
Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein1 Duc A. Hoang2

Yota Otachi2 Ryuhei Uehara2

1Brown University, USA

2JAIST, Japan

1 / 85



Reconfiguration Problems

2 / 85



[Flake & Baum 2002]

3 / 85



[Romanishin, Rus, Gilpin 2013]

4 / 85



[Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno 2008]

5 / 85



View from window here in Nagoya

6 / 85



Reconfiguration Problems

I Start with some problem with solutions

(e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)

7 / 85



Reconfiguration Problems

I Start with some problem with solutions (e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)

8 / 85



Reconfiguration Problems

I Start with some problem with solutions (e.g. Rush Hour)

I Define legal transformations between solutions

(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)

9 / 85



Reconfiguration Problems

I Start with some problem with solutions (e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)

10 / 85



Reconfiguration Problems

I Start with some problem with solutions (e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions?

(PSPACE-complete for Rush Hour)

11 / 85



Reconfiguration Problems

I Start with some problem with solutions (e.g. Rush Hour)

I Define legal transformations between solutions
(legal if solutions differ by sliding one car)

I Question: is there a sequence of transformations between two
given solutions? (PSPACE-complete for Rush Hour)

12 / 85



Sliding Token

:
a natural, pure problem in

Combinatorial Reconfiguration

13 / 85



Sliding Token:
a natural, pure problem in

Combinatorial Reconfiguration

14 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

15 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

16 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”

I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

17 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets

I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

18 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move

I Notation: [A] is A’s connected
component

I Ask: B ∈ [A]?

19 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component

I Ask: B ∈ [A]?

20 / 85



Sliding Token

I Classic optimization problem:
Independent Set

I Reconfiguration moves: “slide” a
“token” to a neighbor

I Induces a “reconfiguration graph”
I Nodes: independent sets
I Adjacency: one reconfiguration move
I Notation: [A] is A’s connected

component
I Ask: B ∈ [A]?

21 / 85



A Brief Overview of Sliding Token’s Complexity

I PSPACE-complete on general, AT-free, planar, perfect, and
bounded treewidth graphs [Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno

2008], [Wrochna 2014]

I Polytime on proper interval graphs, claw-free graphs, forests,
cographs [Bonsma, Kamiński, Wronchna 2014], [Demaine, Demaine, F., Hoang, Ito, Ono, Otachi,

Uehara, Yamada 2014], [Kamiński, Medvedev, Milanic 2010]

I ??? on bipartite graphs

I We give an efficient algorithm on a subclass of bipartite graphs.

22 / 85



A Brief Overview of Sliding Token’s Complexity

I PSPACE-complete on general, AT-free, planar, perfect, and
bounded treewidth graphs [Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno

2008], [Wrochna 2014]

I Polytime on proper interval graphs, claw-free graphs, forests,
cographs [Bonsma, Kamiński, Wronchna 2014], [Demaine, Demaine, F., Hoang, Ito, Ono, Otachi,

Uehara, Yamada 2014], [Kamiński, Medvedev, Milanic 2010]

I ??? on bipartite graphs
I We give an efficient algorithm on a subclass of bipartite graphs.

23 / 85



Main Result

Algorithm for Sliding Token on bipartite permutation graphs.

Given graph G, independent sets A and B,
finds a reconfiguration sequence from A to B
or reports that none exists.

24 / 85



Main Result

Algorithm for Sliding Token on bipartite permutation graphs.

Given graph G, independent sets A and B,
finds a reconfiguration sequence from A to B
or reports that none exists.

25 / 85



Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}

= {bipartite graphs} ∩ {tolerance graphs}
= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .

26 / 85



Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}
= {bipartite graphs} ∩ {tolerance graphs}

= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .

27 / 85



Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}
= {bipartite graphs} ∩ {tolerance graphs}
= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .

28 / 85



Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}
= {bipartite graphs} ∩ {tolerance graphs}
= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .

29 / 85



Bipartite Permutation Graphs

{bipartite permutation graphs}
= {bipartite graphs} ∩ {permutation graphs}
= {bipartite graphs} ∩ {tolerance graphs}
= {bipartite graphs} ∩ {AT-free graphs}

(Sliding Token is PSPACE-hard on AT-free graphs)

= . . .

