On Token Sliding (Reconfiguration) Graphs of Independent Sets

Duc A. Hoang

VNU University of Science, Hanoi, Vietnam hoanganhduc@hus.edu.vn

Based on joint works with David Avis (Kyoto University, Japan)

The Korea-Taiwan-Vietnam Joint Meeting on Discrete Geometry and Geometric Measure Theory (VIASM, Hanoi, Vietnam)

July 17-19, 2023

Outline

- 1 A Geometric Example
- **2** TS_k -Graphs: Background and Motivation
- 3 Paths Are TS_k -Graphs
 - Line Graphs and TS₂-Graphs
 - Labelling Vertices By Stable Sets
 - Gluing Labelled Graphs Together
- 4 On TS_k -Graphs
- 5 On Acyclic TS_k -Graphs

- Flip graphs are very important in computational geometry and have many applications in various settings, including
 - measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
 - enumerating geometric objects;
 - computing geometric objects with respect to some optimization criteria;
 - and so on

- Flip graphs are very important in computational geometry and have many applications in various settings, including
 - measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
 - enumerating geometric objects;
 - computing geometric objects with respect to some optimization criteria;
 - and so on
- For a given graph *G* and a fixed integer $k \ge 1$, the TS_k-(*reconfiguration*) graph (or TS_k-graph) of *G*, denoted by TS_k(*G*), is the graph whose
 - *vertices* are *independent sets* (or *stable sets*, which are vertex subsets of pairwise non-adjacent vertices) of *G*
 - Each stable set can be seen as a set of tokens placed on vertices of G
 - *edges* are defined by *Token Sliding* (TS)

Figure: $\mathsf{TS}_2(C_5)$

- Flip graphs are very important in computational geometry and have many applications in various settings, including
 - measuring the "similarity" (or "distance") between two geometric objects by constraining the family of "allowable flips";
 - enumerating geometric objects;
 - computing geometric objects with respect to some optimization criteria;
 - and so on
- For a given graph G and a fixed integer $k \ge 1$, the TS_k-(reconfiguration) graph (or TS_k-graph) of G, denoted by TS_k(G), is the graph whose
 - *vertices* are *independent sets* (or *stable sets*, which are vertex subsets of pairwise non-adjacent vertices) of *G*
 - Each stable set can be seen as a set of tokens placed on vertices of G
 - *edges* are defined by *Token Sliding* (TS)

Figure: $\mathsf{TS}_2(C_5)$

■ We present an example showing *a relationship between some flip graphs of triangulations and* TS_k*-graphs (of some graphs)*

Duc A. Hoang (VNU-HUS)

 TS_k -Graphs

■ Given a set *P* of *n* points in the plane, no three collinear and no four co-circular

Figure: A set P of n points in the plane.

- Given a set *P* of *n* points in the plane, no three collinear and no four co-circular
- Two line segments are *intersecting* if they cross each other at an interior point of each segment, and *non-intersecting* otherwise

Figure: A set *P* of *n* points in the plane. Red (Blue) segments are pairwise *intersecting* (*non-intersecting*).

- Given a set *P* of *n* points in the plane, no three collinear and no four co-circular
- Two line segments are *intersecting* if they cross each other at an interior point of each segment, and *non-intersecting* otherwise
- A triangulation of P is any maximal set of pairwise non-intersecting segments. It is well-known that all triangulations have the same number of edges (segments)

Figure: A set P of n points in the plane. A triangulation of P where each segment is colored in black

- The *edge-intersection graph G of P* is the graph whose
 - *vertices* are the line segments with endpoints in P that intersect at least one other segment

Figure: A triangulation of P is marked by black edges. The remaining line segments are marked by dashed red edges

Figure: The edge-intersection graph G of P. Vertices (segments) not in G are depicted by dotted circles.

Duc A. Hoang (VNU-HUS)

- The *edge-intersection graph G of P* is the graph whose
 - *vertices* are the line segments with endpoints in P that intersect at least one other segment
 - edges are defined between two vertices whose corresponding line segments are intersecting

Figure: The edge-intersection graph G of P. Vertices (segments) not in G are depicted by dotted circles.

