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概 要

Given two independent sets I and J (having the

same cardinality) of a graph G, and imagine that

a token (coin) is placed on each vertex in I. Then,

the sliding token problem asks if one could trans-

forms I to J using a sequence of elementary steps,

where each step requires sliding a token from one

vertex to one of its neighbors such that the resulting

set of vertices where tokens are placed still remains

independent. Interestingly, on some graph classes

such as trees, bipartite graphs, unicyclic graphs,

etc., sometimes the tokens are required to make

“detours” in order not to violate the independence

property. This makes the sliding token problem

more complicated and challenged. In this paper,

based on the idea of Demaine et al. [3], we present a

polynomial-time algorithm for solving sliding to-

ken on unicyclic graphs.

Keywords: reconfiguration, independent set, uni-

cyclic graphs, token sliding.

1 Introduction

Reconfiguration problems are the set of problems

in which we are given a set of feasible solutions

of a problem, together with some reconfiguration

rule(s). The question is, using a reconfiguration

rule, can we find a step-by-step transformation

which transform one solution to another? A well-
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known example is the satisfiability reconfigu-

ration problem.More precisely, given two specified

satisfiable assignments (assignments which return

the true value) A and B to a Boolean formula,

one might ask whether A can be transformed into

B by changing the assignment of one variable at a

time such that each intermediate assignment is also

satisfiable. A brief introduction to this reconfigu-

ration framework can be found in [7].

Recently, among many variants of reconfigura-

tion problems, the reconfigurability of indepen-

dent set and its related problems, such as the

reconfigurability of clique vertex cover , etc.,

have been studied extensively. Recall that an in-

dependent set in a graph G is a set of pairwise

non-adjacent vertices. Given a graph G and two

independent sets I,J, imagine that a token (coin)

is placed at each vertex of I. the independent set

reconfiguration (ISReconf) problem asks if one

can transform I to J using a given reconfiguration

rule such that all intermediate sets are also inde-

pendent. The following reconfiguration rules are

mainly studied:

• Token Sliding (TS rule): A single token can

be slid only along an edge of a graph. The

ISReconf problem under TS rule is also

known as the sliding token problem.

• Token Jumping (TJ rule): A single token

can “jump” to any vertex (including non-

adjacent one).

• Token Addition and Removal (TAR rule): We

can either add or remove a single token at
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a time if it results in an independent set of

cardinality at least a given threshold.

It is known that ISReconf is PSPACE-complete

under any of the three reconfiguration rules for gen-

eral graphs [5], for planar graphs [1, 4], for per-

fect graphs [6], and even for bounded bandwidth

graphs [8].

Among different variants of ISReconf, the slid-

ing token problem is of particular interest. Given

two independent sets I and J (having the same car-

dinality) of a graph G, and imagine that a token

(coin) is placed on each vertex in I. Then, the

sliding token problem is to determine whether

there exists a sequence (called a TS-sequence)

⟨I1, I2, . . . , Iℓ⟩ of independent sets of G such that

(a) I1 = I, Iℓ = J, and |Ii| = |I| = |J| for all i,

1 ≤ i ≤ ℓ; and

(b) for each i, 2 ≤ i ≤ ℓ, there is an edge uv in

G such that Ii−1 \ Ii = {u} and Ii \ Ii−1 =

{v}, that is, Ii can be obtained from Ii−1 by

sliding exactly one token on a vertex u ∈ Ii−1

to its adjacent vertex v along uv ∈ E(G).

It is well-known that many PSPACE-hardness re-

sults can be shown using reduction from slid-

ing token [5]. Beside the PSPACE-completeness

of sliding token mentioned above, recently,

Kamiński et al. [6] showed that sliding token can

be solved in linear time for cographs. Bonsma et

al. [2] proved that sliding token can be solved

in polynomial time for claw-free graphs. Very re-

cently, Demaine et al. [3] gave a linear-time al-

gorithm for solving sliding token on trees. In

their paper, Demaine et al. mentioned that: “The

PSPACE-hardness implies that an instance of slid-

ing token may require an exponential number of

token-slides even in a minimum-length reconfigura-

tion sequence. In such a case, tokens should make

detours to avoid violating to be independent.” Be-

cause of that, the possibility of “making detours”

makes sliding token much more complicated.

In this paper, we extend the idea of Demaine et

al. in [3] to develop a polynomial-time algorithm

for solving sliding token on unicylic graphs. A

unicyclic graph is a connected graph that contains

exactly one cycle. The key idea of Demaine et al.’s

algorithm is the (linear-time) characterization of

what they called rigid tokens - the tokens that can-

not be moved along any edge of the graph without

violating the independence property. On one hand,

the structure of unicyclic graphs is very close to

trees. More precisely, one can obtained a unicyclic

graph from a tree by adding one extra edge. On the

other hand, the characterization of rigid tokens in

unicyclic graphs is indeed much more complicated

(see Lemma 3.1) because of the existence of one

single cycle.

2 Preliminaries

2.1 Graph notation

Let G be a graph with vertex set V (G) and edge

set E(G). Let |G| denote the number of vertices

of G. For a vertex v ∈ V (G), let N(G, v) = {w ∈
V (G) | vw ∈ E(G)} and N [G, v] = N(G, v) ∪ {v}.
Similarly, for an arbitrary subset S ⊆ V (G), we

write N [G,S] =
∪

v∈S N [G, v]. For a subgraph G′

of G, denote by G−G′ the subgraph of G induced

by V (G)\V (G′). Similarly, for a subset S ⊆ V (G),

denote by G − S the subgraph of G obtained by

removing all vertices in S. For two vertices u, v ∈
V (G), we denote by dist(u, v) the number of edges

of a shortest uv-path in G.

