
Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein1 Duc A. Hoang2

Yota Otachi2 Ryuhei Uehara2

1Brown University, USA

2JAIST, Japan

1 / 85



Reconfiguration Problems

2 / 85



[Flake & Baum 2002]

3 / 85



[Romanishin, Rus, Gilpin 2013]

4 / 85



[Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno 2008]

5 / 85



View from window here in Nagoya

6 / 85



Reconfiguration Problems

I Start with some problem with solutions

(e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)
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Sliding Token

:
a natural, pure problem in

Combinatorial Reconfiguration
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Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

15 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

16 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

17 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets

I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

18 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move

I Notation: [A] is A’s connected
component

I Ask: B ∈ [A]?

19 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component

I Ask: B ∈ [A]?

20 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

21 / 85



A Brief Overview of Sliding Token’s Complexity

I PSPACE-complete on general, AT-free, planar, perfect, and
bounded treewidth graphs [Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno

2008], [Wrochna 2014]

I Polytime on proper interval graphs, claw-free graphs, forests,
cographs [Bonsma, Kamiński, Wronchna 2014], [Demaine, Demaine, F., Hoang, Ito, Ono, Otachi,

Uehara, Yamada 2014], [Kamiński, Medvedev, Milanic 2010]

I ??? on bipartite graphs

I We give an efficient algorithm on a subclass of bipartite graphs.
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Main Result

Algorithm for Sliding Token on bipartite permutation graphs.

Given graph G, independent sets A and B,
finds a reconfiguration sequence from A to B
or reports that none exists.
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Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}

= {bipartite graphs} ∩ {tolerance graphs}
= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .
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Bipartite permutation graph iff
vertices can be ordered v1, v2, . . . , vn
such that ∀i ≤ j ≤ k,

all paths from vi to vk include a vertex of N [vj ].

v1 v2 v3 v4 v5

N(v2) N(v4)
N(v5)
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Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components
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Canonical Representatives

I Canonical representative A+ for connected component [A]:
lexicographically minimum independent set

I (Minimize max index of vertex in set, then second max, etc.)

I B ∈ [A] iff A+ = B+.
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Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood
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Proof sketch of idea (b): R(G \N [u], I \ {u}) = ∅

u: vertex of least index in A+

u

N [u]

N [N [u]]
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Case: v1, vi ∈ I with i < min index of neighbor of v1

N(v1)

v1

vi
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N(v1)

N(w)

v1

vi
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Case: v1, vi ∈ I with i < min index of neighbor of v1

N(v1)

N(w)

v1

vi vj
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Idea (b) proof:

u: vertex of least index in I+

u

N [u]

N [N [u]]
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Idea (b) proof:

“Wiggle” everything

u

N [u]

N [N [u]]
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Idea (b) proof:

Now edit sequence so token stays on u

u

N [u]

N [N [u]]
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Idea (b) proof:

This sequence witnesses that nothing is rigid after deleting N [u]

u

N [u]

N [N [u]]
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Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.
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Question: is there hope for generalization?

I Wiggling, Targeting apply to bipartite graphs.

I Canonical representatives seem hard to generalize:
permutation graphs have nice linear structure.

I Cannot naively put a token on some vertex and delete the
neighborhood
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Thanks
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