Duc A. Hoang (VNU-HUS)

- The *flip graph of triangulations of P* is the graph whose
 - *vertices* are *triangulations of P*
 - *edges* are defined via the *flip operation*: two triangulations T_1, T_2 of *P* are adjacent if one can be obtained from the other by *flipping* the diagonal of a convex quadrilateral

Figure: The flip operation

Figure: A vertex (triangulation) in the flip graph of triangulations of P (top left) and its adjacent ones

- A set of k pairwise non-intersecting segments where each member intersects at least one other segment \Leftrightarrow A vertex of $\mathsf{TS}_k(G)$ (e.g., size-k stable set of G)
- An edge of the flip graph of triangulations of $P \Leftrightarrow$ An edge of $\mathsf{TS}_k(G)$

Note: $\alpha(G)$ denotes the size of a maximum stable set of *G*

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - edges are defined under Token Sliding

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - *edges* are defined under Token Sliding
 - One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
 - They studied the regularity, bipartitedness, Eulerianity, etc. of $F_2(G)$ —which they called the *double vertex graphs*

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - edges are defined under Token Sliding
 - One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
 - They studied the regularity, bipartitedness, Eulerianity, etc. of $F_2(G)$ —which they called the *double vertex graphs*
 - Combinatorial and algebraic properties of $F_k(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]

6/21

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - edges are defined under Token Sliding
 - One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
 - They studied the regularity, bipartitedness, Eulerianity, etc. of $F_2(G)$ —which they called the *double vertex graphs*
 - Combinatorial and algebraic properties of $F_k(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
- General Framework: *Reconfiguration Problems*
 - A *growing research area* in computer science which primarily aims to *understand the solution space of a computational problem*

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - edges are defined under Token Sliding
 - One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
 - They studied the regularity, bipartitedness, Eulerianity, etc. of $F_2(G)$ —which they called the *double vertex graphs*
 - Combinatorial and algebraic properties of $F_k(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
- General Framework: *Reconfiguration Problems*
 - A *growing research area* in computer science which primarily aims to *understand the solution space of a computational problem*
 - Under the "reconfiguration setting", TS_k(G) has been *extremely well-studied* from the *algorithmic perspective* [van den Heuvel 2013]; [Nishimura 2018]; [Bousquet, Mouawad, Nishimura, and Siebertz 2022]

- Related works involve *Token Graphs*
 - A *k*-token graph $F_k(G)$ of a graph G is the graph whose
 - *vertices* are size-k vertex subsets of G
 - *edges* are defined under Token Sliding
 - One of the earliest results is [Alavi, Behzad, Erdős, and Lick 1991]
 - They studied the regularity, bipartitedness, Eulerianity, etc. of $F_2(G)$ —which they called the *double vertex graphs*
 - Combinatorial and algebraic properties of $F_k(G)$ have been extensively studied, especially since it was reintroduced in [Fabila-Monroy, Flores-Peñaloza, et al. 2012], e.g., see [Lew 2023]; [Fabila-Monroy and Trujillo-Negrete 2023]
- General Framework: *Reconfiguration Problems*
 - A *growing research area* in computer science which primarily aims to *understand the solution space of a computational problem*
 - Under the "reconfiguration setting", TS_k(G) has been *extremely well-studied* from the *algorithmic perspective* [van den Heuvel 2013]; [Nishimura 2018]; [Bousquet, Mouawad, Nishimura, and Siebertz 2022]
- We *initiate* the study of TS_k(G) from a purely *graph-theoretic perspective* [Avis and Hoang 2023a]; [Avis and Hoang 2023b]

Paths Are TS_k-Graphs

Paths Are TS_k-Graphs

• We say that a graph *H* is a TS_k -graph if there exists a graph *G* such that $H \simeq \mathsf{TS}_k(G)$

• For example, C_5 is a TS₂-graph, since $C_5 \simeq TS_2(C_5)$

Since $G \simeq \mathsf{TS}_1(G)$ for any graph G, the case k = 1 is trivial and *uninteresting*. From now on, we will always consider fixed integers $k \ge 2$

Paths Are TS_k-Graphs

• We say that a graph *H* is a TS_k -graph if there exists a graph *G* such that $H \simeq \mathsf{TS}_k(G)$

• For example, C_5 is a TS₂-graph, since $C_5 \simeq TS_2(C_5)$

Since $G \simeq TS_1(G)$ for any graph G, the case k = 1 is trivial and *uninteresting*. From now on, we will always consider fixed integers $k \ge 2$