An independent set I of a graph G is a subset of

V (G) in which for every u, v ∈ I, uv is not an edge

of G. For a subgraph H of G, sometimes we write

I ∩H and I−H to indicate the sets I ∩ V (H) and

I \ V (H), respectively.
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図 1: (a) The tree Tv corresponding to v ∈ V (C).

(b) A safe degree-1 vertex u of a tree.

Let G be a unicyclic graph. Let C be its unique

cycle. Let H be the subgraph obtained from G by

deleting all edges of C. For each vertex v ∈ V (C),

we define Tv to be the (unique) component of H

containing v (see Figure 1(a)). It is not hard to

see that each v ∈ V (C) corresponds to a unique

(induced) sugraph (which is indeed a tree) Tv of G.

Moreover, any vertex w ∈ V (G) belongs to exactly

one such tree Tv, for some v ∈ V (C).

For a tree T , a vertex u ∈ V (T ), is called a safe

degree-1 vertex if degT (u) = 1 and its unique neigh-

bor w has exactly one neighbor of degree greater

than 1 (see Figure 1(b)). Similarly, for a unicyclic

graph G, a vertex u is called a safe degree-1 vertex

if it is a safe degree-1 vertex in the unique tree Tv

containing u, for some vertex v ∈ V (C).

2.2 Definitions for sliding token

Let I and J be two independent sets of a graph G

such that |I| = |J|. If there exists exactly one edge

uv in G such that I\J = {u} and J\ I = {v}, then
we say that J can be obtained from I by sliding the

token on u ∈ I immediately to its adjacent vertex

v along the edge uv, and denote it by I ↔ J, or

sometimes by I
G↔ J. Note that “sliding a token”

can be reversed, i.e. I ↔ J if and only if J ↔ I.

In order to describe the process of sliding tokens,

we often use the concept of TS-sequence. A TS-

sequence between two independent sets I1 and Iℓ of

G is a sequence ⟨I1, I2, . . . , Iℓ⟩ of independent sets

of G such that Ii−1 ↔ Ii for i = 2, 3, . . . , ℓ. We

sometimes write I ∈ S if an independent set I of G

appears in the TS-sequence S. We say that a TS-

sequence S = ⟨I1, I2, . . . , Iℓ⟩ in G moves (or slides)

the token t on vertex u ∈ I1 to v /∈ I1 if after apply

the sliding steps described in S, the token t is on

vertex v ∈ Iℓ. We write I1
G↭ Iℓ if there exists

a TS-sequence S between I1 and Iℓ such that all

independent sets I ∈ S satisfy I ⊆ V (G). Some-

times, to emphasize the existence of a reconfigura-

tion sequence, we also write I1
G↭
S

Iℓ. Moreover,

a TS-sequence is reversible, i.e. I1
G↭ Iℓ if and

only if Iℓ
G↭ I1. The length of a reconfiguration se-

quence S is defined as the number of independent

sets contained in S.
Assume that a graph G contains distinct compo-

nents G1, G2, G3, . . . , Gl. Let S = ⟨I1, I2, . . . , Iℓ⟩
be a TS-sequence in G that reconfigures I1 to Iℓ.

Note that if I is an independent set of G then

I ∩ Gi (1 ≤ i ≤ l) is also an independent set of

Gi. Therefore, S can be restricted to a TS-sequence

Si = ⟨I1 ∩ Gi, . . . , Iℓ ∩ Gi⟩ in Gi that reconfigures

I1 ∩ Gi to Iℓ ∩ Gi. Conversely, if Si = ⟨Ii1, . . . , Iip⟩
is a TS-sequence in Gi that reconfigures Ii1 to Iip,

and if I is any independent set of G such that

Ii1 ⊆ I, then Si can be extended to a TS-sequence

S = ⟨Ii1 ∪ (I \ Ii1), . . . , I
i
p ∪ (I \ Ii1)⟩ in G that re-

configures I = Ii1 ∪ (I \ Ii1) to some independent

set I′ = Iip ∪ (I \ Ii1) of G. Note that S involves

only sliding tokens on Gi. This observation will be

implicitly used in many statements of this paper.
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3 Sliding tokens on unicyclic

graphs

3.1 Rigid tokens

Let I be an independent set of a graph G. Let t

be a token placed at vertex u ∈ I. We say that t is

(G, I)-rigid if for every independent set I′ such that

I
G↭ I′, u ∈ I′. If t is not (G, I)-rigid, we say that

it is (G, I)-movable. Similarly, for a subgraph H of

G, we say that a token t on v ∈ I∩H is (H, I∩H)-

rigid if and only if for every independent set J such

that I ∩ H
H↭ J, v ∈ J. For an independent set

I of G, denote by R(I) the set of all vertices when

(G, I)-rigid tokens are placed.

First of all, we characterize the property of (G, I)-

rigid tokens in a unicyclic graph G.

