
The Application of Forbidden Structures in
Solving Reconfiguration Problems

Duc A. Hoang
Graduate School of Informatics, Kyoto University

Reconfiguration Problems

... study the relationship between solutions of a given source problem (e.g., Satisfiability,
Independent Set, Vertex Cover, Vertex-Coloring, etc.).

solutions
(e.g., independent sets)

[reconfiguration rule]
(e.g., Token Sliding)

adjacency relation

reconfiguration graph

Figure 1. Reconfiguration.
Some typical questions:

Reachability: Is there a path between two given solutions?
Shortest Transformation: If Reachability is yes, can we find a shortest path?
Connectivity: Is there a path between any two given solutions?
Diameter: Is the maximum distance between any two solutions bounded?
and so on.

Example Problem: Reconfiguration of 𝑝-Path Vertex Cover

Source Problem: 𝑝-Path Vertex Cover (𝑝 ≥ 2).
Input: 𝐺 = (𝑉, 𝐸), 𝑘 .
Question: Is there a 𝑝-path vertex cover (𝑝-PVC) of 𝐺, i.e., a vertex-subset 𝐼 s.t. every path on 𝑝 vertices in
𝐺 contains at least one vertex from 𝐼, of size at most 𝑘?
A 2-PVC 𝐼 is also called a vertex cover and 𝑉 \ 𝐼 is an independent set.

Adjacency Relation: Token Sliding (TS).
Two 𝑝-PVCs 𝐼, 𝐽 are adjacent if there exist 𝑢, 𝑣 ∈ 𝑉 s.t. 𝐼 \ 𝐽 = {𝑢}, 𝐽 \ 𝐼 = {𝑣}, and 𝑢𝑣 ∈ 𝐸 .

Reconfiguration Graph: TS𝑝
𝑘
(𝐺) and TS𝑝(𝐺).

TS3
2(𝑃3) TS3

3(𝑃3)TS3
1(𝑃3)

Figure 2. TS3(𝑃3).

Note: Reconfiguration graphs for Vertex Cover and Independent Set are the same. When
𝑝 = 2, since several known results use Independent Set as the source problem, we use it instead
of Vertex Cover, and use TS𝑘 (𝐺) and TS(𝐺) to indicate TS2

𝑘
(𝐺) and TS2 (𝐺), respectively.

Forbidden Structures in Reconfiguration

A forbidden structure is part of a solution 𝑆 satisfying certain properties that obstruct the
existence of a path in the reconfiguration graph between 𝑆 and some other solution.
Example: rigid tokens (= tokens that never move) in each node of TS𝑘 (𝐺).

𝐼 𝐽 𝐾

Figure 3. Independent sets 𝐼, 𝐽, 𝐾 ∈ TS2(𝐺) having no path connecting any two of them.

Naturally, in TS𝑝(𝐺), forbidden structures involve tokens whose movements are “restricted”.

Reachability in TS(𝐺)

Polynomial-time algorithms when 𝐺 is a tree [Demaine et al. 2015], bipartite permutation
graph [Fox-Epstein et al. 2015], or cactus graph [Hoang and Uehara 2016].
Open Problem: 𝐺 is outerplanar?

(𝐺, 𝐼, 𝐽)
original instance

(𝐺, 𝐼) ⇒ S(𝐺, 𝐼)
S: forbidden structure

(𝐺, 𝐽) ⇒ S(𝐺, 𝐽)
S: forbidden structure

compare
(𝐺′, 𝐼′, 𝐽′)

“smaller” instance + no S

no path in TS(𝐺)

same

different

Figure 4. A general approach to solve Reachability using forbidden structures.

Reachability in TS𝑝(𝐺) (𝑝 ≥ 3)
PSPACE-hardness when 𝐺 is planar ∩ maximum degree 3 [Hoang, Suzuki, and Yagita 2020].
And/Or NCL graph.

Blue edge ⇒ weight 2.
Red edge ⇒ weight 1.
Total in-weight ≥ 2.

Reverse edge-direction.

Each dashed rectangle
represents a connecting part.
Design gadgets s.t. no token
ever leaves its connecting part.

Open Problem: 𝐺 is bipartite?
(a) (b)

Figure 5. Gadgets when 𝑝 = 3. (a) And gadget. (b) Or gadget.

Find 𝐺 s.t. TS𝑘 (𝐺) (𝑘 ≥ 2) Has Certain Properties [Avis and Hoang 2022]

Cliques. (𝐺 contains 𝐾𝑛 ⇔ TS(𝐺) contains 𝐾𝑛.)
There is 𝐺 s.t. 𝐺 has a 𝐾𝑛 and TS𝑘 (𝐺) (𝑘 ≥ 2) doesn’t.
Design 𝐺 s.t. exactly one token moves inside a clique.

𝐾𝑛

}≥ 𝑘 vertices

Figure 6. A desired graph 𝐺.

