On Token Sliding (Reconfiguration) Graphs of Independent Sets

Duc A. Hoang
VNU University of Science, Hanoi, Vietnam
hoanganhduc@hus.edu.vn

Based on joint works with David Avis (Kyoto University, Japan)

The Korea-Taiwan-Vietnam Joint Meeting on Discrete Geometry and Geometric Measure Theory (VIASM, Hanoi, Vietnam)

July 17-19, 2023

Outline

1 A Geometric Example
$2 \mathrm{TS}_{k}$-Graphs: Background and Motivation

3 Paths Are TS_{k}-Graphs

- Line Graphs and TS_{2}-Graphs
- Labelling Vertices By Stable Sets
- Gluing Labelled Graphs Together

4 On TS ${ }_{k}$-Graphs

5 On Acyclic TS_{k}-Graphs

A Geometric Example

A Geometric Example

- Flip graphs are very important in computational geometry and have many applications in various settings, including
- measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
- enumerating geometric objects;
- computing geometric objects with respect to some optimization criteria;
- and so on

A Geometric Example

- Flip graphs are very important in computational geometry and have many applications in various settings, including
- measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
- enumerating geometric objects;
- computing geometric objects with respect to some optimization criteria;
- and so on
- For a given graph G and a fixed integer $k \geq 1$, the TS_{k}-(reconfiguration) graph (or TS_{k}-graph) of G, denoted by $\mathrm{TS}_{k}(G)$, is the graph whose
- vertices are independent sets (or stable sets, which are vertex subsets of pairwise non-adjacent vertices) of G
- Each stable set can be seen as a set of tokens placed on vertices of G

■ edges are defined by Token Sliding (TS)

Figure: $\mathrm{TS}_{2}\left(C_{5}\right)$

A Geometric Example

- Flip graphs are very important in computational geometry and have many applications in various settings, including
- measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
- enumerating geometric objects;
- computing geometric objects with respect to some optimization criteria;
- and so on
- For a given graph G and a fixed integer $k \geq 1$, the TS_{k}-(reconfiguration) graph (or $\mathrm{TS}_{k^{-}}$graph) of G, denoted by $\mathrm{TS}_{k}(G)$, is the graph whose
- vertices are independent sets (or stable sets, which are vertex subsets of pairwise non-adjacent vertices) of G

■ Each stable set can be seen as a set of tokens placed on vertices of G

■ edges are defined by Token Sliding (TS)

Figure: $\mathrm{TS}_{2}\left(C_{5}\right)$

- We present an example showing a relationship between some flip graphs of triangulations and TS_{k}-graphs (of some graphs)

A Geometric Example

- Given a set P of n points in the plane, no three collinear and no four co-circular

\bigcirc_{5}^{6}
0
\bigcirc^{2}

Figure: A set P of n points in the plane.

A Geometric Example

- Given a set P of n points in the plane, no three collinear and no four co-circular
- Two line segments are intersecting if they cross each other at an interior point of each segment, and non-intersecting otherwise

Figure: A set P of n points in the plane. Red (Blue) segments are pairwise intersecting (non-intersecting).

A Geometric Example

■ Given a set P of n points in the plane, no three collinear and no four co-circular

- Two line segments are intersecting if they cross each other at an interior point of each segment, and non-intersecting otherwise
- A triangulation of P is any maximal set of pairwise non-intersecting segments. It is well-known that all triangulations have the same number of edges (segments)

Figure: A set P of n points in the plane.
A triangulation of P where each segment is colored in black

A Geometric Example

- The edge-intersection graph G of P is the graph whose
- vertices are the line segments with endpoints in P that intersect at least one other segment

Figure: A triangulation of P is marked by black edges. The remaining line segments are marked by dashed red edges

Figure: The edge-intersection graph G of P. Vertices (segments) not in G are depicted by dotted circles.

