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Reconfiguration Problems Find G s.t. TS, (G) (k > 2) Has Certain Properties [Avis and Hoang 2022]

. . : . > k vertices
.. study the relationship between solutions of a given source problem (e.g., SATISFIABILITY,

INDEPENDENT SET, VERTEX COVER, VERTEX-COLORING, €tC.).

m Cliques. (G contains K,, © TS(G) contains K,,.)
There is G s.t. G has a K, and TS;(G) (k > 2) doesn’t.

Design G s.t. exactly one token moves inside a clique. A

adjacency relation o
[reconfiguration rule]
e.g., Token Slidin . .
£ 2 V Figure 6. A desired graph G.
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Figure 1. Reconfiguration.
Some typical questions:
m REAcHABILITY: Is there a parh between two given solutions? k=2 fhecamEsiad C;

B SHORTEST TRANSFORMATION: If REACHABILITY 1s yes, can we find a shortest path?
m ConNEcTIVITY: IS there a path between any two given solutions?

m DiaMETER: Is the maximum distance between any two solutions bounded?
m and so on.

Example Problem: Reconfiguration of p-PATH VERTEX COVER has degree-3 C

vertex

m Source Problem: p-PATH VERTEX COVER (p > 2).
m Input: G = (V,E), k.
m Question: Is there a p-path vertex cover (p-PVC) of G, i.e., a vertex-subset [ s.t. every path on p vertices in
(G contains at least one vertex from /, of size at most k?

m A 2-PVC I is also called a vertex cover and V \ I is an independent set. Figure 7. (a) G is Eulerian and TS, (G) isn’t. (b) G isn’t Eulerian and TS;(G) is.
m Adjacency Relation: Token Sliding (TS).

m Two p-PVCs I, J are adjacent if there exist u,v € Vs.it. I\J ={u},J\ I ={v},anduv € E.
m Reconfiguration Graph: TS} (G) and TS”(G).

| - _—
——

k — 2 vertices

Design G s.t. some special token has exactly one way to move.
m Future Goal: More graph properties?

Find H s.t. TS, (H) =~ G (k > 2) for some graph G [Avis and Hoang 2022]

isona,. (V(H) ={ai,...,a ap1}.)

Q—@—@ I@—@—@E m Generalize for fixed k > 3: Join every vertex of H ~ TS,(P,,) to the center of a star K ;_».

:@_O_@E mG=P,and k = 2: Design H s.t. once a token is on a,41, the only choice for placing the other
"""""""" SSECs o e TTTTTTI AT T Note that the k — 2 tokens on the star never move. (H has no size-3 independent set.)

TS/ (P3) TS3(P3) TS;(P3)
Figure 2. TS?(P3). nf G=Fy= TSQ(H) i
aian ar dj
Note: Reconfiguration graphs for VERTEx CovER and INDEPENDENT SET are the same. When 1 O
p = 2, since several known results use INDEPENDENT SET as the source problem, we use it instead
of VERTEX CoOVER, and use TS;(G) and TS(G) to indicate TS%(G) and TSZ(G), respectively. ajar araj a an

Forbidden Structures in Reconfiguration 2 : : w

m A forbidden structure 1s part of a solution § satisfying certain properties that obstruct the aidr drds dsdq a, a»

existence of a path in the reconfiguration graph between S and some other solution. 3 O_O_O
m Example: rigid tokens (= tokens that never move) in each node of TS, (G). >\ >E§< /‘

Figure 8. Design H s.t. TS,(H) ~ G (k > 2) where G = P,,.

@_O_O @ O_O_O mG=K,(n<k). fn>k,thereisno H s.t. TSx(H) ~ K ,,.) Design H s.t. each token on a;

(1 <i < k) either moves back-and-forth along an edge or never moves.

Il J K
Figure 3. Independent sets I, J, K € TS,(G) having no path connecting any two of them. G=K l,n = TS H ) H
m Naturally, in TSP (G), forbidden structures involve tokens whose movements are “restricted’.
ajay ...dj aj an dy aj
REACHABILITY in TS(G) i) ﬁ)
m Polynomial-time algorithms when G 1s a tree [Demaine et al. 2015], bipartite permutation Q <b> ........ @
graph [Fox-Epstein et al. 2015], or cactus graph [Hoang and Uehara 2016]. biay...ar a\by...ar araz...by...a; ! 2 " K,
m Open Problem: G is outerplanar?
(G, I, J')) Figure 9. Design H s.t. TSy(H) ~ G (k > 2) where G = K1, (n < k).

“smaller” instance + no S m Open Problem: G is a tree?
: m If there exists H s.t. TSy(H) ~ G for a tree G, H does not contain any Ps as an induced subgraph.
no path in TS(G))

((G.1) = S(G. 1)
((G, 1,J) S: forbidden structure compare
original instance (G,J) = S(G,J)

S: forbidden structure
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m Reverse edge-direction.

m Each dashed rectangle
represents a connecting part.

m Design gadgets s.t. no token
ever leaves its connecting part.

m Open Problem: G is bipartite? Figure 5. Gadgets when p = 3. (a) AND gadget. (b) Or gadget.
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