30 / 85



Bipartite permutation graph iff
vertices can be ordered v1, v2, . . . , vn
such that ∀i ≤ j ≤ k,

all paths from vi to vk include a vertex of N [vj ].

v1 v2 v3 v4 v5

N(v2) N(v4)
N(v5)

31 / 85



Bipartite permutation graph iff
vertices can be ordered v1, v2, . . . , vn
such that ∀i ≤ j ≤ k,

all paths from vi to vk include a vertex of N [vj ].

v1 v2 v3 v4 v5

N(v2) N(v4)
N(v5)

32 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

33 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

34 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

35 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently

I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from
graph. Otherwise, A does not reconfigure to B

I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

36 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B

I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

37 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

38 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

39 / 85



Algorithmic Tools

1. Wiggling: greedily moving each token to a neighbor and then
eventually back

2. Rigid tokens: R(G,A) =
⋂
[A]

I Wiggling finds rigid tokens efficiently
I If R(G,A) = R(G,B), simplify by deleting N [R(G,A)] from

graph. Otherwise, A does not reconfigure to B
I Now, wlog no rigid tokens

3. Targeting: putting a token on a specific vertex

4. Canonical representatives of reconfiguration graph’s
connected components

40 / 85



Canonical Representatives

I Canonical representative A+ for connected component [A]:
lexicographically minimum independent set

I (Minimize max index of vertex in set, then second max, etc.)

I B ∈ [A] iff A+ = B+.

41 / 85



Canonical Representatives

I Canonical representative A+ for connected component [A]:
lexicographically minimum independent set

I (Minimize max index of vertex in set, then second max, etc.)

I B ∈ [A] iff A+ = B+.

42 / 85



Canonical Representatives

I Canonical representative A+ for connected component [A]:
lexicographically minimum independent set

I (Minimize max index of vertex in set, then second max, etc.)

I B ∈ [A] iff A+ = B+.

43 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

44 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

45 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

46 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

47 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

48 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

49 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

50 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

51 / 85



Finding A+: use DP

Two ideas:

(a) A+ contains v1 or vertex of least index in N(v1); call this u

(b) Can maneuver a token to u and delete neighborhood without
making new rigid tokens

I Formally: R(G \N [u], I \ {u}) = ∅ where u ∈ I ∈ [A]

Strategy:

I DP guesses least index of tokens in A+ and uses Targeting to
put a token there

I That token will never move again

I By (b), this does not cause any tokens to go rigid

I Repeat, pretending we deleted the token and neighborhood

52 / 85



Proof sketch of idea (b): R(G \N [u], I \ {u}) = ∅

u: vertex of least index in A+

u

N [u]

N [N [u]]

53 / 85



Proof sketch of idea (b): R(G \N [u], I \ {u}) = ∅

First, push other tokens away from u (extreme case analysis)

u

N [u]

N [N [u]]

54 / 85



Proof sketch of idea (b): R(G \N [u], I \ {u}) = ∅

First, push other tokens away from u (extreme case analysis)

u

N [u]

N [N [u]]

55 / 85



Case: v1, vi ∈ I with i < min index of neighbor of v1

N(v1)

v1

vi

56 / 85



Case: v1, vi ∈ I with i < min index of neighbor of v1

N(v1)

N(w)

v1

vi

57 / 85



Case: v1, vi ∈ I with i < min index of neighbor of v1

N(v1)

N(w)

v1

vi vj

58 / 85



Idea (b) proof:

u: vertex of least index in I+

u

N [u]

N [N [u]]

59 / 85



Idea (b) proof:

First, push other tokens away from u (extreme case analysis)

u

N [u]

N [N [u]]

60 / 85



Idea (b) proof:

First, push other tokens away from u (extreme case analysis)

u

N [u]

N [N [u]]

61 / 85



Idea (b) proof:

“Wiggle” everything

u

N [u]

N [N [u]]

62 / 85



Idea (b) proof:

“Wiggle” everything

u

N [u]

N [N [u]]

63 / 85



Idea (b) proof:

Now edit sequence so token stays on u

u

N [u]

N [N [u]]

64 / 85



Idea (b) proof:

Now edit sequence so token stays on u

u

N [u]

N [N [u]]

65 / 85



Idea (b) proof:

This sequence witnesses that nothing is rigid after deleting N [u]

u

N [u]

N [N [u]]

66 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

67 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

68 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

69 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

70 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

71 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

72 / 85



Dynamic program essentially tracks how to pack most tokens onto
vertices v1 through vi for all i.