Lemma 3.1. Let I be an independent set of a uni-

cyclic graph G. Assume that the unique cycle C of

G is of length k (3 ≤ k ≤ |G|). For any vertex

u ∈ I, the token t on u is (G, I)-rigid if and only

if for every vertex v ∈ N(G, u), there exists a ver-

tex w ∈
(
N(G, v) \ {u}

)
∩ I satisfying one of the

following conditions:

(i) The token tw on w is (G′, I∩G′)-rigid, where

G′ = G−N [G, u]. (see Figure 2.)

(ii) u /∈ V (C), {v, w} ⊆ V (C), the token tw on

w is not (G′, I∩G′)-rigid, and for any inde-

pendent set I′ of G′ such that I ∩ G′ G′

↭ I′,

the path P = C−v satisfies |P ∩ I′| = ⌊k/2⌋.
(see Figure 3.)

Proof. We first show the if-part. Assume that for

any v ∈ N(G, u), either (i) or (ii) holds. We want

to show that t is indeed (G, I)-rigid. Assume for

the contradiction that there exists a TS-sequence

S in G that moves t to v, i.e. the token t on u is

not (G, I)-rigid.

u

v

w

C

u

v

w

G
′

G
′

C

図 2: Case (i) of Lemma 3.1. The token on u is

(G, I)-rigid.

• If (i) holds, that is, there exists a vertex

w ∈
(
N(G, v) \ {u}

)
∩ I such that the to-

ken tw on w is (G′, I ∩G′)-rigid, where G′ =

G−N [G, u]. Since the TS-sequence S (in G)

moves t to v, it is necessary that S moves tw

to a vertex in N(G,w)\{v} = N(G′, w) first.

(On the other hand, moving tw to a vertex

in N(G,w) \ {v} does not guarantee that t

can be moved to v.) Note that before mov-

ing t, any TS-sequence S = ⟨I1, I2, . . . , Iℓ⟩
in G can be restricted to a TS-sequence S ′ =

⟨I1\{u}, I2\{u}, . . . , Iℓ\{u}⟩ = ⟨I1∩G′, I2∩
G′, . . . , Iℓ ∩G′⟩ in G′, and vice versa. It fol-

lows that there exists a TS-sequence S ′ in

G′ (restricted from S) that moves tw to a

vertex in N(G′, w), which contradicts to the

assumption that tw is (G′, I ∩G′)-rigid.

u

v

w

C

G
′

図 3: Case (ii) of Lemma 3.1. The token on u is

(G, I)-rigid.
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• If (ii) holds, that is, there exists a vertex w ∈(
N(G, v)\{u}

)
∩ I satisfying that u /∈ V (C),

{v, w} ⊆ V (C), the token tw on w is not

(G′, I ∩ G′)-rigid, and for any independent

set I′ of G′ such that I ∩G′ G′

↭ I′, the path

P = C−v (which, in this case, is a subgraph

of G′) satisfies |P ∩ I′| = ⌊k/2⌋. Assume

that P = p1p2 . . . pk−1. Since w ∈ N(G, v),

w ∈ V (C) and P = C − v, we can assume

that p1 = w. Since for any independent set

I′ of G′ such that I ∩ G′ G′

↭ I′, the path

P satisfies |P ∩ I′| = ⌊k/2⌋, it follows that

there does not exist any TS-sequence in G′

that moves a token in P ∩ I ⊆ I ∩ G′ to a

vertex in G′−P , or moves a token in G′−P

to a vertex in P . Moreover, if a token in

P ∩ I′ is (P, P ∩ I′)-rigid then so is every to-

ken in P ∩ I′. Consequently, for any such I′,

{p1, pk−1} ∩ I′ ̸= ∅. In other words, any TS-

sequence in G′ that moves tw from w = p1 to

p2 also moves a different token in P to pk−1

(if there is no token on it). Since P = C−v, it

follows that {p1, pk−1} ⊆ N(C, v), and there-

fore N(C, v)∩I′ ̸= ∅, where I′ is such that I∩
G′ G′

↭ I′. As mentioned above, before mov-

ing t, any TS-sequence S ′ = ⟨I′1, I′2, . . . , I′q⟩
in G′ can be extended to a TS-sequence

S = ⟨I′1 ∪ {u}, I′2 ∪ {u}, . . . , I′q ∪ {u}⟩ in G,

and vice versa. Therefore, N(C, v) ∩ J ̸= ∅
for every J such that I

G↭
S

J, where S does

not involve sliding t, which contradicts to our

assumption that t can be slid to v.

Next, we show the only-if-part. Assume that t

is (G, I)-rigid. We want to show that either (i) or

(ii) holds. Assume for the contradiction that both

(i) and (ii) do not hold, that is, for any u ∈ I,

there exists a vertex v ∈ N(G, u) such that either(
N(G, v) \ {u}

)
∩ I = ∅ or for every w ∈

(
N(G, v) \

{u}
)
∩ I, the token tw on w is not (G′, I∩G′)-rigid,

and one of the following conditions does not hold:

(a) u /∈ V (C);

(b) {v, w} ⊆ V (C); and

(c) for any independent set I′ of G′ such that

I ∩ G′ G′

↭ I′, the path P = C − v satisfies

|P ∩ I′| = ⌊k/2⌋.
We claim that in both cases, there exists a TS-

sequence S in G that moves t to v. If
(
N(G, v) \

{u}
)
∩ I = ∅, one can slide t to v immediately. We

now consider the case when
(
N(G, v)\{u}

)
∩I ̸= ∅.