A Geometric Example

- The edge-intersection graph G of P is the graph whose
- vertices are the line segments with endpoints in P that intersect at least one other segment
- edges are defined between two vertices whose corresponding line segments are intersecting

Figure: A triangulation of P is marked by black edges. The remaining line segments are marked by dashed red edges

Figure: The edge-intersection graph G of P. Vertices (segments) not in G are depicted by dotted circles.

A Geometric Example

■ The flip graph of triangulations of P is the graph whose

- vertices are triangulations of P
- edges are defined via the flip operation: two triangulations T_{1}, T_{2} of P are adjacent if one can be obtained from the other by flipping the diagonal of a convex quadrilateral

Figure: The flip operation

Figure: A vertex (triangulation) in the flip graph of triangulations of P (top left) and its adjacent ones

A Geometric Example

- A set of k pairwise non-intersecting segments where each member intersects at least one other segment \Leftrightarrow A vertex of $\mathrm{TS}_{k}(G)$ (e.g., size- k stable set of G)
- An edge of the flip graph of triangulations of $P \Leftrightarrow$ An edge of $\mathrm{TS}_{k}(G)$

Note: $\alpha(G)$ denotes the size of a maximum stable set of G

TS_{k}-Graphs: Background and Motivation

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs

- A k-token $\operatorname{graph} F_{k}(G)$ of a graph G is the graph whose

■ vertices are size- k vertex subsets of G

- edges are defined under Token Sliding

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs
■ A k-token graph $F_{k}(G)$ of a graph G is the graph whose

- vertices are size- k vertex subsets of G

■ edges are defined under Token Sliding
■ One of the earliest results is [Alavi, Behzad, Erdôs, and Lick 1991]
■ They studied the regularity, bipartitedness, Eulerianity, etc. of $F_{2}(G)$ —which they called the double vertex graphs

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs
■ A k-token graph $F_{k}(G)$ of a graph G is the graph whose
■ vertices are size- k vertex subsets of G
■ edges are defined under Token Sliding
■ One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
■ They studied the regularity, bipartitedness, Eulerianity, etc. of $F_{2}(G)$ —which they called the double vertex graphs
■ Combinatorial and algebraic properties of $F_{k}(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs
■ A k-token graph $F_{k}(G)$ of a graph G is the graph whose

- vertices are size- k vertex subsets of G

■ edges are defined under Token Sliding
■ One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
■ They studied the regularity, bipartitedness, Eulerianity, etc. of $F_{2}(G)$ —which they called the double vertex graphs
■ Combinatorial and algebraic properties of $F_{k}(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
■ General Framework: Reconfiguration Problems

- A growing research area in computer science which primarily aims to understand the solution space of a computational problem

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs
■ A k-token graph $F_{k}(G)$ of a graph G is the graph whose

- vertices are size- k vertex subsets of G

■ edges are defined under Token Sliding
■ One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
■ They studied the regularity, bipartitedness, Eulerianity, etc. of $F_{2}(G)$ —which they called the double vertex graphs
■ Combinatorial and algebraic properties of $F_{k}(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
■ General Framework: Reconfiguration Problems

- A growing research area in computer science which primarily aims to understand the solution space of a computational problem
■ Under the "reconfiguration setting", $\mathrm{TS}_{k}(G)$ has been extremely well-studied from the algorithmic perspective [van den Heuvel 2013]; [Nishimura 2018]; [Bousquet, Mouawad, Nishimura, and Siebertz 2022]

TS_{k}-Graphs: Background and Motivation

■ Related works involve Token Graphs
■ A k-token graph $F_{k}(G)$ of a graph G is the graph whose
■ vertices are size-k vertex subsets of G
■ edges are defined under Token Sliding
■ One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
■ They studied the regularity, bipartitedness, Eulerianity, etc. of $F_{2}(G)$ —which they called the double vertex graphs
■ Combinatorial and algebraic properties of $F_{k}(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
■ General Framework: Reconfiguration Problems