For entry corresponding to vi, the DP

I guesses greatest j < i containing a token (O(n) guesses)

I places a token on that vertex (O(n) time);

I deletes the neighborhood; and

I checks for rigidity (O(n) time).

Overall, O(n3) time.

73 / 85



Question: is there hope for generalization?

I Wiggling, Targeting apply to bipartite graphs.

I Canonical representatives seem hard to generalize:
permutation graphs have nice linear structure.

I Cannot naively put a token on some vertex and delete the
neighborhood

74 / 85



Question: is there hope for generalization?

I Wiggling, Targeting apply to bipartite graphs.

I Canonical representatives seem hard to generalize:
permutation graphs have nice linear structure.

I Cannot naively put a token on some vertex and delete the
neighborhood

75 / 85



Question: is there hope for generalization?

I Wiggling, Targeting apply to bipartite graphs.

I Canonical representatives seem hard to generalize:
permutation graphs have nice linear structure.

I Cannot naively put a token on some vertex and delete the
neighborhood

76 / 85



Question: is there hope for generalization?

I Wiggling, Targeting apply to bipartite graphs.

I Canonical representatives seem hard to generalize:
permutation graphs have nice linear structure.

I Cannot naively put a token on some vertex and delete the
neighborhood

77 / 85



Thanks

78 / 85



Bibliography I

H. Bandelt and H. M. Mulder.
Distance-hereditary graphs.
Journal of Combinatorial Theory, Series B, 41(2):182–208, 1986.

H. L. Bodlaender.
A Partial k-Arboretum of Graphs with Bounded Treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998.

M. Bonamy and N. Bousquet.
Recoloring bounded treewidth graphs.
Electronic Notes in Discrete Mathematics, 44:257–262, 2013.

M. Bonamy and N. Bousquet.
Recoloring graphs via tree decompositions.
CoRR, abs/1403.6386, 2014.

M. Bonamy and N. Bousquet.
Reconfiguring independent sets in cographs.
CoRR, abs/1406.1433, 2014.

M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma.
On the diameter of reconfiguration graphs for vertex colourings.
Electronic Notes in Discrete Mathematics, 38:161–166, 2011.

79 / 85



Bibliography II

M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma.
Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs.
Journal of Combinatorial Optimization, 27(1):132–143, 2014.

P. Bonsma.
Shortest Path Reconfiguration is PSPACE-hard.
CoRR, abs/1009.3217, 2010.

P. Bonsma.
The complexity of rerouting shortest paths.
Theoretical computer science, 510:1–12, 2013.

P. Bonsma.
Independent set reconfiguration in cographs.
CoRR, abs/1402.1587, 2014.

P. Bonsma and L. Cereceda.
Finding paths between graph colourings: PSPACE-completeness and
superpolynomial distances.
In Mathematical Foundations of Computer Science 2007, volume 4708 of Lecture
Notes in Computer Science, pages 738–749. Springer Berlin Heidelberg, 2007.

P. S. Bonsma, M. Kaminski, and M. Wrochna.
Reconfiguring independent sets in claw-free graphs.
In Algorithm Theory - SWAT 2014, pages 86–97, 2014.

80 / 85



Bibliography III

C. Calabro.
The exponential complexity of satisfiability problems.
PhD thesis, UC San Diego, 2009.

B. Courcelle.
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,
Y. Otachi, R. Uehara, and T. Yamada.
Polynomial-time algorithm for sliding tokens on trees.
In Algorithms and Computation, volume 8889 of Lecture Notes in Computer Science,
pages 389–400. Springer International Publishing, 2014.