Assume that for every w ∈
(
N(G, v) \ {u}

)
∩ I, the

token tw on w is not (G′, I ∩ G′)-rigid, and one of

the conditions (a), (b) and (c) does not hold. Note

that by definition, w ̸= u.

Since tw is not (G′, I ∩ G′)-rigid, there exists

a TS-sequence S ′ in G′ that moves tw to a ver-

tex in N(G′, w). If w /∈ V (C), the (connected)

component H of G′ containing w does not contain

C. Moreover, since G contains exactly one cycle,

V (H) ∩ N(G, v) = {w}. Therefore, S ′ does not

move any token to a vertex in N(G, v) \ {u}, and
hence t can be slid to v in G. If w ∈ V (C), consider

the following cases:

• Case 1: u ∈ V (C) and w /∈ V (C). This case

cannot happen since G contains exactly one

cycle.

• Case 2: u /∈ V (C) and v /∈ V (C). Since

v /∈ V (C), the path P = C − v cannot be

defined, and then condition (c) does hot hap-

pen, which means that one can slide tw to a

vertex in N(G′, w) without moving any to-

ken to a vertex in N(C, v) during the sliding

process. Then, t can be slid to v.

• Case 3: u /∈ V (C) and v ∈ V (C). In

this case, both conditions (a) and (b) hold.

Therefore, (c) does not hold, which means

that either |P ∩ I| < ⌊k/2⌋ or one can slide a

token (which is not necessarily tw) in P ∩I to

a vertex in G′ − P , which also decreases the
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number of tokens in P . This means that tw

can now be slid to a vertex in N(G′, w) with-

out moving any token to a vertex in N(C, v)

during the sliding process. Then, t can be

slid to v.

• Case 4: u ∈ V (C) and v ∈ V (C). Note

that in this case, the path P = C − v =

p1p2 . . . pk−1 is not a subgraph of G′ and now

contains both w = p1 and u = pk−1 as its

endvertices. Also, since both u and w are

in I, C must be of length k ≥ 4. On the

other hand, note that if P satisfies the con-

dition (c), then the path P ′ = P ∩ G′ =

P −N [G, u] = p1p2 . . . pk−3 also satisfies (c).

If (c) does not hold, we can use the same ar-

gument as in the previous part (replacing P

by P ′) to show that t can be slid to v. On

the other hand, if (c) holds, then since tw

is not (G′, I ∩ G′)-rigid, one can slide tw to

N(P ′, w) and moves a token to pk−3 during

the sliding process. Since pk−3 /∈ N(G, u),

this sliding process can be applied in G, and

hence t can now be slid to v.

Next, we claim that the condition (ii) of

Lemma 3.1 indeed can be checked in polynomial

time.

Lemma 3.2. Given a unicyclic graph G. Assume

that the unique cycle C of G is of length k (3 ≤ k ≤
n). Let I be an independent set of G. Let u ∈ I,

v ∈ N(G, u) and w ∈
(
N(G, v) \ {u}

)
∩ I. Assume

that u /∈ V (C), {v, w} ⊆ V (C), and the token tw on

w is not (G′, I∩G′)-rigid, where G′ = G−N [G, u].

Then, one can check in polynomial time that for

any independent set I′ of G′ such that I∩G′ G′

↭ I′,

the path P = C − v satisfies |P ∩ I′| = ⌊k/2⌋.

Proof. First of all, we claim that for any indepen-

dent set I′ of G′ such that I ∩G′ G′

↭ I′, P satisfies

|P ∩ I′| = ⌊k/2⌋ if and only if

(a) |P ∩ I| = ⌊k/2⌋; and
(b) for any independent set I′ of G′ such that

I ∩ G′ G′

↭ I′, any token on x ∈ P ∩ I′ is

(Tx, I
′ ∩ Tx)-rigid.

It is clear from the definition of rigid tokens that

if both (a) and (b) hold then for any independent

set I′ of G′ such that I ∩ G′ G′

↭ I′, the path P =

C − v satisfies |P ∩ I′| = ⌊k/2⌋.
Now, if for any independent set I′ of G′ such

that I∩G′ G′

↭ I′, P satisfies |P ∩ I′| = ⌊k/2⌋, then
(a) clearly holds since I ∩ G′ G′

↭ I ∩ G′. Assume

that (b) does not hold, that is, there exists an in-

dependent set I′ of G′, I ∩ G′ G′

↭ I′, and a token

tx on x ∈ P ∩ I′ such that tx is not (Tx, I
′ ∩ Tx)-

rigid. It follows that there exists a TS-sequence

Sx = ⟨I′ ∩ Tx = Ix1 , . . . , I
x
q ⟩ in Tx that moves tx to

a vertex in N(Tx, x). Since Ix ∪
(
I′ − Tx

)
forms an

independent set of G′, where Ix is an independent

set in Tx, Sx can be extended to a TS-sequence

S = ⟨I′, . . . , Ixq ∪
(
I′ −Tx

)
⟩ in G′. Hence, I∩G′ G′

↭
I′

G′

↭ Ixq ∪
(
I′ − Tx

)
. Note that Sx (and hence

S) only involves sliding tokens in Tx. Therefore,

we have that
∣∣P ∩

(
Ixq ∪

(
I′ − Tx

))∣∣ = ⌊k/2⌋ − 1,

which is a contradiction. Hence, (b) must hold.