- A growing research area in computer science which primarily aims to understand the solution space of a computational problem
- Under the "reconfiguration setting", $\mathrm{TS}_{k}(G)$ has been extremely well-studied from the algorithmic perspective [van den Heuvel 2013]; [Nishimura 2018]; [Bousquet, Mouawad, Nishimura, and Siebertz 2022]
- We initiate the study of $\mathrm{TS}_{k}(G)$ from a purely graph-theoretic perspective [Avis and Hoang 2023a]; [Avis and Hoang 2023b]

Paths Are TS_{k}-Graphs

Paths Are TS_{k}-Graphs

■ We say that a graph H is a TS_{k}-graph if there exists a graph G such that $H \simeq \mathrm{TS}_{k}(G)$

- For example, C_{5} is a TS_{2}-graph, since $C_{5} \simeq \mathrm{TS}_{2}\left(C_{5}\right)$
- Since $G \simeq \mathrm{TS}_{1}(G)$ for any graph G, the case $k=1$ is trivial and uninteresting. From now on, we will always consider fixed integers $k \geq 2$

Paths Are TS_{k}-Graphs

■ We say that a graph H is a TS_{k}-graph if there exists a graph G such that $H \simeq \mathrm{TS}_{k}(G)$

- For example, C_{5} is a TS_{2}-graph, since $C_{5} \simeq \mathrm{TS}_{2}\left(C_{5}\right)$
- Since $G \simeq \mathrm{TS}_{1}(G)$ for any graph G, the case $k=1$ is trivial and uninteresting. From now on, we will always consider fixed integers $k \geq 2$

Theorem 1

A path $P_{n}(n \geq 1)$ is a TS_{k}-graph for any $k \geq 2$

- We briefly explain three different ways of proving Theorem 1, each of which indicates a way of looking at TS_{k}-graphs

Line Graphs and TS_{2}-Graphs

Lemma 2

Let \bar{G} and $L(G)$ be respectively the complement and line graph of G
(a) $\mathrm{TS}_{2}(\bar{G})$ is a (spanning) subgraph of $L(G)$
(b) $\mathrm{TS}_{2}(\bar{G}) \simeq L(G)$ if and only if G is triangle-free
edges of G
non-edges of \bar{G}

G

$L(G)$

Line Graphs and TS_{2}-Graphs

Lemma 2

Let \bar{G} and $L(G)$ be respectively the complement and line graph of G
(a) $\mathrm{TS}_{2}(\bar{G})$ is a (spanning) subgraph of $L(G)$
(b) $\mathrm{TS}_{2}(\bar{G}) \simeq L(G)$ if and only if G is triangle-free
edges of G
vertices of $L(G)$ \square vertices of $\mathrm{TS}_{2}(\bar{G})$
edges of a triangle of G

vertices of
a triangle of $L(G)$
non-edges of \bar{G} three size-2 stable sets of \bar{G}

> a size-3 stable set of $\mathrm{TS}_{2}(\bar{G})$

G

$L(G)$

$\mathrm{TS}_{2}(\bar{G})$

Line Graphs and TS_{2}-Graphs

■ Since P_{n} is triangle-free for any $n>1$ and $P_{n} \simeq L\left(P_{n+1}\right)$, Lemma 2 immediately gives us

$$
P_{n} \simeq L\left(P_{n+1}\right) \simeq \mathrm{TS}_{2}\left(\overline{P_{n+1}}\right)
$$

Thus, P_{n} is always a TS_{2}-graph

Line Graphs and TS_{2}-Graphs

- Since P_{n} is triangle-free for any $n>1$ and $P_{n} \simeq L\left(P_{n+1}\right)$, Lemma 2 immediately gives us

$$
P_{n} \simeq L\left(P_{n+1}\right) \simeq \mathrm{TS}_{2}\left(\overline{P_{n+1}}\right)
$$

Thus, P_{n} is always a TS_{2}-graph

- The following proposition settles the case $k \geq 3$ (note that $\alpha\left(\overline{P_{n+1}}\right)=2$)