Theorem 1

A path P_n $(n \ge 1)$ is a TS_k -graph for any $k \ge 2$

■ We briefly explain *three different ways* of proving Theorem 1, each of which *indicates a way of looking at* TS_k-graphs

Duc A. Hoang (VNU-HUS)

Since P_n is triangle-free for any n > 1 and $P_n \simeq L(P_{n+1})$, Lemma 2 immediately gives us

$$P_n \simeq L(P_{n+1}) \simeq \mathsf{TS}_2(\overline{P_{n+1}})$$

Thus, P_n is always a TS₂-graph

9/21

Since P_n is triangle-free for any n > 1 and $P_n \simeq L(P_{n+1})$, Lemma 2 immediately gives us

$$P_n \simeq L(P_{n+1}) \simeq \mathsf{TS}_2(\overline{P_{n+1}})$$

Thus, P_n is always a TS₂-graph

The following proposition *settles the case* $k \ge 3$ (note that $\alpha(\overline{P_{n+1}}) = 2$)

Proposition 3 Given H and let $G = TS_{\alpha(H)}(H)$. Then, for every $k \ge \alpha(H)$, G is a TS_k -graph

- Construct a graph H' by taking the disjoint union of H and exactly k - α(H) isolated vertices
- Then, $G = \mathsf{TS}_{\alpha(H)}(H) \simeq \mathsf{TS}_k(H')$ for any fixed integer $k \ge \alpha(H)$

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Duc A.	Hoang	(VNU-HUS)
--------	-------	-----------

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Duc A.	Hoang	(VNU-HUS)
--------	-------	-----------

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Duc A.	Hoang	(VNU-HUS)
--------	-------	-----------

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Duc A.	Hoang	(VNU-HUS)
--------	-------	-----------

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Duc A.	Hoang	(VNU-HUS)
--------	-------	-----------

Key Idea (*k* = 2)

There exists G such that $P_1 \simeq \mathsf{TS}_2(G)$. For $n \ge 2$, we update G and label vertices of P_n by size-2 stable sets of G

Key Idea (*k* = 2)

- (a) There exists a (labelled) graph G such that $P_2 \simeq \mathsf{TS}_2(G)$
- (b) With a "good" vertex-labelling (by stable sets of some graph), the TS₂-graph P_n can be constructed by "gluing" two smaller TS₂-graphs P_{n-1} and P_2 , for any $n \ge 3$

- Vertex-labelled graphs *G*₁ and *G*₂ are *H*-consistent if the (possibly empty) intersection of their vertex sets defines the same (possibly empty) common induced subgraph *H*
- The *H*-join of *H*-consistent graphs G_1, G_2 , denoted by $H(G_1, G_2)$, is the graph constructed by
 - Putting G_2 on top of G_1 (or vice versa) so that their common induced subgraph H coincide
 - Joining any pair of vertices v, w between $G_1 H$ and $G_2 H$, respectively

In general, the following proposition describes *how to compute the* TS_k *-graph of an H-join*

Proposition 4

Let $k \ge 2$ and let G_1 and G_2 be two H-consistent graphs. $\mathsf{TS}_k(H(G_1, G_2))$ is the union of $\mathsf{TS}_k(G_1)$, $\mathsf{TS}_k(G_2)$ and for every pair of k-element stable sets S_1 in G_1 and S_2 in G_2 satisfying

$$|S_1 \cap V(H)| = |S_2 \cap V(H)| = |S_1 \cap S_2| = k - 1,$$
(1)

the edge between S_1 and S_2

In general, the following proposition describes *how to compute the* TS_k *-graph of an H-join*

Proposition 4

Let $k \ge 2$ and let G_1 and G_2 be two H-consistent graphs. $\mathsf{TS}_k(H(G_1, G_2))$ is the union of $\mathsf{TS}_k(G_1)$, $\mathsf{TS}_k(G_2)$ and for every pair of k-element stable sets S_1 in G_1 and S_2 in G_2 satisfying

$$|S_1 \cap V(H)| = |S_2 \cap V(H)| = |S_1 \cap S_2| = k - 1,$$
(1)

the edge between S_1 and S_2

• We say that $H(G_1, G_2)$ is *k*-crossing free if there are no *k*-element stable sets satisfying condition (1) of Proposition 4

