ISAAC 2016 (Sydney, Australia)

Sliding tokens on a cactus

Duc A. Hoang Ryuhei Uehara
December 12-14, 2016
Japan Advanced Institute of Science and Technology

Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
{hoanganhduc, uehara}@jaist.ac.jp

QOutline]AIST
[)

SCIENCE AND TECHNOLOGY
990

e Reconfiguration Problems.
e The SLIDING TOKEN problem for a cactus.

e Interesting open questions.

Reconfiguration Problems

Reconfiguration Problems]AIST
)

N
SCIENCE AND TECHNOLOGY
19590

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).
e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Reconfiguration Problems

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

configuration A configuration B

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

configuration A configuration B

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems]A[ST o

SCIENCE AND TECHNOLOGY

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

configuration A configuration B

YES/No?

B ——

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Parity (cven/odd) Checking (O(n) time)

(1,8,7,14,12,4,3,13,9,5,10)(2, 15, 11)(6, 16)

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems]AI

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Parity (cven/odd) Checking (O(n) time)
If YES, need at most O(n*) moves.
[Kornhauser, Miller, and Spirakis 1984]

(1,8,7,14,12,4,3,13,9,5,10)(2, 15, 11)(6, 16)

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems]AI

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).
e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Parity (even/odd) Checking (O(n) time)
If YES, need at most O(n®) moves.
[Kornhauser, Miller, and Spirakis 1984]

Find minimum number of moves? - NP-complete
[Ratner and Warmuth 1990]

(1,8,7,14,12,4,3,13,9,5,10)(2, 15, 11)(6, 16)

Figure 1: The 15-puzzles. (In general, the (k? — 1)-puzzles.)

Reconfiguration Problems]AIST
)

SCIENCE AND TECHNOLOGY
990

e INSTANCE:
1. Collection of configurations.
2. Allowed transformation rule(s).

e QUESTION: Decide if configuration A can be transformed to configuration B
using the given rule(s), while maintaining a configuration throughout.

Reconfiguration variants have been studied for several well-known problems:

e SATISFIABLILITY,
e INDEPENDENT SET, VERTEX COVER, CLIQUE,
e VERTEX-COLORING, (LisT) EDGE-COLORING,
e and so on.

Recent Survey on Reconfiguration Problems

Jan van den Heuvel (2013). “The complexity of change”. In: Surveys in Combinatorics 2013.
Ed. by Simon R. Blackburn et al. Cambridge University Press, pp. 127-160

The SLIDING TOKEN problem for a
cactus

The SLIDING TOKEN problem

o INSTANCE:
e Collection of independent sets of a graph.
e Allowed transformation rule: Token Sliding (TS).

o QUESTION: Decide if there exists a sequence of independent sets (called at
TS-sequence) S = (I, I, ..., 1) that transforms (reconfigures) I =1; to J =1,
where I, is obtained from I; by sliding a token from a vertex u € I; \ I;;; to its
neighbor v € L1 \I;, i € {1,...,¢ —1}.

LIRS AL

I=1, I=1;

Figure 2: A TS-sequence that reconfigures I = I; to J = I5. Vertices of an independent set
are marked with black circles (tokens).

AIST

Complexity status of SLIDING TOKEN .

@) SGIENCE AND TECHNOLOGY

[| psPACE-complete

general

: even-hole-free ! bounded treewidth

claw-free perfect

cographs | bipartite permutation|

bipartite distance-hereditary

| proper interval trivially perfect caterpillar

Ficure 3: Complexitv status of SLIDING TOKEN.

A cactus]AIST v or
[)

SCIENCE AND TECHNOLOGY
990

A cactus is a graph such that every block (i.e., maximal biconnected subgraph) is
either an edge or a simple cycle.

Figure 4: A cactus and its blocks. Two blocks sharing the same vertex are of diffenrent colors.

Why study SLIDING TOKEN for a cactus? AIST

SCIENCE AND TECHNOLOGY
@) i500

There are a few reasons that motivate our study.

1. We want to understand Intractability vs Polynomial-time tractability of SLIDING
TOKEN for bounded-treewidth/planar graphs and their subclasses: Before cacti,
the “largest” subclass with polynomial-time tractability is trees.

Why study SLIDING TOKEN for a cactus? AIST o

There are a few reasons that motivate our study.

1. We want to understand Intractability vs Polynomial-time tractability of SLIDING
TOKEN for bounded-treewidth/planar graphs and their subclasses: Before cacti,
the “largest” subclass with polynomial-time tractability is trees.

2. Even for trees, a token sometimes needs to make “detours” to preserve the
independence property. In general, there might be a YES-instance that requires
super-polynomial number of token-slides. (see [Demaine et al. 2015])

e o e i

@)1, =1, ® 1 ©14 (d) 1y @) L=1

Figure 5: Detours in a tree.

Why study SLIDING TOKEN for a cactus? AIST

INSTITUTE OF
o :(_m \CE AND TECHNOLOGY

There are a few reasons that motivate our study.

1. We want to understand Intractability vs Polynomial-time tractability of SLIDING
TOKEN for bounded-treewidth/planar graphs and their subclasses: Before cacti,
the “largest” subclass with polynomial-time tractability is trees.

2. Even for trees, a token sometimes needs to make “detours” to preserve the
independence property. In general, there might be a YES-instance that requires
super-polynomial number of token-slides. (see [Demaine et al. 2015])

e o e i

@1,=1, ®h ©n @1z ©1=1
Figure 5: Detours in a tree.
3. In a cactus, there might be more than one path connecting two given vertices. It

follows that there might be exponential number of “routes” that a token can be
moved.

