A note regarding "Sliding Tokens on a Cactus"

Duc A. Hoang
VNU University of Science, Hanoi, Vietnam
hoanganhduc@hus.edu.vn

July 14, 2024

1 Introduction

In this note, we introduce a counter-example for Lemma 6 of [1] and the progress of resolving this issue. This example was provided by Mathew Francis and Veena Prabhakaran.

2 The problem

Let I, J be two given independent sets of a graph G. Imagine that the vertices of an independent set are viewed as tokens (coins). A token is allowed to move (or slide) from one vertex to one of its neighbors. The Sliding Token problem asks whether there exists a sequence of independent sets of G starting from I and ending with J such that each intermediate member of the sequence is obtained from the previous one by moving a token according to the allowed rule. If such a sequence exists, we write $\mathbf{I} \xrightarrow{G} \mathbf{J}$. In [1] , we claimed that this problem is solvable in polynomial time when the input graph is a cactus graph-a graph whose blocks (i.e., maximal 2-connected subgraphs) are cycles.

3 Lemma 6 and its counter-example

Let I be an independent set of a graph G. Let $W \subseteq V(G)$ and assume that $\mathbf{I} \cap W \neq \emptyset$. We say that a token t placed at some vertex $u \in \mathbf{I} \cap W$ is (G, \mathbf{I}, W) confined if for every \mathbf{J} such that $\mathbf{I} \stackrel{G}{\sharp} \mathbf{J}, t$ is always placed at some vertex of W. In other words, t can only be slid along edges of $G[W]$.

Let H be an induced subgraph of $G . H$ is called (G, \mathbf{I})-confined if $\mathbf{I} \cap H$ is a maximum independent set of H and all tokens in $\mathbf{I} \cap H$ are $(G, \mathbf{I}, V(H))$ confined. In particular, if H is a cycle (resp. a path) of G, we say that it is a (G, \mathbf{I})-confined cycle (resp. (G, \mathbf{I})-confined path).

Mathew Francis and Veena Prabhakaran showed us a counter-example of the following proposition

Lemma 3.1 ([1, Lemma 6]). Let G be a cactus. Let $P=p_{1} p_{2} \ldots p_{l}$ be an induced path in G. Let \mathbf{I} be an independent set of G satisfying that $\mathbf{I} \cap P$ is a maximum independent set of P. Assume that for any $x \in \mathbf{I} \cap P$, the token placed at x is (G, \mathbf{I})-movable.

Then, P is (G, \mathbf{I})-confined if and only if l is even (i.e., the length $k=l-1$ of P is odd) and there exist two independent sets \mathbf{I}_{1}^{\prime} and \mathbf{I}_{2}^{\prime} such that
(i) $\mathbf{I} \stackrel{G}{\leadsto} \mathbf{I}^{\prime}$, where $\mathbf{I}^{\prime} \in\left\{\mathbf{I}, \mathbf{I}_{1}^{\prime}, \mathbf{I}_{2}^{\prime}\right\}$,
(ii) $\mathbf{I}_{1}^{\prime} \cap P=\left\{p_{1}, p_{3}, \ldots, p_{l-1}\right\}, \mathbf{I}_{2}^{\prime} \cap P=\left\{p_{2}, p_{4}, \ldots, p_{l}\right\}$, and
(iii) for every $x \in \mathbf{I}^{\prime} \cap P$, the token placed at x is $\left(G_{P}^{x}, \mathbf{I}^{\prime} \cap G_{P}^{x}\right)$-rigid.

Below are the contents of their counter-example.

Figure 1: A cactus graph G and an independent set \mathbf{I} (given as black vertices), where $P=v_{1} v_{2}$

Consider the cactus graph shown in Figure 1. The black vertices show an independent set \mathbf{I}, and we take P to be the path containing just the two vertices v_{1} and v_{2}. Clearly, the token on v_{1} is not $(G, \mathbf{I}, V(P))$-confined, since we can first move the token on v_{5} to v_{6}, and then move the token at v_{1} to v_{3}. Thus P is not (G, \mathbf{I})-confined.

Let $\mathbf{I}_{\mathbf{1}}^{\prime}=\mathbf{I}$, and let \mathbf{I}_{2}^{\prime} be the independent set obtained from \mathbf{I} by moving the token on v_{1} to v_{2}. These two independent sets are shown in Figure 2(a) and $2(\mathrm{~b})$ respectively.

(a) Independent set $\mathbf{I}_{\mathbf{1}}^{\prime}(=\mathbf{I})$ reachable from \mathbf{I} such that $\mathbf{I}_{\mathbf{1}}^{\prime} \cap P=\left\{v_{1}\right\}$

(b) Independent set \mathbf{I}_{2}^{\prime} reachable from \mathbf{I} such that $\mathbf{I}_{\mathbf{2}}^{\prime} \cap P=\left\{v_{2}\right\}$

Figure 2: The two independent sets $\mathbf{I}_{\mathbf{1}}^{\prime}$ and $\mathbf{I}_{\mathbf{2}}^{\prime}$

Clearly, the independent sets $\mathbf{I}_{\mathbf{1}}^{\prime}$ and $\mathbf{I}_{\mathbf{2}}^{\prime}$ satisfy conditions (i) and (ii) of Lemma 6. As Figure 3 shows, it can be verified that they also satisfy condition (iii).

Figure 3: After removing the edges of P

As we understand Lemma 6, it must now follow that P is (G, \mathbf{I})-confined, which is a contradiction.

4 Progress on resolving the issue

So far, we have not been able to resolve this issue.

References

[1] Duc A. Hoang and Ryuhei Uehara. Sliding tokens on a cactus. In SeokHee Hong, editor, Proceedings of ISAAC 2016, volume 64 of LIPIcs, pages 37:1-37:26. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. doi: 10.4230/LIPIcs.ISAAC.2016.37.