Corollary 5

Let $k \ge 2$ and let G_1 and G_2 be two H-consistent graphs. $H(G_1, G_2)$ is k-crossing free if and only if

$$\mathsf{TS}_k(H(G_1,G_2)) \simeq \mathsf{TS}_k(G_1) \cup \mathsf{TS}_k(G_2)$$

■ If *H* is an induced subgraph of *G* then $\mathsf{TS}_k(H)$ is also an induced subgraph of $\mathsf{TS}_k(G)$. The reverse does not hold (e.g., take $H = C_{2k}$ and $G = K_{1,k+1}$) for any $k \ge 2$

- If *H* is an induced subgraph of *G* then $\mathsf{TS}_k(H)$ is also an induced subgraph of $\mathsf{TS}_k(G)$. The reverse does not hold (e.g., take $H = C_{2k}$ and $G = K_{1,k+1}$) for any $k \ge 2$
- K_n $(n \ge 1)$ is a TS_k-graph. (A direct consequence of Proposition 3)

- If *H* is an induced subgraph of *G* then $\mathsf{TS}_k(H)$ is also an induced subgraph of $\mathsf{TS}_k(G)$. The reverse does not hold (e.g., take $H = C_{2k}$ and $G = K_{1,k+1}$) for any $k \ge 2$
- K_n $(n \ge 1)$ is a TS_k-graph. (A direct consequence of Proposition 3)
- P_n ($n \ge 1$) and C_n ($n \ge 3$) are TS_k-graphs for any $k \ge 2$. (Use the "line graph" approach)

- If *H* is an induced subgraph of *G* then $\mathsf{TS}_k(H)$ is also an induced subgraph of $\mathsf{TS}_k(G)$. The reverse does not hold (e.g., take $H = C_{2k}$ and $G = K_{1,k+1}$) for any $k \ge 2$
- K_n $(n \ge 1)$ is a TS_k-graph. (A direct consequence of Proposition 3)
- P_n ($n \ge 1$) and C_n ($n \ge 3$) are TS_k-graphs for any $k \ge 2$. (Use the "line graph" approach)
- $K_{m,n}$ $(1 \le m \le n)$ is a TS_k-graph for any $k \ge 2$ if and only if either m = 1 and $n \le k$ or m = n = 2 (Use the "labelling vertices by stable sets" approach. A similar approach can be used to characterize whether *split graphs* are (not) TS_k-graphs)

- If *H* is an induced subgraph of *G* then $\mathsf{TS}_k(H)$ is also an induced subgraph of $\mathsf{TS}_k(G)$. The reverse does not hold (e.g., take $H = C_{2k}$ and $G = K_{1,k+1}$) for any $k \ge 2$
- K_n $(n \ge 1)$ is a TS_k-graph. (A direct consequence of Proposition 3)
- P_n $(n \ge 1)$ and C_n $(n \ge 3)$ are TS_k-graphs for any $k \ge 2$. (Use the "line graph" approach)
- $K_{m,n}$ (1 ≤ m ≤ n) is a TS_k-graph for any $k \ge 2$ if and only if either m = 1 and n ≤ k or m = n = 2 (Use the "labelling vertices by stable sets" approach. A similar approach can be used to characterize whether *split* graphs are (not) TS_k-graphs)
- For any $k \ge 2$,
 - K₁ is the smallest graph that is a TS_k-graph
 - On the other hand, the *diamond* is the *smallest graph that is not* a TS_k-graph

Remark

"Being a TS_k-graph" is *not* hereditary, even when k = 2

Using the "labelling vertices by stable sets" approach, we showed that

- $K_{1,3}$ is *not* a TS₂-graph. More generally, $K_{1,n}$ is a TS_k-graph for some fixed $k \ge 2$ if and only if $n \le k$
- **•** Replacing an edge of $K_{1,3}$ by a P_4 results a TS₂-graph

Open Question

(1) Under which conditions a given graph G satisfies $\mathsf{TS}_k(G)$ is acyclic?

(2) Under which conditions trees are (not) TS_k -graphs?

Open Question

(1) Under which conditions a given graph G satisfies $\mathsf{TS}_k(G)$ is acyclic?

(2) Under which conditions trees are (not) TS_k -graphs?

- Given a forest F
 - $\mathsf{TS}_2(F)$ is acyclic if and only if F is $\{2K_2, D_{2,2,2}\}$ -free

18/21

Open Question

(1) Under which conditions a given graph G satisfies $\mathsf{TS}_k(G)$ is acyclic?