We now only need to check if conditions (a)

and (b) hold. The condition (a) can obviously be

checked in O(1) time.

From the proof of Lemma 3.1, we know that there

does not exist any TS-sequence in G′ that moves a

token in P ∩ I ⊆ I ∩ G′ to a vertex in G′ − P , or

moves a token in G′−P to a vertex in P . Moreover,

if a token in P∩I′ is (P, P∩I′)-rigid then so is every

token in P∩I′. It follows that k must indeed be odd.

We claim that there exist two independent sets I′1

and I′2 of G′ such that I ∩ G′ G′

↭ I′1, I ∩ G′ G′

↭
I′2, (P ∩ I′1) ∪ (P ∩ I′2) = V (P ) and (P ∩ I′1) ∩
(P ∩ I′2) = ∅. In order to construct I′1 and I′2, an

important assumption we need to keep in mind is
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that conditions (a) and (b) must hold for I ∩G′ in

the first place.

Let P = p1p2 . . . pk−1, and note that k is odd,

then one can define P ∩ I′1 = {p1, p3, . . . , pk−2} and

P ∩ I′2 = {p2, p4, . . . , pk−1}. I′1 (and similarly, I′2)

can be obtained from I ∩G′ using token sliding as

follows. Let i be the smallest index such that pi ∈(
I ∩G′) \ I′1. From the definition of P ∩ I′1, i must

be even. By condition (a), it follows that pj ∈ I′1

for j odd, j < i−1, and pj ∈
(
I∩G′)\I′1 for j even,

j ≥ i. Additionally, by condition (b), the token tpi

on pi can only be slid to pi−1, which means that

there exists a TS-sequence Spi in G′ that slides tpi

to pi−1. Repeat the described steps until all tokens

on vertices in P ∩ I are slid to vertices in P ∩ I′1.

Since G′ is a forest, each such Spi described above

can be constructed in at most O(|G′|2) time (see [3,

Theorem 2]). Hence, I′1 and I′2 can be constructed

in O(|G′|2) time.

From the definition of rigid tokens and the above

arguments, in order to check if (b) holds, it is

enough to check if (b) holds for the cases I′ = I∩G,

I′ = I′1 and I′ = I′2, which can be done in at most

O(|P ∩ I′|.|G′|) time (see [3, Theorem 1]). In total,

the checking process takes at most O(n2) time.

Now, we claim that it can be decided in polyno-

mial time whether the token on u is (G, I)-rigid, for

any given unicyclic graph G.

Lemma 3.3. Given a unicyclic graph G with n

vertices. Assume that the unique cycle C of G is

of length k (3 ≤ k ≤ n). Let I be an independent

set of G and let u ∈ I. Then, it can be decided in

polynomial time whether the token on u is (G, I)-

rigid.

Proof. We claim that Algorithm 1 can be used to

decide in polynomial time whether the token on u

is (G, I)-rigid.

The correctness of Algorithm 1 clearly follows

Algorithm 1 Check if a token on u ∈ I is (G, I)-

rigid.

Input: A unicyclic graph G, its unique cycle C

of length k, an independent set I of G, and a

vertex u ∈ I.

Output: Return yes if the token on u is (G, I)-

rigid; otherwise, return no.

1: function CheckRigid(G, I, u)

2: G′ = G−N [G, u]

3: for all v ∈ N(G, u) do

4: if
(
N(G, v) \ {u}

)
∩ I = ∅ then return

no

5: else

6: for all w ∈
(
N(G, v) \ {u}

)
∩ I do

7: if CheckRigid(G′, I∩G′, w) =

no then

8: if u /∈ V (C), v ∈ V (C), w ∈
V (C) then

9: if Lemma 3.2 does not

hold then return no

10: end if

11: else

12: return no

13: end if

14: end if

15: end for

16: return yes

17: end if

18: end for

19: end function
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from Lemma 3.1 and Lemma 3.2. We claim that

its running time is at most O(n2) time. Note that

every components of G′ are trees, except the one

that contains C (if exists). Moreover, observe that

if G′ contains (connected) components G′
1, . . . , G

′
r

then each TS-sequence in G′ can be restricted to

each component G′
i (i = 1, 2, . . . , r), and vice versa.

Let H be the component of G′ containing w. If

H is a tree, then CheckRigid(G′, I ∩ G′, w) =

CheckRigid(H, I ∩ H, w) takes at most O(|H|)
time (see [3, Lemma 2]). On the other hand, if H

contains C, since the checking step in line 9 takes

at most O(n2) time as described in Lemma 3.2, the

function CheckRigid(G′, I∩G′, w) takes at most

O(n2) time. In total, Algorithm 1 takes at most

O(n2) time.

The next lemma is useful in showing the correct-

ness of our algorithm for solving sliding token

on unicyclic graphs.

Lemma 3.4. Let I be an independent set of a uni-

cylic graph G. Let C be the unique cycle of G.