P. Gopalan, P. G. Kolaitis, E. Maneva, and C. H. Papadimitriou.
The Connectivity of Boolean Satisfiability: Computational and Structural
Dichotomies.
SIAM Journal on Computing, 38(6):2330–2355, 2009.

R. A. Hearn.
Games, Puzzles, and Computation.
PhD thesis, Cambridge, MA, USA, 2006.

81 / 85



Bibliography IV

R. A. Hearn and E. D. Demaine.
PSPACE-completeness of Sliding-block Puzzles and Other Problems Through the
Nondeterministic Constraint Logic Model of Computation.
Theor. Comput. Sci., 343(1-2):72–96, October 2005.

T. Ito and E. D. Demaine.
Approximability of the subset sum reconfiguration problem.
Journal of Combinatorial Optimization, 28(3):639–654, 2014.

T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara,
and Y. Uno.
On the complexity of reconfiguration problems.
In Algorithms and Computation, volume 5369 of Lecture Notes in Computer Science,
pages 28–39. Springer Berlin Heidelberg, 2008.

T. Ito, M. Kamiński, and E. D. Demaine.
Reconfiguration of list edge-colorings in a graph.
In Algorithms and Data Structures, volume 5664 of Lecture Notes in Computer
Science, pages 375–386. Springer Berlin Heidelberg, 2009.

T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K. Yamanaka.
On the parameterized complexity for token jumping on graphs.
In Theory and Applications of Models of Computation, volume 8402 of Lecture
Notes in Computer Science, pages 341–351. Springer International Publishing, 2014.

82 / 85



Bibliography V

Takehiro Ito, Kazuto Kawamura, Hirotaka Ono, and Xiao Zhou.
Reconfiguration of list l(2,1)-labelings in a graph.
In Algorithms and Computation, volume 7676 of Lecture Notes in Computer Science,
pages 34–43. Springer Berlin Heidelberg, 2012.

Takehiro Ito, Kazuto Kawamura, and Xiao Zhou.
An improved sufficient condition for reconfiguration of list edge-colorings in a tree.
In Theory and Applications of Models of Computation, volume 6648 of Lecture
Notes in Computer Science, pages 94–105. Springer Berlin Heidelberg, 2011.

M. Kamiński, P. Medvedev, and M. Milani.
Complexity of independent set reconfigurability problems.
Theor. Comput. Sci., 439:9–15, June 2012.

M. Kamiński, P. Medvedev, and M. Milanic.
Shortest paths between shortest paths and independent sets.
CoRR, abs/1008.4563, 2010.

K. Makino, S. Tamaki, and M. Yamamoto.
An exact algorithm for the Boolean connectivity problem for k-CNF.
In Theory and Applications of Satisfiability Testing–SAT 2010, pages 172–180.
Springer, 2010.

83 / 85



Bibliography VI

M. Mézard, G. Parisi, and R. Zecchina.
Analytic and algorithmic solution of random satisfiability problems.
Science, 297(5582):812–815, 2002.

A. E. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki.
On the parameterized complexity of reconfiguration problems.
In Parameterized and Exact Computation, pages 281–294. Springer, 2013.

A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna.
Reconfiguration over tree decompositions.
In Parameterized and Exact Computation, volume 8894 of Lecture Notes in
Computer Science, pages 246–257. Springer International Publishing, 2014.

T. J. Schaefer.
The complexity of satisfiability problems.
In Proceedings of the tenth annual ACM symposium on Theory of computing, pages
216–226. ACM, 1978.

J. Spinrad, A. Brandstädt, and L. Stewart.
Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

A. P. Sprague.
Recognition of bipartite permutation graphs.
Congressus Numerantium, 62:151–161, 1995.

84 / 85



Bibliography VII

W. van Wezel and R. Jorna.
Cognition, tasks and planning: supporting the planning of shunting operations at the
netherlands railways.
Cognition, Technology & Work, 11(2):165–176, 2009.

M. Wrochna.
Reconfiguration in bounded bandwidth and treedepth.
CoRR, abs/1405.0847, 2014.

85 / 85


