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e Reconfiguration Problems.
e The SLIDING TOKEN problem for a cactus.

e Interesting open questions.
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e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).
e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.
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Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)
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e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Parity (cven/odd) Checking (O(n) time)
If YES, need at most O(n*) moves.
[Kornhauser, Miller, and Spirakis 1984]

(1,8,7,14,12,4,3,13,9,5,10)(2, 15, 11)(6, 16)

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)



Reconfiguration Problems ]AI

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).
e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Parity (even/odd) Checking (O(n) time)
If YES, need at most O(n®) moves.
[Kornhauser, Miller, and Spirakis 1984]

Find minimum number of moves? - NP-complete
[Ratner and Warmuth 1990]
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Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)
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e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Reconfiguration variants have been studied for several well-known problems:

e SATISFIABLILITY,
e INDEPENDENT SET, VERTEX COVER, CLIQUE,
e VERTEX-COLORING, (LisT) EDGE-COLORING,
e and so on.

Recent Survey on Reconfiguration Problems

Jan van den Heuvel (2013). “The complexity of change”. In: Surveys in Combinatorics 2013.
Ed. by Simon R. Blackburn et al. Cambridge University Press, pp. 127-160
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The SLIDING TOKEN problem

o INSTANCE:
e Collection of independent sets of a graph.
e Allowed transformation rule: Token Sliding (TS).

o QUESTION: Decide if there exists a sequence of independent sets (called at
TS-sequence) S = (I, I, ..., 1) that transforms (reconfigures) I =1; to J =1,
where I, is obtained from I; by sliding a token from a vertex u € I; \ I;;; to its
neighbor v € L1 \I;, i € {1,...,¢ —1}.

LIRS AL

I=1, I=1;

Figure 2: A TS-sequence that reconfigures I = I; to J = I5. Vertices of an independent set
are marked with black circles (tokens).
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Ficure 3: Complexitv status of SLIDING TOKEN.
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A cactus is a graph such that every block (i.e., maximal biconnected subgraph) is
either an edge or a simple cycle.

Figure 4: A cactus and its blocks. Two blocks sharing the same vertex are of diffenrent colors.
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There are a few reasons that motivate our study.

1. We want to understand Intractability vs Polynomial-time tractability of SLIDING
TOKEN for bounded-treewidth/planar graphs and their subclasses: Before cacti,
the “largest” subclass with polynomial-time tractability is trees.
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There are a few reasons that motivate our study.

1. We want to understand Intractability vs Polynomial-time tractability of SLIDING
TOKEN for bounded-treewidth/planar graphs and their subclasses: Before cacti,
the “largest” subclass with polynomial-time tractability is trees.

2. Even for trees, a token sometimes needs to make “detours” to preserve the
independence property. In general, there might be a YES-instance that requires
super-polynomial number of token-slides. (see [Demaine et al. 2015])
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Figure 5: Detours in a tree.
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Figure 5: Detours in a tree.
3. In a cactus, there might be more than one path connecting two given vertices. It

follows that there might be exponential number of “routes” that a token can be
moved.
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Given an instance (G,I,J) of SLIDING TOKEN, where I and J are independent sets of
a cactus GG, we can

1. Characterize all structures that forbid the existence of a TS-sequence between I
and J in polynomial time.

o A token that cannot be slid at all (called a (G, I)-rigid token).
o A cycle whose inside-tokens form a maximum independent set of it and no token can
be slid “out” or “in” (called a (G, I)-confined cycle).
2. Prove the existence of a TS-sequence between I and J when no such structures

exist.
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Lemma 1

One can find all (G, I)-rigid tokens in O(n?) time, where n = |V (G)|. Without
(G, T)-rigid tokens, one can find all (G, I)-confined cycles in O(n?) time.

(a) (G, I)-rigid tokens (b) (G,I)-confined cycles

Figure 6: Examples of the forbidden structures.



The general idea

Lemma 2

If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are different, then it is a
NoO-instance. Without (G, I)-rigid and (G, J)-rigid tokens, if the set of

(G, I)-confined cycles and (G, J)-confined cycles are different, then it is a

NO-instance.

Figure 7: The set of (G, I)-rigid tokens and (G, J)-rigid tokens are different.
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Lemma 3

Without rigid tokens and confined cycles (for both I and J), I can be reconfigured to
J if and only if |I| = |J].

Proof Idea: Construct an “intermediate” independent set I* such that both I and J
can be reconfigured to I*.

Figure 9: lllustration of Lemma 3.



Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
e Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',IN G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',IN G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.
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Interesting open questions

1. SLIDING TOKEN for bipartite graphs is still open. Unlike a cactus, two cycles of a
bipartite graph may have more than one vertex in common. Polynomial results are
known for bipartite permutation graphs [Fox-Epstein et al. 2015].

2. Given a YES-instance, finding a shortest TS-sequence is open even for trees. The
only known polynomial result regarding this problem is the case for caterpillars
[Yamada and Uehara 2016].

3. It is interesting to find a graph class G with the property that SLIDING TOKEN is
polynomial-time solvable for G, and finding a shortest TS-sequence for G is
NP-hard. We conjecture that G might be cacti.
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