Eulerianity.

𝐶2𝑘−1

𝑘 ≥ 3

𝑘 = 2

𝑘 TS𝑘 (𝐺)

disconnected

has degree-3
vertex }

𝑘 − 2 vertices

(a)
𝐺 TS𝑘 (𝐺)𝐺

(b)

𝐶4

𝐶3

Figure 7. (a) 𝐺 is Eulerian and TS𝑘 (𝐺) isn’t. (b) 𝐺 isn’t Eulerian and TS𝑘 (𝐺) is.

Design 𝐺 s.t. some special token has exactly one way to move.
Future Goal: More graph properties?

Find 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) for some graph 𝐺 [Avis and Hoang 2022]

𝐺 = 𝑃𝑛 and 𝑘 = 2: Design 𝐻 s.t. once a token is on 𝑎𝑛+1, the only choice for placing the other
is on 𝑎𝑛. (𝑉 (𝐻) = {𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1}.)
Generalize for fixed 𝑘 ≥ 3: Join every vertex of 𝐻 ' TS2(𝑃𝑛) to the center of a star 𝐾1,𝑘−2.
Note that the 𝑘 − 2 tokens on the star never move. (𝐻 has no size-3 independent set.)

𝑎1 𝑎2

𝑎1 𝑎2 𝑎3

𝑎1 𝑎2 𝑎3 𝑎4

𝑎1𝑎2

𝑎1𝑎2 𝑎2𝑎3

𝑎1𝑎2 𝑎2𝑎3 𝑎3𝑎4

𝐻𝑛

1

2

3

𝐺 = 𝑃𝑛 ≃ TS2(𝐻)

𝐾1,𝑘−2

𝐻

Figure 8. Design 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) where 𝐺 = 𝑃𝑛.

𝐺 = 𝐾1,𝑛(𝑛 ≤ 𝑘). (If 𝑛 > 𝑘 , there is no 𝐻 s.t. TS𝑘 (𝐻) ' 𝐾1,𝑛.) Design 𝐻 s.t. each token on 𝑎𝑖
(1 ≤ 𝑖 ≤ 𝑘) either moves back-and-forth along an edge or never moves.

𝑎1 𝑎2 𝑎𝑛 𝑎𝑘

𝑏1 𝑏2 𝑏𝑛
𝐾𝑛

𝑏1𝑎2 . . . 𝑎𝑘 𝑎1𝑏2 . . . 𝑎𝑘 𝑎1𝑎2 . . . 𝑏𝑛 . . . 𝑎𝑘

𝑎1𝑎2 . . . 𝑎𝑘

𝐺 = 𝐾1,𝑛 ≃ TS𝑘𝐻) 𝐻

Figure 9. Design 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) where 𝐺 = 𝐾1,𝑛 (𝑛 ≤ 𝑘).
Open Problem: 𝐺 is a tree?

If there exists 𝐻 s.t. TS2(𝐻) ' 𝐺 for a tree 𝐺, 𝐻 does not contain any 𝑃5 as an induced subgraph.

References

Avis, D. and D. A. Hoang (2022). “On Reconfiguration Graph of Independent Sets under Token
Sliding”. In Preparation.
Hoang, D. A., A. Suzuki, and T. Yagita (2020). “Reconfiguring 𝑘-path vertex covers”. In: Pro-
ceedings of WALCOM 2020. Ed. by M. S. Rahman, K. Sadakane, and W.-K. Sung. Vol. 12049.
LNCS. Springer, pp. 133–145. doi: 10.1007/978-3-030-39881-1_12.
Hoang, D. A. and R. Uehara (2016). “Sliding Tokens on a Cactus”. In: Proceedings of ISAAC
2016. Vol. 64. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 37:1–37:26. doi:
10.4230/LIPIcs.ISAAC.2016.37.
Demaine, E. D., M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi,
R. Uehara, and T. Yamada (2015). “Linear-Time Algorithm for Sliding Tokens on Trees”. In:
Theoretical Computer Science 600, pp. 132–142. doi: 10.1016/j.tcs.2015.07.037.
Fox-Epstein, E., D. A. Hoang, Y. Otachi, and R. Uehara (2015). “Sliding Token on Bipartite
Permutation Graphs”. In: Proceedings of ISAAC 2015. Vol. 9472. LNCS. Springer, pp. 237–
247. doi: 10.1007/978-3-662-48971-0_21.

The 84th National Convention of IPSJ – Towards an Innovative Algorithmic Foundations Symposium March 03, 2022 hoang.duc.8r@kyoto-u.ac.jp

https://doi.org/10.1007/978-3-030-39881-1_12
https://doi.org/10.4230/LIPIcs.ISAAC.2016.37
https://doi.org/10.1016/j.tcs.2015.07.037
https://doi.org/10.1007/978-3-662-48971-0_21
mailto:hoang.duc.8r@kyoto-u.ac.jp