> Proposition 3
> Given H and let $G=\mathrm{TS}_{\alpha(H)}(H)$. Then, for every $k \geq \alpha(H), G$ is a TS_{k}-graph

- Construct a graph H^{\prime} by taking the disjoint union of H and exactly $k-\alpha(H)$ isolated vertices
- Then, $G=\mathrm{TS}_{\alpha(H)}(H) \simeq \mathrm{TS}_{k}\left(H^{\prime}\right)$ for any fixed integer $k \geq \alpha(H)$
$k-\alpha(H)$ tokens

Figure: The graph H^{\prime}

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Labelling Vertices By Stable Sets

Key Idea ($k=2$)

There exists G such that $P_{1} \simeq \mathrm{TS}_{2}(G)$. For $n \geq 2$, we update G and label vertices of P_{n} by size- 2 stable sets of G

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Gluing Labelled Graphs Together

Key Idea $(k=2)$

(a) There exists a (labelled) graph G such that $P_{2} \simeq \mathrm{TS}_{2}(G)$
(b) With a "good" vertex-labelling (by stable sets of some graph), the TS_{2}-graph P_{n} can be constructed by "gluing" two smaller TS_{2}-graphs P_{n-1} and P_{2}, for any $n \geq 3$

Gluing Labelled Graphs Together

■ Vertex-labelled graphs G_{1} and G_{2} are H-consistent if the (possibly empty) intersection of their vertex sets defines the same (possibly empty) common induced subgraph H

- The H-join of H-consistent graphs G_{1}, G_{2}, denoted by $H\left(G_{1}, G_{2}\right)$, is the graph constructed by
- Putting G_{2} on top of G_{1} (or vice versa) so that their common induced subgraph H coincide
- Joining any pair of vertices v, w between $G_{1}-H$ and $G_{2}-H$, respectively

Gluing Labelled Graphs Together

Figure: $P_{n} \simeq \mathrm{TS}_{2}(G)$

Gluing Labelled Graphs Together

Remark

There exist H-consistent graphs G_{1}, G_{2} such that

$$
\mathrm{TS}_{2}\left(G_{1}\right) \cup \mathrm{TS}_{2}\left(G_{2}\right) \neq \mathrm{TS}_{2}\left(H\left(G_{1}, G_{2}\right)\right)
$$

Gluing Labelled Graphs Together

In general, the following proposition describes how to compute the TS_{k}-graph of an H-join

Proposition 4

Let $k \geq 2$ and let G_{1} and G_{2} be two H-consistent graphs. $\mathrm{TS}_{k}\left(H\left(G_{1}, G_{2}\right)\right)$ is the union of $\mathrm{TS}_{k}\left(G_{1}\right), \mathrm{TS}_{k}\left(G_{2}\right)$ and for every pair of k-element stable sets S_{1} in G_{1} and S_{2} in G_{2} satisfying

$$
\begin{equation*}
\left|S_{1} \cap V(H)\right|=\left|S_{2} \cap V(H)\right|=\left|S_{1} \cap S_{2}\right|=k-1 \tag{1}
\end{equation*}
$$

the edge between S_{1} and S_{2}

Gluing Labelled Graphs Together

In general, the following proposition describes how to compute the TS_{k}-graph of an H-join

Proposition 4

Let $k \geq 2$ and let G_{1} and G_{2} be two H-consistent graphs. $\mathrm{TS}_{k}\left(H\left(G_{1}, G_{2}\right)\right)$ is the union of $\mathrm{TS}_{k}\left(G_{1}\right), \mathrm{TS}_{k}\left(G_{2}\right)$ and for every pair of k-element stable sets S_{1} in G_{1} and S_{2} in G_{2} satisfying

$$
\begin{equation*}
\left|S_{1} \cap V(H)\right|=\left|S_{2} \cap V(H)\right|=\left|S_{1} \cap S_{2}\right|=k-1 \tag{1}
\end{equation*}
$$

the edge between S_{1} and S_{2}
■ We say that $H\left(G_{1}, G_{2}\right)$ is k-crossing free if there are no k-element stable sets satisfying condition (1) of Proposition 4