Assume that C is of length k. Assume that all to-

kens are (G, I)-movable. Let v ∈ V (G) be such

that v /∈ I. Then, there exists at most one neigh-

bor w ∈ N(G, v) ∩ I such that the token on w is

(G′′, I ∩ G′′)-rigid, where G′′ = G − v. Moreover,

if both v and w are in V (C) and for any indepen-

dent set I′ of G′′ such that I ∩ G′′ G′′

↭ I′, the path

P = C−v satisfies |P ∩ I′| = ⌊k/2⌋, then the token

on any vertex in N(G, v) ∩ I is not (G′′, I ∩ G′′)-

rigid.

v

w w
′

v

w
′

w

(a) (b)

図 4: Illustration for Lemma 3.4.

Proof. Assume for the contradiction that v has two

distinct neighbors w and w′ in N(G, v)∩I such that

the token tw on w and the token tw′ on w′ are both

(G′′, I ∩ G′′)-rigid (see Figure 4(a)). Since tw is

(G′′, I∩G′′)-rigid, it cannot be slid to any vertex in

N(G′′, w). On the other hand, tw is (G, I)-movable,

hence the only way to slide tw out of w is to move tw

to v ∈ V (G)\V (G′′). But now, since w′ ∈ N(G, v),

we need to slide tw′ to a vertex in N(G′′, w′) first.

But this is a contradiction, since tw′ is (G′′, I∩G′′)-

rigid.

Now, suppose that both v and w are in V (C)

and for any independent set I′ of G′′ such that

I ∩ G′′ G′′

↭ I′, the path P = C − v satisfies

|P ∩ I′| = ⌊k/2⌋. Assume for the contradiction that

there exists a vertex w′ in N(G, v) ∩ I such that

the token tw′ on w′ is (G′′, I ∩ G′′)-rigid (see Fig-

ure 4(b)). If k is even, since for any independent set

I′ of G′′ such that I∩G′′ G′′

↭ I′, the path P = C−v

satisfies |P ∩ I′| = ⌊k/2⌋, it follows that all tokens

on P ∩ I are (G′′, I ∩ G′′)-rigid. Hence, there are

two neighbors of v in C satisfying that the tokens

on them are all (G′′, I∩G′′)-rigid, which contradicts

to the previous part of our proof. Therefore, k must

be odd and then, no token on P ∩ I is (G′′, I∩G′′)-

rigid. Since tw′ is (G′′, I ∩ G′′)-rigid, w′ /∈ V (C)

and tw′ cannot be slid to any vertex in N(G′′, w′).

Since tw′ is (G, I)-movable, the only way to slide

tw′ out of w′ is to move tw′ to v ∈ V (G) \ V (G′′).

By Lemma 3.1(ii), tw′ is (G, I)-rigid, which is a

contradiction. Hence, the token on any vertex in

N(G, v) ∩ I is not (G′′, I ∩G′′)-rigid.

3.2 Algorithm

Using the same algorithm provided by Demaine

et al. [3], we can solve the sliding token problem

on unicyclic graphs in polynomial time.

Let G be a unicyclic graph with n vertices, and
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let I and J be two given independent sets of G.

Step 1. Compute R(I) and R(J) using

Lemma 3.3. If R(I) ̸= R(J), then

return no; otherwise go to Step 2.

Step 2. Delete the vertices in N [G,R(I)] =

N [G,R(J)] from G, and obtain a sub-

graph F consisting of q connected com-

ponents G1, G2, . . . , Gq. If |I ∩Gj | =

|J ∩Gj | holds for every j ∈ {1, 2, . . . , q},
then return yes; otherwise return no.

By Lemma 3.3 we can determine whether one to-

ken in an independent set I of G is (G, I)-rigid or

not in O(n3) time, and hence Step 1 can be done in

time O(n2)×(|I|+|J|) = O(n3). Clearly, Step 2 can

be done in O(n) time. Therefore, the described al-

gorithm runs in O(n3) time in total. In the remain-

ing part of this section, we show the correctness of

the above algorithm.

First of all, we show the correctness of Step 1. In

the next lemma, we show that if the set of (G, I)-

rigid and (G,J)-rigid tokens are different, then I

cannot be reconfigured to J.

Lemma 3.5. [3, Lemma 5] Suppose that for two

independent sets I, J of a unicyclic graph G, R(I) ̸=
R(J). Then, there does not exist any TS-sequence

S such that I
G↭
S

J.

Next, we show the correctness of Step 2. We

start by showing that in case the set of (G, I)-rigid

and (G,J)-rigid tokens are the same, removing all

rigid tokens and its neighbors does not affect the

final answer of the sliding token problem.

Lemma 3.6. [3, Lemma 6] Suppose that R(I) =

R(J) for two given independent sets I and J of a an

unicyclic graph G, and let G′ be the graph obtained

from G by deleting the vertices in N [G,R(I)] =

N [G,R(J)] from G. Then I
G↭ J if and only if

I∩G′ G′

↭ J∩G′. Furthermore, all tokens in I∩G′

are (G′, I ∩ G′)-movable, and all tokens in J ∩ G′

are (G′,J ∩G′)-movable.

If R(I) = R(J) = ∅ for any two given independent

sets I, J of a unicyclic graph G, we claim that I

can be reconfigured to J using TS rule if and only

if |I| = |J|.

Lemma 3.7. Let G be a unicyclic graph. Let I

and J be two given independent sets of G. Assume

that there are no (G, I)-rigid and (G,J)-rigid to-

kens. Then I
G↭ J if and only if |I| = |J|.

