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Reconfiguration Problems

... study the relationship between solutions of a given source problem (e.g., Satisfiability,
Independent Set, Vertex Cover, Vertex-Coloring, etc.).

solutions
(e.g., independent sets)

[reconfiguration rule]
(e.g., Token Sliding)

adjacency relation

reconfiguration graph

Figure 1. Reconfiguration.
Some typical questions:

Reachability: Is there a path between two given solutions?
Shortest Transformation: If Reachability is yes, can we find a shortest path?
Connectivity: Is there a path between any two given solutions?
Diameter: Is the maximum distance between any two solutions bounded?
and so on.

Example Problem: Reconfiguration of 𝑝-Path Vertex Cover

Source Problem: 𝑝-Path Vertex Cover (𝑝 ≥ 2).
Input: 𝐺 = (𝑉, 𝐸), 𝑘 .
Question: Is there a 𝑝-path vertex cover (𝑝-PVC) of 𝐺, i.e., a vertex-subset 𝐼 s.t. every path on 𝑝 vertices in
𝐺 contains at least one vertex from 𝐼, of size at most 𝑘?
A 2-PVC 𝐼 is also called a vertex cover and 𝑉 \ 𝐼 is an independent set.

Adjacency Relation: Token Sliding (TS).
Two 𝑝-PVCs 𝐼, 𝐽 are adjacent if there exist 𝑢, 𝑣 ∈ 𝑉 s.t. 𝐼 \ 𝐽 = {𝑢}, 𝐽 \ 𝐼 = {𝑣}, and 𝑢𝑣 ∈ 𝐸 .

Reconfiguration Graph: TS𝑝
𝑘
(𝐺) and TS𝑝(𝐺).
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Figure 2. TS3(𝑃3).

Note: Reconfiguration graphs for Vertex Cover and Independent Set are the same. When
𝑝 = 2, since several known results use Independent Set as the source problem, we use it instead
of Vertex Cover, and use TS𝑘 (𝐺) and TS(𝐺) to indicate TS2

𝑘
(𝐺) and TS2 (𝐺), respectively.

Forbidden Structures in Reconfiguration

A forbidden structure is part of a solution 𝑆 satisfying certain properties that obstruct the
existence of a path in the reconfiguration graph between 𝑆 and some other solution.
Example: rigid tokens (= tokens that never move) in each node of TS𝑘 (𝐺).

𝐼 𝐽 𝐾

Figure 3. Independent sets 𝐼, 𝐽, 𝐾 ∈ TS2(𝐺) having no path connecting any two of them.

Naturally, in TS𝑝(𝐺), forbidden structures involve tokens whose movements are “restricted”.

Reachability in TS(𝐺)

Polynomial-time algorithms when 𝐺 is a tree [Demaine et al. 2015], bipartite permutation
graph [Fox-Epstein et al. 2015], or cactus graph [Hoang and Uehara 2016].
Open Problem: 𝐺 is outerplanar?

(𝐺, 𝐼, 𝐽)
original instance

(𝐺, 𝐼) ⇒ S(𝐺, 𝐼)
S: forbidden structure

(𝐺, 𝐽) ⇒ S(𝐺, 𝐽)
S: forbidden structure

compare
(𝐺′, 𝐼′, 𝐽′)

“smaller” instance + no S

no path in TS(𝐺)

same

different

Figure 4. A general approach to solve Reachability using forbidden structures.

Reachability in TS𝑝(𝐺) (𝑝 ≥ 3)
PSPACE-hardness when 𝐺 is planar ∩ maximum degree 3 [Hoang, Suzuki, and Yagita 2020].
And/Or NCL graph.

Blue edge ⇒ weight 2.
Red edge ⇒ weight 1.
Total in-weight ≥ 2.

Reverse edge-direction.

Each dashed rectangle
represents a connecting part.
Design gadgets s.t. no token
ever leaves its connecting part.

Open Problem: 𝐺 is bipartite?
(a) (b)

Figure 5. Gadgets when 𝑝 = 3. (a) And gadget. (b) Or gadget.

Find 𝐺 s.t. TS𝑘 (𝐺) (𝑘 ≥ 2) Has Certain Properties [Avis and Hoang 2022]

Cliques. (𝐺 contains 𝐾𝑛 ⇔ TS(𝐺) contains 𝐾𝑛.)
There is 𝐺 s.t. 𝐺 has a 𝐾𝑛 and TS𝑘 (𝐺) (𝑘 ≥ 2) doesn’t.
Design 𝐺 s.t. exactly one token moves inside a clique.
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Figure 6. A desired graph 𝐺.

Eulerianity.
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Figure 7. (a) 𝐺 is Eulerian and TS𝑘 (𝐺) isn’t. (b) 𝐺 isn’t Eulerian and TS𝑘 (𝐺) is.

Design 𝐺 s.t. some special token has exactly one way to move.
Future Goal: More graph properties?

Find 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) for some graph 𝐺 [Avis and Hoang 2022]

𝐺 = 𝑃𝑛 and 𝑘 = 2: Design 𝐻 s.t. once a token is on 𝑎𝑛+1, the only choice for placing the other
is on 𝑎𝑛. (𝑉 (𝐻) = {𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1}.)
Generalize for fixed 𝑘 ≥ 3: Join every vertex of 𝐻 ' TS2(𝑃𝑛) to the center of a star 𝐾1,𝑘−2.
Note that the 𝑘 − 2 tokens on the star never move. (𝐻 has no size-3 independent set.)
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Figure 8. Design 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) where 𝐺 = 𝑃𝑛.

𝐺 = 𝐾1,𝑛(𝑛 ≤ 𝑘). (If 𝑛 > 𝑘 , there is no 𝐻 s.t. TS𝑘 (𝐻) ' 𝐾1,𝑛.) Design 𝐻 s.t. each token on 𝑎𝑖
(1 ≤ 𝑖 ≤ 𝑘) either moves back-and-forth along an edge or never moves.
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Figure 9. Design 𝐻 s.t. TS𝑘 (𝐻) ' 𝐺 (𝑘 ≥ 2) where 𝐺 = 𝐾1,𝑛 (𝑛 ≤ 𝑘).
Open Problem: 𝐺 is a tree?

If there exists 𝐻 s.t. TS2(𝐻) ' 𝐺 for a tree 𝐺, 𝐻 does not contain any 𝑃5 as an induced subgraph.
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