Corollary 5

Let $k \geq 2$ and let G_{1} and G_{2} be two H-consistent graphs. $H\left(G_{1}, G_{2}\right)$ is k-crossing free if and only if

$$
\begin{equation*}
\mathrm{TS}_{k}\left(H\left(G_{1}, G_{2}\right)\right) \simeq \mathrm{TS}_{k}\left(G_{1}\right) \cup \mathrm{TS}_{k}\left(G_{2}\right) \tag{2}
\end{equation*}
$$

On TS_{k}-Graphs

On TS_{k}-Graphs

- If H is an induced subgraph of G then $\mathrm{TS}_{k}(H)$ is also an induced subgraph of $\mathrm{TS}_{k}(G)$. The reverse does not hold (e.g., take $H=C_{2 k}$ and $\left.G=K_{1, k+1}\right)$ for any $k \geq 2$

On TS_{k}-Graphs

- If H is an induced subgraph of G then $\mathrm{TS}_{k}(H)$ is also an induced subgraph of $\mathrm{TS}_{k}(G)$. The reverse does not hold (e.g., take $H=C_{2 k}$ and $\left.G=K_{1, k+1}\right)$ for any $k \geq 2$
- $K_{n}(n \geq 1)$ is a TS_{k}-graph. (A direct consequence of Proposition 3)

On TS_{k}-Graphs

- If H is an induced subgraph of G then $\mathrm{TS}_{k}(H)$ is also an induced subgraph of $\mathrm{TS}_{k}(G)$. The reverse does not hold (e.g., take $H=C_{2 k}$ and $\left.G=K_{1, k+1}\right)$ for any $k \geq 2$
- $K_{n}(n \geq 1)$ is a TS_{k}-graph. (A direct consequence of Proposition 3)
- $P_{n}(n \geq 1)$ and $C_{n}(n \geq 3)$ are TS_{k}-graphs for any $k \geq 2$. (Use the "line graph" approach)

On TS_{k}-Graphs

- If H is an induced subgraph of G then $\mathrm{TS}_{k}(H)$ is also an induced subgraph of $\mathrm{TS}_{k}(G)$. The reverse does not hold (e.g., take $H=C_{2 k}$ and $\left.G=K_{1, k+1}\right)$ for any $k \geq 2$
- $K_{n}(n \geq 1)$ is a TS_{k}-graph. (A direct consequence of Proposition 3)
- $P_{n}(n \geq 1)$ and $C_{n}(n \geq 3)$ are TS_{k}-graphs for any $k \geq 2$. (Use the "line graph" approach)
- $K_{m, n}(1 \leq m \leq n)$ is a TS_{k}-graph for any $k \geq 2$ if and only if either $m=1$ and $n \leq k$ or $m=n=2$ (Use the "labelling vertices by stable sets" approach. A similar approach can be used to characterize whether split graphs are (not) TS_{k}-graphs)

On TS_{k}-Graphs

- If H is an induced subgraph of G then $\mathrm{TS}_{k}(H)$ is also an induced subgraph of $\mathrm{TS}_{k}(G)$. The reverse does not hold (e.g., take $H=C_{2 k}$ and $\left.G=K_{1, k+1}\right)$ for any $k \geq 2$
- $K_{n}(n \geq 1)$ is a TS_{k}-graph. (A direct consequence of Proposition 3)
- $P_{n}(n \geq 1)$ and $C_{n}(n \geq 3)$ are TS_{k}-graphs for any $k \geq 2$. (Use the "line graph" approach)
- $K_{m, n}(1 \leq m \leq n)$ is a TS_{k}-graph for any $k \geq 2$ if and only if either $m=1$ and $n \leq k$ or $m=n=2$ (Use the "labelling vertices by stable sets" approach. A similar approach can be used to characterize whether split graphs are (not) TS_{k}-graphs)
- For any $k \geq 2$,
- K_{1} is the smallest graph that is $a \mathrm{TS}_{k}$-graph
- On the other hand, the diamond is the smallest graph that is not a TS_{k}-graph

