k-recoloring with deficiency O(1) ? For instance, it
is known that planar graphs have a 3-coloring with deficiency 2. Here, we are
interested in the reconfiguration version where at each step, we are allowed to
recolor a single vertex. Does there exists a constant c, such that for any planar
graph G, all 3-colorings of G with deficiency c are reachable one from another?
More generally, what about graphs embedded in surfaces? (the constant c would
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then depend on the genus). Similarly, for general graphs, if the number of colors
is a function of the degeneracy, does there exist an absolute constant?

Update: there is no constant c that depends on the genus of the surface S
such that the reconfiguration graph of all 3-colorings with deficiency c for any
graph embeddable in S is connected. However, given a surface S of genus g,
there exists c = O(g) such for any graph G embeddable in S, the collection of
c-defective 4-colorings is connected. What about Kt+1-minor free graphs? It
is known that if G is Kt+1-minor free then it is t-colorable with defectiveness
O(t). For the recoloring version, we know that we need at least t+ 1 colors.

Carl Feghali

First problem We focus on graph recoloring where we are allowed to recolor
exactly one vertex at each step. Given a perfect graph G of maximum degree
∆ and an integer k ≤ ∆ + 1, we know that the reconfiguration graph Rk(G) is
disconnected (the counterexample is given by a complete bipartite graph Kk,k

where we remove a perfect matching). On the other hand, it is known that if k
is at least ∆ + 2, then Rk(G) is connected. For chordal graphs (which are also
perfect), we also have a complete characterization since Rω+1 (where ω is the
size of a largest clique of G) is connected and has diameter O(n2).

A graph is weakly chordal if it contains neither a Ch nor its complement for
every h ≥ 5 as an induced subgraph. Let G be a weakly chordal graph. It is
known that Rω+1(G) is not necessarily connected but what is the smallest k
such that Rk(G) is connected? Is k = ω + 2 sufficient?

Second problem The Oberwolfach problem consists in finding a decompo-
sition of the edges of Kn into edge-disjoint copies of disjoint cycles of given
lengths (2-factors of given sizes). Consider a coloring of the edges of Kn. We
ask ourselves what necessary and sufficient conditions guarantee that we can
extend it to Kn+m, in such way that the color classes will exactly form the
disjoint cycles of given lengths.

An idea would be to find one copy of them, multiply the edges of this copy,
then use a sequence of well-chosen edge flips (from the edges ab and cd, we form
the edges ac and bd) to remove the multiple edges and create the other copies.
This method has been used by Hilton and Johnson in An algorithm for finding
factorizations of complete graphs to find a hamiltonian cycle decomposition of
Kn, and could also be applied to the Oberwolfach problem.

Jonathan Noel

(Question proposed by Jan Volec)
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A fractional (a : b)-coloring of G is an assignment of b different colors from a
set of size a to every vertex of G so that any two adjacent vertices have disjoint
sets of colors.

What is the complexity of reconfiguring fractional colorings? (Changing at
each step the set of colors assigned to a vertex).

Benjamin Hellouin

First problem Consider an undirected graph H (which might contain loops).
We construct a reconfiguration graph Walkn(H) where the vertices are the walks
of length n on the vertices of H, and two walks (x1, x2, ..., xn) and (y1, y2, ..., yn)
share an edge iff xi and yi are adjacent in H for every i.

The question is the following: How does the diameter of Walkn(H) grows
with n ? In particular, the conjecture is that it is either in O(1) or in n+O(1)
depending on the graphs (the characterization remains to be found).

Update: The conjecture was already proved for C4-free graphs. Jan van den
Heuvel and Benjamin Hellouin proved it for graphs whose cycles are not sums
of C4.

Second problem We say that a graph H has the pivot property if for any two
homomorphisms h1 and h2 from Z2 to H that differ on finitely many points,
we can go from h1 to h2 by changing one point at a time while keeping a
homomorphism. This property can be true for some graphs like C4-free graphs,
and false for other ones like K4 and K5.

We focus here on the generalized pivot property, where we can change several
points at a time at each step, but there should exist a radius r > 0 such that we
only change at each step points within a ball of radius r. Again, the property
holds if the reconfiguration graph is connected.

A conjecture is that the property of the generalized pivot holds for any H.

Update: this conjecture has already be proven to be false.

Alice Joffard

For an ordered sequence S = (d1, ..., dn) of natural numbers, we say that a graph
G on the ordered vertices v1, ..., vn realizes S if for all i, d(vi) = di.

We construct a reconfiguration graph where the vertices are the graphs that
realize S, and where two graphs G and H share an edge iff we can go from G
to H by performing a flip, which is a swap from the two disjoint edges (a, b)
and (c, d) to the two disjoint edges (a, c) and (b, d). Hakimi showed that the
reconfiguration graph was connected. Then came the question of finding a
Polytime algorithm to go from any G to any H using the minimum number of
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flips. The best result so far is a 1.5-approximation algorithm given by Bereg
and Ito in 2017.