(2) Under which conditions trees are (not) TS_k -graphs?

• Given a forest F

- $\mathsf{TS}_2(F)$ is acyclic if and only if F is $\{2K_2, D_{2,2,2}\}$ -free
- **TS**₃(*F*) is acyclic if and only if *F* is $\{2K_2 + K_1, D_{2,2,2} + K_1, D_{2,4,2}\}$ -free

Open Question

(1) Under which conditions a given graph G satisfies $\mathsf{TS}_k(G)$ is acyclic?

(2) Under which conditions trees are (not) TS_k -graphs?

• Given a forest F

- $\mathsf{TS}_2(F)$ is acyclic if and only if F is $\{2K_2, D_{2,2,2}\}$ -free
- $\mathsf{TS}_3(F)$ is acyclic if and only if F is $\{2K_2 + K_1, D_{2,2,2} + K_1, D_{2,4,2}\}$ -free
- Conjecture: $TS_k(F)$ is acyclic if and only if F is $\{2K_2 + (k-2)K_1, D_{2,2,2} + (k-2)K_1, D_{2,4,2} + (k-3)K_1\}$ -free, for $k \ge 4$

- Given a graph G. If G contains either $\overline{C_n}$ $(n \ge 4)$ or one of the following nine graphs as an induced subgraph then $TS_2(G)$ has a cycle
 - The $\overline{C_n}$ $(n \ge 4)$ graphs come from the "line graph" approach (Lemma 2)
 - (Most of) The below nine graphs come from a computer program

• **Open Question:** Does the reverse hold? (i.e., Did we miss any graph?)

Using the "gluing graphs together" approach, we showed that

■ A *n-ary tree* is a rooted tree in which each node has at most *n* children. (A 2-ary tree is the well-known binary tree.) For $k \ge 2$, any k-ary tree is a TS_{k+1}-graph

Using the "gluing graphs together" approach, we showed that

- A *n-ary tree* is a rooted tree in which each node has at most *n* children. (A 2-ary tree is the well-known binary tree.) For $k \ge 2$, any k-ary tree is a TS_{k+1} -graph
- For every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G) \simeq T + \ell K_1$ for some integer ℓ . Thus, for every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G)$ is a forest containing *T*
- **Open Question:** For $k \ge 3$ and a tree *T*, is there a graph *G* such that $TS_k(G)$ is a forest containing *T*?

Using the "gluing graphs together" approach, we showed that

- A *n-ary tree* is a rooted tree in which each node has at most *n* children. (A 2-ary tree is the well-known binary tree.) For $k \ge 2$, any k-ary tree is a TS_{k+1} -graph
- For every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G) \simeq T + \ell K_1$ for some integer ℓ . Thus, for every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G)$ is a forest containing *T*
- **Open Question:** For $k \ge 3$ and a tree *T*, is there a graph *G* such that $TS_k(G)$ is a forest containing *T*?
- For every tree T, there exists a graph G such that $TS_2(G)$ is a tree containing T if and only if T is a 3-ary tree
- **Open Question:** For $k \ge 3$ and a (k + 1)-ary tree *T*, is there a graph *G* such that $TS_k(G)$ is a tree containing *T*?

Using the "gluing graphs together" approach, we showed that

- A *n-ary tree* is a rooted tree in which each node has at most *n* children. (A 2-ary tree is the well-known binary tree.) For $k \ge 2$, any k-ary tree is a TS_{k+1} -graph
- For every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G) \simeq T + \ell K_1$ for some integer ℓ . Thus, for every tree *T*, there exists a graph *G* such that $\mathsf{TS}_2(G)$ is a forest containing *T*
- **Open Question:** For $k \ge 3$ and a tree *T*, is there a graph *G* such that $TS_k(G)$ is a forest containing *T*?
- For every tree T, there exists a graph G such that $TS_2(G)$ is a tree containing T if and only if T is a 3-ary tree
- **Open Question:** For $k \ge 3$ and a (k + 1)-ary tree *T*, is there a graph *G* such that $TS_k(G)$ is a tree containing *T*?
- There exists a graph G such that $\mathsf{TS}_k(G)$ is a tree containing $K_{1,n}$ if $n \leq 2k$
- **Open Question:** Does there exist a graph *G* such that $TS_k(G)$ contains $K_{1,n}$ for n > 2k?