Before proving Lemma 3.7, we show some extra

claims. From now on, we assume that for any inde-

pendent set I of a unicyclic graph G, the token on

any u ∈ I is (G, I)-movable. First of all, we claim

that Lemma 3.7 holds when G is a cycle.

Lemma 3.8. Let C be a cycle. Let I and J be two

given independent sets of C. Assume that there

are no (C, I)-rigid and (C,J)-rigid tokens. Then

I
C↭ J if and only if |I| = |J|.

Proof. If I
C↭ J then clearly |I| = |J|. Now, as-

sume that |I| = |J|. We claim that I
C↭ J. Let

C = v1v2 . . . vkv1. Let I′ be an independent set of

C such that |I′| = |I| = |J| ≤ ⌊k/2⌋ and vi ∈ I′

if i is odd. We claim that I
C↭ I′, and similarly,

J
C↭ I′. Consider the following cases:

• Case 1: |I| = ⌊k/2⌋. If k is even then I = I′

because there are no (C, I)-rigid tokens. If k

is odd, let i be the smallest index such that

vi ∈ I \ I′, 2 ≤ i ≤ k. Hence, from the defini-

tion of I′, i must be even. Moreover, vj ∈ I′

for odd j, 1 ≤ j < i − 1, and vj ∈ I for

even j, i ≤ j ≤ k − 1. Hence, one can slide

the token on vi to vi−1 ∈ I′ \ I, then slide

the token on vi+2 to vi+1, and so on. Let S
be the TS-sequence describing the above pro-

cess, then clearly I
C↭
S

I′, since each sliding

step reduces |I′ \ I|.
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• Case 2: |I| < ⌊k/2⌋. Let i be the smallest

index such that vi ∈ I\I′, 2 ≤ i ≤ k. If i = 2

then since there are no (C, I)-rigid tokens, we

can assume without loss of generality that

vk /∈ I; otherwise there exists a TS-sequence

that slides the token in vk to vk−1 and then

one can deal with the resulting independent

set. Let j be the smallest index such that

vj ∈ I′ \ I, 1 ≤ j ≤ k. Since vi /∈ I′, i > j.

Now, one can slide vi to vj and repeat the

process. Let S be the TS-sequence describing

the above process, then clearly I
C↭
S

I′.

Next, we claim that there exists a TS-sequence

that slides a token to a given safe degree-1 vertex

v of G.

Lemma 3.9. Let G be a unicyclic graph having

at least one vertex of degree 1. Assume that the

unique cycle C of G is of length k. Let I be an

independent set of G. Let v ∈ I be a safe degree-

1 vertex of G. Assume that all tokens are (G, I)-

movable. Then, there exists an independent set I′

satisfying that I
G↭ I′ and v ∈ I′.

Proof. The proof of this lemma is similar to the

proof of [3, Lemma 8], except the process of choos-

ing the token which can be used to slide to v.

Suppose that v ̸∈ I; otherwise the lemma clearly

holds. We will show that one of the closest to-

kens from v can be slid to v. Let M = {w ∈ I |
dist(v, w) = minx∈I dist(v, x)}. Let w be an arbi-

trary vertex inM , and let P = (p0 = v, p1, . . . , pℓ =

w) be a shortest vw-path in G. If ℓ = 1 and hence

p1 ∈ I, then we can simply slide the token on p1 to

v. Thus, we may assume that ℓ ≥ 2.

We note that no token is placed on the vertices

p0, . . . , pℓ−1 and the neighbors of p0, . . . , pℓ−2, be-

cause otherwise the token on w is not closest to v.

Let M ′ = M ∩N(G, pℓ−1). Consider the following

cases:

• Case 1: pℓ−1 /∈ V (C). Since pℓ−1 ̸∈ I, by

Lemma 3.4 there exists at most one vertex

w′ ∈ M ′ such that the token on w′ (G′′, I ∩
G′′)-rigid, where G′′ = G− pℓ−1. We choose

such a vertex w′ if exists, otherwise choose

an arbitrary vertex in M ′ and regard it as

w′.

• Case 2: pℓ−1 ∈ V (C). Since pℓ−1 ∈ V (C),

by Lemma 3.4, if for any independent set J of

G′′ such that I∩G′′ G′′

↭ J, the path C−pℓ−1

satisfies |(C − pℓ−1) ∩ J| = ⌊k/2⌋, then the

token on any vertex in N(G, pℓ−1) ∩ I is not

(G′′, I∩G′′)-rigid, and we choose such a ver-

tex in C as w′, otherwise choose an arbitrary

vertex in M ′ and regard it as w′.

Since all tokens on the vertices w′′ in M ′ \ {w′}
are (G′′, I ∩ G′′)-movable, we first slide the tokens

on w′′ to some vertices in the component of G′′

containing w′′. Then, we can slide the token on w′

to v along the path P . In this way, we can obtain an

independent set I′ such that v ∈ I′ and I
T↭ I′.

Lemma 3.10. Let G be a unicyclic graph contain-

ing at least one vertex of degree 1. Let I be an

independent set of G such that I contains a safe

degree-1 vertex v of G. Assume that all tokens in

G are (G, I)-movable. Then, all tokens in G∗ are

(G∗, I∗)-movable, where I∗ = I \ {v} and G∗ is the

graph obtained from G by removing v, its unique

neighbor u, and all resulting islated vertices.