G	H such that $G \simeq \mathrm{TS}_{k}(H)(k \geq 2)$
	(1solated vertices
	does not exist

On Acyclic TS_{k}-Graphs

On Acyclic TS_{k}-Graphs

Remark

"Being a TS ${ }_{k}$-graph" is not hereditary, even when $k=2$
Using the "labelling vertices by stable sets" approach, we showed that

- $K_{1,3}$ is not a TS_{2}-graph. More generally, $K_{1, n}$ is a TS_{k}-graph for some fixed $k \geq 2$ if and only if $n \leq k$
■ Replacing an edge of $K_{1,3}$ by a P_{4} results a TS_{2}-graph

not a TS_{2}-graph

a TS_{2}-graph

On Acyclic TS_{k}-Graphs

Open Question

(1) Under which conditions a given graph G satisfies $\mathrm{TS}_{k}(G)$ is acyclic?
(2) Under which conditions trees are (not) TS_{k}-graphs?

On Acyclic TS_{k}-Graphs

Open Question

(1) Under which conditions a given graph G satisfies $\mathrm{TS}_{k}(G)$ is acyclic?
(2) Under which conditions trees are (not) TS_{k}-graphs?

- Given a forest F
- $\mathrm{TS}_{2}(F)$ is acyclic if and only if F is $\left\{2 K_{2}, D_{2,2,2}\right\}$-free

On Acyclic TS_{k}-Graphs

Open Question

(1) Under which conditions a given graph G satisfies $\mathrm{TS}_{k}(G)$ is acyclic?
(2) Under which conditions trees are (not) TS_{k}-graphs?

- Given a forest F
- $\mathrm{TS}_{2}(F)$ is acyclic if and only if F is $\left\{2 K_{2}, D_{2,2,2}\right\}$-free
- $\mathrm{TS}_{3}(F)$ is acyclic if and only if F is $\left\{2 K_{2}+K_{1}, D_{2,2,2}+K_{1}, D_{2,4,2}\right\}$-free

$2 K_{2}$

$D_{2,2,2}$

$D_{2,4,2}$

On Acyclic TS_{k}-Graphs

Open Question

(1) Under which conditions a given graph G satisfies $\mathrm{TS}_{k}(G)$ is acyclic?
(2) Under which conditions trees are (not) TS_{k}-graphs?

- Given a forest F
- $\mathrm{TS}_{2}(F)$ is acyclic if and only if F is $\left\{2 K_{2}, D_{2,2,2}\right\}$-free
- $\mathrm{TS}_{3}(F)$ is acyclic if and only if F is $\left\{2 K_{2}+K_{1}, D_{2,2,2}+K_{1}, D_{2,4,2}\right\}$-free
- Conjecture: $\mathrm{TS}_{k}(F)$ is acyclic if and only if F is $\left\{2 K_{2}+(k-2) K_{1}, D_{2,2,2}+(k-2) K_{1}, D_{2,4,2}+(k-3) K_{1}\right\}$-free, for $k \geq 4$

$2 K_{2}$

$D_{2,2,2}$

$D_{2,4,2}$

On Acyclic TS_{k}-Graphs

- Given a graph G. If G contains either $\overline{C_{n}}(n \geq 4)$ or one of the following nine graphs as an induced subgraph then $\mathrm{TS}_{2}(G)$ has a cycle
- The $\overline{C_{n}}(n \geq 4)$ graphs come from the "line graph" approach (Lemma 2)
- (Most of) The below nine graphs come from a computer program

■ Open Question: Does the reverse hold? (i.e., Did we miss any graph?)