The general idea AIST

SCIENCE AND TECHNOLOGY
@) i500

Given an instance (G,I,J) of SLIDING TOKEN, where I and J are independent sets of
a cactus GG, we can

1. Characterize all structures that forbid the existence of a TS-sequence between I
and J in polynomial time.

o A token that cannot be slid at all (called a (G, I)-rigid token).
o A cycle whose inside-tokens form a maximum independent set of it and no token can
be slid “out” or “in” (called a (G, I)-confined cycle).
2. Prove the existence of a TS-sequence between I and J when no such structures

exist.

The general idea]AI

Lemma 1

One can find all (G, I)-rigid tokens in O(n?) time, where n = |V (G)|. Without
(G, T)-rigid tokens, one can find all (G, I)-confined cycles in O(n?) time.

(a) (G, I)-rigid tokens (b) (G,I)-confined cycles

Figure 6: Examples of the forbidden structures.

The general idea

Lemma 2

If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are different, then it is a
NoO-instance. Without (G, I)-rigid and (G, J)-rigid tokens, if the set of

(G, I)-confined cycles and (G, J)-confined cycles are different, then it is a

NO-instance.

Figure 7: The set of (G, I)-rigid tokens and (G, J)-rigid tokens are different.

The general idea

Lemma 2

If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are different, then it is a
NoO-instance. Without (G, I)-rigid and (G, J)-rigid tokens, if the set of

(G, I)-confined cycles and (G, J)-confined cycles are different, then it is a
NO-instance.

Figure 8: The set of (G, I)-confined cycles and (G, J)-confined cycles are different.

The general idea] 1

Lemma 3

Without rigid tokens and confined cycles (for both I and J), I can be reconfigured to
J if and only if |I| = |J].

Proof Idea: Construct an “intermediate” independent set I* such that both I and J
can be reconfigured to I*.

Figure 9: lllustration of Lemma 3.

Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
e Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',IN G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',IN G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.

Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
o Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',IN G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',IN G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.

Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
o Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',I N G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',IN G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.

Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
o Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',IN G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',I N G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.

Our algorithm

Lemmas 1-3 give rise to the following polynomial-time algorithm. For an instance
(G,1,J) of SLIDING TOKEN, where G is a cactus and I, J are two independent sets
of G.
o Step 1:
o Step 1-1: If the set of (G, I)-rigid tokens and (G, J)-rigid tokens are
different, return NO.
e Step 1-2: Otherwise, remove all vertices where (G, I)-rigid tokens are
placed and its neighbors, and go to Step 2. Let G’ be the resulting graph.
o Step 2:
e Step 2-1: If the set of (G',IN G’)-confined cycles and
(G',J N G')-confined cycless are different, return NO.
e Step 2-2: Otherwise, remove all (G',IN G’)-confined cycles, and go to
Step 3. Let G” be the resulting graph.
o Step 3: If [IN F| # |J N F| for some component F of G” then return NO.
Otherwise, return YES.

Interesting open questions

Interesting open questions

1. SLIDING TOKEN for bipartite graphs is still open. Unlike a cactus, two cycles of a
bipartite graph may have more than one vertex in common. Polynomial results are
known for bipartite permutation graphs [Fox-Epstein et al. 2015].

2. Given a YES-instance, finding a shortest TS-sequence is open even for trees. The
only known polynomial result regarding this problem is the case for caterpillars
[Yamada and Uehara 2016].

3. It is interesting to find a graph class G with the property that SLIDING TOKEN is
polynomial-time solvable for G, and finding a shortest TS-sequence for G is
NP-hard. We conjecture that G might be cacti.

Bibliography |]AIST

ADVA
SCIENCE AND TECHNOLOGY

@ Demaine, Erik D., Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro lto,

Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada (2015). “Linear-time algorithm
for sliding tokens on trees". In: Theoretical Computer Science 600, pp. 132-142.

@ Fox-Epstein, Eli, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara (2015). “Sliding Token on
Bipartite Permutation Graphs”. In: Algorithms and Computation - ISAAC 2015. Ed. by
Khaled Elbassioni and Kazuhisa Makino. Vol. 9472. LNCS. Springer, pp. 237-247.

@ Kornhauser, Daniel, Gary L. Miller, and Paul Spirakis (1984). “Coordinating Pebble Motion on
Graphs, The Diameter of Permutation Groups, and Applications”. In: 25th Annual Symposium
on Foundations of Computer Science, pp. 241-250.

@ Ratner, Daniel and Manfred Warmuth (1990). “The (n® — 1)-puzzle and related relocation
problems”. In: Journal of Symbolic Computation 10.2, pp. 111-137.

@ van den Heuvel, Jan (2013). “The complexity of change”. In: Surveys in Combinatorics 2013.
Ed. by Simon R. Blackburn, Stefanie Gerke, and Mark Wildon. Cambridge University Press,
pp. 127-160.

Bibliography 11]AIST

ADVA
SCIENCE AND TECHNOLOGY

@ Yamada, Takeshi and Ryuhei Uehara (2016). “Shortest Reconfiguration of Sliding Tokens on a
Caterpillar”. In: Algorithms and Computation - WALCOM 2016. Ed. by Mohammad Kaykobad
and Rossella Petreschi. Vol. 9627. LNCS. Springer, pp. 236—248.

	Reconfiguration Problems
	The Sliding Token problem for a cactus
	Interesting open questions