We are interested here in another version of this problem, where G and H
are both connected, and the graph has to stay connected after any flip. Again,
it is known that we can go from any G to any H using such flips, and we want to
find a Polytime algorithm to approximate the optimal number of flips needed.

The problem being easier in the case where G and H have cycles, we can
restrict ourselves to the case where both are trees. The best result we have so
far is a 2.5-approximation, and we would like to improve it.

Duc A. Hoang

We are interested here in the Token Swapping problem. Let us consider a set
of tokens {1, 2, ..., n} placed on the vertices {v1, v2, ...vn} of a graph G in any
order. We want to move the tokens so that each token i will be placed on vi, by
applying a sequence of swaps between two tokens whose position are adjacent
in G.

We know that the reconfiguration graph is connected, so that we can always
do it, but we now want to do it using the minimum number of swaps possible.
The complexity of this problem when G is a tree is unknown.

Valentin Bartier

Let G be a bipartite graph and I1, I2 be two independent sets of G of size
k. We already know that the reconfiguration problem under the TJ rule is
NP-complete. However, is it FPT when parameterized by k?

Aline Parreau

The Eternal Domination problem on a graph G can be seen as an infinite
game between a defender, and an attacker. The defender starts by choosing
a set of vertices. At turn i, the attacker attacks a vertex ri and the defender
must defend by moving to ri a guard from an adjacent vertex. All the other
guards can also move to an adjacent vertex. The next turn starts from this new
configuration.

The defender wins the game if it can defend against any infinite sequence of
attacks. The eternal domination number, denoted by γ∞m (G), is the minimum
number of guards necessary for the defender to win.

We know that determining the value of γ∞m (G) is a NP-hard problem, but
we do not know if it is in NP, or in PSPACE.
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Marc Heinrich

When it comes to the Vertex Coloring Reconfiguration problem, it is
known that for k ≥ ∆+2 with ∆ the maximum degree of G, the reconfiguration
graph Rk(G) is connected, meaning that we can go from any coloring with at
most k colors to any other one, with a sequence of modifications of a single
vertex’s color, maintaining the coloring proper.

The same question for the Edge Coloring Reconfiguration problem
can then be asked: what is the minimum value kmin of k, as a function of ∆,
from which we can guarantee that the reconfiguration graph of proper k-edge
colorings is connected ?

We already know that 3
2∆ ≤ kmin ≤ 2∆.

Update: This question has just been solved by Aline Parreau, Jonathan Noel,
Marc Heinrich and Alice Joffard: the following coloring of Petersen graph with
5 colors is frozen, and we can generalize this example to the Kneser graph
KG2∆−1,∆−1 of degree ∆, colored with 2∆− 1 colors in such a way that every
edge is assigned the color corresponding to the missing number in the union of
the sets of its two vertices. This proves that kmin = 2∆.

A question that remains is the one of the example that was used to prove
3
2∆ ≤ kmin: we know that for edge colorings of Kn,n,n with 3n colors, the
reconfiguration graph is disconnected, but is it connected with 3n + 1 colors ?
In particular, can we go from any coloring of Kn,n with n colors, where every
color class forms a perfect matching, to any other one, using n+ 1 colors ?
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Haruka Mizuta

Given an undirected graph G = (V,E) and a subset of vertices S ⊆ V called
terminals, a Steiner tree is a tree that contains S. In the Steiner Tree
Reconfiguration problem, we are given two Steiner trees T1 and T2 with the
same number of edges and we want to find a transformation between T1 and T2

by exchanging exactly one edge at each step. This problem has been studied
under the parameterized complexity framework under seven graph parameters:
ω, the treewidth, the maximum degree ∆, the bandwidth, the minimum size of
a vertex cover, the number of terminals, the solution size k (ie. the number of
edges). For each of them, the complexity (W[1]-hardness, PSPACE-hardness of
tractability) is already known. This also known for some combinations of these
parameters. However, it is still open when parameterized by k+tw.

Nicolas Bousquet

Given a hypergraph H = (V,E), a packing is a subset of pairwise disjoint hyper-
edges (therefore, this is a generalization of matching for instance). Bonamy et al.
recently proved that the Matching Reconfiguration problem is polynomial-
time solvable. Unfortunately, this result can not be extended to Packing
Reconfiguration since it is already knwown that this problem is PSPACE-
complete under the token jumping rule (ie. we can remove and add one hy-
peredge at each step). However, the maximum packing problem is in P if the
constraint matrix is Totally Unimodular ie. the determinant of each square sub-
matrix is 0, -1 or +1. Therefore, can we extend this result to the Packing
Reconfiguration problem for the connectivity question? One idea could be
to use a kind of Seymour’s Decomposition Theorem.