On Acyclic TS_{k}-Graphs

Using the "gluing graphs together" approach, we showed that

- A n-ary tree is a rooted tree in which each node has at most n children.
(A 2-ary tree is the well-known binary tree.) For $k \geq 2$, any k-ary tree is a $\mathrm{TS}_{k+1^{-} \text {-graph }}$

On Acyclic TS_{k}-Graphs

Using the "gluing graphs together" approach, we showed that

- A n-ary tree is a rooted tree in which each node has at most n children. (A 2-ary tree is the well-known binary tree.) For $k \geq 2$, any k-ary tree is a $\mathrm{TS}_{k+1^{-} \text {-graph }}$
■ For every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G) \simeq T+\ell K_{1}$ for some integer ℓ. Thus, for every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G)$ is a forest containing T
■ Open Question: For $k \geq 3$ and a tree T, is there a graph G such that $\mathrm{TS}_{k}(G)$ is a forest containing T ?

On Acyclic TS_{k}-Graphs

Using the "gluing graphs together" approach, we showed that

- A n-ary tree is a rooted tree in which each node has at most n children. (A 2-ary tree is the well-known binary tree.) For $k \geq 2$, any k-ary tree is a $\mathrm{TS}_{k+1^{-} \text {-graph }}$
■ For every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G) \simeq T+\ell K_{1}$ for some integer ℓ. Thus, for every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G)$ is a forest containing T
■ Open Question: For $k \geq 3$ and a tree T, is there a graph G such that $\mathrm{TS}_{k}(G)$ is a forest containing T ?
■ For every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G)$ is a tree containing T if and only if T is a 3 -ary tree
■ Open Question: For $k \geq 3$ and a $(k+1)$-ary tree T, is there a graph G such that $\mathrm{TS}_{k}(G)$ is a tree containing T ?

On Acyclic TS_{k}-Graphs

Using the "gluing graphs together" approach, we showed that

- A n-ary tree is a rooted tree in which each node has at most n children. (A 2-ary tree is the well-known binary tree.) For $k \geq 2$, any k-ary tree is a TS_{k+1}-graph
■ For every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G) \simeq T+\ell K_{1}$ for some integer ℓ. Thus, for every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G)$ is a forest containing T
■ Open Question: For $k \geq 3$ and a tree T, is there a graph G such that $\mathrm{TS}_{k}(G)$ is a forest containing T ?
■ For every tree T, there exists a graph G such that $\mathrm{TS}_{2}(G)$ is a tree containing T if and only if T is a 3 -ary tree
■ Open Question: For $k \geq 3$ and a $(k+1)$-ary tree T, is there a graph G such that $\mathrm{TS}_{k}(G)$ is a tree containing T ?
■ There exists a graph G such that $\mathrm{TS}_{k}(G)$ is a tree containing $K_{1, n}$ if $n \leq 2 k$
■ Open Question: Does there exist a graph G such that $\mathrm{TS}_{k}(G)$ contains $K_{1, n}$ for $n>2 k$?

On Acyclic TS_{k}-Graphs

For graphs in the $D_{r, n, s}$ family $(1 \leq r \leq s)$,

- For $n=1, D_{r, n, s}$ is nothing but the star $K_{1, r+s}$ and therefore it is a TS_{k}-graph if and only if $r+s \leq k$

On Acyclic TS_{k}-Graphs

For graphs in the $D_{r, n, s}$ family $(1 \leq r \leq s)$,

- For $n=1, D_{r, n, s}$ is nothing but the star $K_{1, r+s}$ and therefore it is a TS_{k}-graph if and only if $r+s \leq k$
- For $n \geq 2$ and $k \geq 2$, if $s \leq k-1, D_{r, n, s}$ is always a TS_{k}-graph (in this case, it is a $(k-1)$-ary tree)