For graphs in the $D_{r,n,s}$ family $(1 \le r \le s)$,

■ *For* n = 1, $D_{r,n,s}$ is nothing but the star $K_{1,r+s}$ and therefore it is a TS_k-graph if and only if $r + s \le k$

- For n = 1, $D_{r,n,s}$ is nothing but the star $K_{1,r+s}$ and therefore it is a TS_k-graph if and only if $r + s \le k$
- For $n \ge 2$ and $k \ge 2$, if $s \le k 1$, $D_{r,n,s}$ is always a TS_k-graph (in this case, it is a (k 1)-ary tree)

- For n = 1, $D_{r,n,s}$ is nothing but the star $K_{1,r+s}$ and therefore it is a TS_k-graph if and only if $r + s \le k$
- For $n \ge 2$ and $k \ge 2$, if $s \le k 1$, $D_{r,n,s}$ is always a TS_k-graph (in this case, it is a (k 1)-ary tree)
 - *The reverse does not hold in general*: for example, take r = 1, s = k = 2, and n = 3

- For n = 1, $D_{r,n,s}$ is nothing but the star $K_{1,r+s}$ and therefore it is a TS_k-graph if and only if $r + s \le k$
- For $n \ge 2$ and $k \ge 2$, if $s \le k 1$, $D_{r,n,s}$ is always a TS_k-graph (in this case, it is a (k 1)-ary tree)
 - *The reverse does not hold in general*: for example, take r = 1, s = k = 2, and n = 3
 - Indeed, $D_{1,n,2}$ is a TS₂-graph if and only if n = 3. Thus, $D_{1,3,2}$ is the only TS₂-graph among all $D_{1,n,2}$ for $n \ge 1$

- For n = 1, $D_{r,n,s}$ is nothing but the star $K_{1,r+s}$ and therefore it is a TS_k-graph if and only if $r + s \le k$
- For $n \ge 2$ and $k \ge 2$, if $s \le k 1$, $D_{r,n,s}$ is always a TS_k-graph (in this case, it is a (k 1)-ary tree)
 - *The reverse does not hold in general*: for example, take r = 1, s = k = 2, and n = 3
 - Indeed, $D_{1,n,2}$ is a TS₂-graph if and only if n = 3. Thus, $D_{1,3,2}$ is the only TS₂-graph among all $D_{1,n,2}$ for $n \ge 1$
 - However, *the reverse does hold for n* = 2, that is, $D_{r,2,s}$ is a TS_k-graph if and only if $s \le k 1$

References

- Avis, D. and D. A. Hoang (2023a). "A Note On Acyclic Token Sliding Reconfiguration Graphs of Independent Sets". In: *arXiv preprint*. arXiv: 2301.00317.
 - Avis, D. and D. A. Hoang (2023b). "On Reconfiguration Graph of Independent Sets under Token Sliding". In: *Graphs and Combinatorics* 39.3. (article 59). DOI: 10.1007/s00373-023-02644-w. arXiv: 2203.16861.
- Fabila-Monroy, R. and A. L. Trujillo-Negrete (2023). "On the Automorphism Group of Token Graphs of Complete Bipartite Graphs and Cartesian Products of Connected Graphs". In: *arXiv preprint*. arXiv: 2302.07914.
- Lew, A. (2023). "Garland's method for token graphs". In: *arXiv* preprint. arXiv: 2305.02406.

References

- Bousquet, N., A. E. Mouawad, N. Nishimura, and S. Siebertz (2022). "A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems". In: *arXiv preprint*. arXiv: 2204.10526.
- Nishimura, N. (2018). "Introduction to reconfiguration". In: *Algorithms* 11.4. (article 52). DOI: 10.3390/a11040052.
- van den Heuvel, J. (2013). "The complexity of change". In: *Surveys in Combinatorics*. Vol. 409. London Math. Soc. Lecture Note Ser. Cambridge University Press, pp. 127–160. DOI: 10.1017/CB09781139506748.005.
- Fabila-Monroy, R., D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood (2012). "Token Graphs". In: *Graphs and Combinatorics* 28.3, pp. 365–380. DOI: 10.1007/s00373-011-1055-9.

References

Alavi, Y., M. Behzad, P. Erdős, and D. R. Lick (1991). "Double Vertex Graphs". In: *Journal of Combinatorics, Information & System Sciences* 16.1, pp. 37–50.