Akira Suzuki

We focus on Feedback Vertex Set Reconfiguration under the token
jumping rule. This problem is PSPACE-complete in general. However, we are
interested in the case where the input graph G has bounded maximum degree
∆. If ∆ = 2, this is trivial because G simply is a collection of paths and/or cy-
cles. If k = 4, Suzuki and Yota showed that the problem is PSPACE-complete.
However, it is still open for ∆ = 3. We know that there exist no-instances: for
instance if G = K3,3 and the two solutions are two non-adjacent vertices. Note
that the original problem is in P when ∆ = 3.

Frantǐsek Kardoš

A stable-tree decomposition of G is a partition of the vertex set on two parts B
and W such that G[B] is a tree and G[W ] is a stable set. Payan and Sakarovitch
proved that if G is a cyclically 4-edge-connected cubic graph and n = 4k + 2
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then a stable-tree decomposition exists. The question is the following: for which
(planar) cubic graphs can we guarantee to have (exponentially) many stable-tree
decompositions? What can we say about the structure of the reconfiguration
graph where a vertex is a stable-tree decomposition and two vertices (B1,W1)
and (B2,W2) are adjacent iff W2 is obtained from W1 by removing a vertex v
and adding the only vertex that lies in the intersection of the three paths joining
the three black neighbors of v in G[B1] ?

Update: if G is cubic and planar, then it has at least n3 stable-tree decompo-
sitions. Using the planarity of G, it might be possible to increase this exponent.

Kunihiro Wasa

We are interested in the problem Maximal Induced Tree Reconfigura-
tion. The input of the problem is two maximal induced trees S and T of
G, and we want to know if there exists a reconfiguration sequence between S
and T , by Token Sliding or Token Jumping. The question is to determine the
complexity of the problem.

Update: The problem has been solved by Haruka Mizuta. Using Steiner trees,
we can prove that it is W[2]-hard.

Anna Lubiw

First problem Consider the reconfiguration graph of non-crossing spanning
trees of a set of n points in the plane. A flip removes one edge and adds a new
edge.

1. The worst case diameter is known to be between 1.5n and 2n. Narrow
this gap.

2. What is the complexity of computing distance in the reconfiguration graph?

Second problem Consider labelled flips of non-crossing spanning trees of a
set of n points in the plane. Does the analogue of the orbit theorem hold? Prove
or disprove: if we have two labelled non-crossing spanning trees S and T , and
for each label λ, the edge e of S with label λ and the edge f of T with label
λ lie in the same orbit (i.e. there is a flip sequence that moves λ from e to f)
then S can be reconfigured to T .

Third problem A branching rooted at vertex r in a directed graph G is a
directed tree rooted at r (i.e. it is a tree and every vertex except r has one edge
directed in to it). This is a simple case of intersection of two matroids: a graphic
matroid, where a set of edges is independent if it contains no (undirected) cycle;
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and a partition matroid, where a set of edges is independent if every vertex has
at most one incoming edge. Let S and T be two branchings rooted at r.

Question: Is it possible to reconfigure S to T? A flip removes one edge and
adds a new one.

Answer: Yes. Here is the proof outline. Let e = (u, v) be an edge of T − S.
We try to add e to S and recover a branching by removing one element of S.
Let eS be the edge of S that is directed into v. Adding e to S gives two edges, e
and eS directed into v and also creates a cycle C. We want to remove one edge
of S to remedy both these things. Consider 3 cases:

1. if u is an ancestor of v in S, then the cycle C contains eS so removing eS
yields a branching.

2. if u and v are incomparable in S, the same holds.

3. if u is a descendant of v in S, then follow the path backwards in T from
v to r. There must eventually be an edge e′ of T − S that falls into case
1 or 2.

Follow-up question: Does the above extend to the intersection of a graphic
matroid and a partition matroid that arises by colouring the edges of the un-
derlying graph G and defining a set to be independent if it has at most one edge
of each colour.

Spanning trees with one edge of each colour are called rainbow spanning
trees. Thus, the question is whether one rainbow spanning tree can be recon-
figured to another rainbow spanning tree by exchanging one edge at a time.

Answer: No. Here is an example found by Ruth Hass and Anna Lubiw. In
this example, the edges of each colour are all incident to one vertex, so it is very
close to the branching situation — the only difference is that one vertex, t, has
two colour classes associated with it.

The graph G has 5 vertices, u1, u2, v1, v2, t. The first spanning tree S con-
tains the paths u1, u2, t and v1, v2, t. The second spanning tree T contains the
paths v1, u2, t and u1, v2, t. There are no further edges in G. The colour classes
are {u1u2, v1u2}, {v1v2, u1, v2}, {u2t}, and {v2t}. We claim that S is frozen.
By symmetry, it suffices to show that we cannot add the edge v1u2 to S. If this
edge is added, we must remove the same-colour edge u1u2. But then vertex u1

becomes isolated.
Moritz Mühlenthaler had a similar example.

8