On Acyclic TS_{k}-Graphs

For graphs in the $D_{r, n, s}$ family $(1 \leq r \leq s)$,

- For $n=1, D_{r, n, s}$ is nothing but the star $K_{1, r+s}$ and therefore it is a TS_{k}-graph if and only if $r+s \leq k$
- For $n \geq 2$ and $k \geq 2$, if $s \leq k-1, D_{r, n, s}$ is always a TS_{k}-graph (in this case, it is a $(k-1)$-ary tree)
- The reverse does not hold in general: for example, take $r=1, s=k=2$, and $n=3$

On Acyclic TS_{k}-Graphs

For graphs in the $D_{r, n, s}$ family $(1 \leq r \leq s)$,

- For $n=1, D_{r, n, s}$ is nothing but the star $K_{1, r+s}$ and therefore it is a TS_{k}-graph if and only if $r+s \leq k$
- For $n \geq 2$ and $k \geq 2$, if $s \leq k-1, D_{r, n, s}$ is always a TS_{k}-graph (in this case, it is a $(k-1)$-ary tree)
- The reverse does not hold in general: for example, take $r=1, s=k=2$, and $n=3$
- Indeed, $D_{1, n, 2}$ is a TS_{2}-graph if and only if $n=3$. Thus, $D_{1,3,2}$ is the only TS_{2}-graph among all $D_{1, n, 2}$ for $n \geq 1$

On Acyclic TS_{k}-Graphs

For graphs in the $D_{r, n, s}$ family $(1 \leq r \leq s)$,

- For $n=1, D_{r, n, s}$ is nothing but the star $K_{1, r+s}$ and therefore it is a TS_{k}-graph if and only if $r+s \leq k$
■ For $n \geq 2$ and $k \geq 2$, if $s \leq k-1, D_{r, n, s}$ is always a TS_{k}-graph (in this case, it is a $(k-1)$-ary tree)
- The reverse does not hold in general: for example, take $r=1, s=k=2$, and $n=3$
- Indeed, $D_{1, n, 2}$ is a TS_{2}-graph if and only if $n=3$. Thus, $D_{1,3,2}$ is the only TS_{2}-graph among all $D_{1, n, 2}$ for $n \geq 1$
- However, the reverse does hold for $n=2$, that is, $D_{r, 2, s}$ is a TS_{k}-graph if and only if $s \leq k-1$

References

Avis, D. and D. A. Hoang (2023a). "A Note On Acyclic Token Sliding Reconfiguration Graphs of Independent Sets". In: arXiv preprint. arXiv: 2301.00317.

Avis, D. and D. A. Hoang (2023b). "On Reconfiguration Graph of Independent Sets under Token Sliding". In: Graphs and Combinatorics 39.3. (article 59). Doi: 10.1007/s00373-023-02644-w. arXiv: 2203. 16861.
(Rabila-Monroy, R. and A. L. Trujillo-Negrete (2023). "On the Automorphism Group of Token Graphs of Complete Bipartite Graphs and Cartesian Products of Connected Graphs". In: arXiv preprint. arXiv: 2302.07914.
(1. Lew, A. (2023). "Garland's method for token graphs". In: arXiv preprint. arXiv: 2305.02406.

References

圂
Bousquet, N., A. E. Mouawad, N. Nishimura, and S. Siebertz (2022). "A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems". In: arXiv preprint. arXiv: 2204.10526.
Nishimura, N. (2018). "Introduction to reconfiguration". In: Algorithms 11.4. (article 52). Doi: $10.3390 / \mathrm{a} 11040052$.
van den Heuvel, J. (2013). "The complexity of change". In: Surveys in
Combinatorics. Vol. 409. London Math. Soc. Lecture Note Ser.
Cambridge University Press, pp. 127-160. Dor: 10.1017/CB09781139506748.005.

Fabila-Monroy, R., D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood (2012). "Token Graphs". In: Graphs and Combinatorics 28.3, pp. 365-380. Doi: 10.1007/s00373-011-1055-9.

References

盏 Alavi, Y., M. Behzad, P. Erdốs, and D. R. Lick (1991). "Double Vertex Graphs". In: Journal of Combinatorics, Information \& System Sciences 16.1, pp. 37-50.