Proof. Suppose for the contradiction that there ex-

ists a token on a vertex in I∗ which is (G∗, I∗)-

rigid. Let w be such vertex which is closest to v.

Let P be a shortest path between v and w. Let

z be the unique neighbor of w in P . Assume that

N(G, z) = {w1, w2, . . . , wp}, where w1 ∈ V (P ) and

wp = w.

First of all, we claim some useful facts.

• Since degG(v) = 1, v /∈ V (C).
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• Since v is (G, I)-movable, it follows that there

are no token on any degree-1 neighbor of u

other than v.

• Since ({v}, ∅) is a single component of G−u,

the token on v is (G − u, I ∩ (G − u))-rigid.

More generally, if a token is (H, I ∩H)-rigid

(or (H, I ∩ H)-movable) for any connected

component H of G, then it is also (G, I∩G)-

rigid (or (G, I ∩ G)-movable). Conversely, if

a token in G is (G, I ∩ G)-rigid (or (G, I ∩
G)-movable) and that token is placed at a

vertex belonging to H, then it is (H, I ∩H)-

rigid (or (H, I ∩ H)-movable). This follows

from the observation we made at the end of

Section 2.2.

• Since the token tp on wp is (G∗, I∗)-rigid,

then regardless of whether z ∈ V (C), it

must be at least (G∗ − z, I ∩ (G∗ − z))-rigid

because otherwise one can slide tp (along

edges of G∗) to a vertex in N(G∗ − z, wp) =

N(G∗, wp) \ {z}.
Consider the following cases:

• Case 1: z = u. Since all tokens placed at

vertices of I are (G, I)-movable, u /∈ I and

one neighbor v of u is (G − u, I ∩ (G − u))-

rigid, by Lemma 3.4, the token tp on wp must

be (G − u, I ∩ (G − u))-movable, which is a

contradiction since tp is (G∗, I∗)-rigid, G∗ is

a connected component of G − u containing

wp, and I∗ = (I ∩ (G− u)) \ {v}.
• Case 2: z ̸= u.

• Case 2-1: z ∈ V (C).

Since z ∈ V (C), G − z is a forest.

Moreover, v is a safe degree-1 vertex of

G− z, hence by [3, Lemma 9], every to-

ken in G− u− z except the token on v

must be (G − u − z, I ∩ (G − u − z))-

movable. On the other hand, since

G∗ − z is a component of G − u − z,

every (G∗, I ∩ G∗)-rigid tokens is also

(G−u− z, I∩ (G−u− z))-rigid. More-

over, since tp is (G∗ − z, I ∩ (G∗ − z))-

rigid, it is also (G−u−z, I∩(G−u−z))-

rigid. This is a contradiction.

• Case 2-2: z /∈ V (C).

Since z /∈ V (C), we must have that

|N(G, z) ∩ V (C)| ≤ 1. Hence, for any

component H of G∗ − z containing wp,

regardless of whether wp ∈ V (C) (if

wp ∈ V (C) then w1 /∈ V (C) and

vice versa), H is also a component of

G − z, which means that tp is (G −
z, I ∩ (G− z))-rigid. Since wp is (G, I)-

movable and z /∈ V (C) ∩ I, it fol-

lows by Lemma 3.4 that for every j ∈
{2, 3, . . . , p−1}, if wj ∈ I then the token

tj on wj is (G− z, I∩ (G− z))-movable.

As before, regardless of whether wj ∈
V (C) (j ∈ {2, 3, . . . , p − 1}), the com-

ponent Hj of G − z containing wj is

also a component of G∗ − z. Hence, for

j ∈ {2, 3, . . . , p − 1}, if wj ∈ I then the

token tj on wj is (G∗ − z, I∩ (G∗ − z))-

movable. Since tp is (G∗, I∗)-rigid, by

Lemma 3.1, we must have that w1 ∈ I

and t1 is (G∗ − z, I∗ ∩ (G∗ − z))-rigid.

Since tp is also (G∗−z, I∗−z)-rigid and

z /∈ I, it follows from Lemma 3.4 that t1

is (G∗, I∗)-rigid, but this contradicts the

assumption that wp is the closest token

to v that is (G∗, I∗)-rigid.

Proof of Lemma 3.7.

The proof is similar to the proof of [3, Lemma 7].

The only-if-part is trivial. By Lemma 3.8, we

know that Lemma 3.7 clearly holds for any cycle

C.
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Now, assume that the unicyclic graph G has at

least one vertex of degree 1. We prove the if-part

of the lemma by the induction on the number of to-

kens |I| = |J|. We choose an arbitrary safe degree-1

vertex v of G, whose unique neighbor is u. Since all

tokens placed at vertices in I are (G, I)-movable, by

Lemma 3.9 we can obtain an independent set I′ of

G such that v ∈ I′ and I
G↭ I′. By Lemma 3.10 all

tokens in I′ \ {v} are (G∗, I′ \ {v})-movable, where

G∗ is the subgraph defined in Lemma 3.10. Sim-

ilarly, we can obtain an independent set J′ of G

such that v ∈ J′, J
G↭ J′ and all tokens in J′ \ {v}

are (G∗,J′\{v})-movable. Apply the induction hy-

pothesis to the pair of independent sets I′ \{v} and

J′ \ {v} of G∗. Then, we have I′ \ {v} G∗

↭ J′ \ {v}.
Recall that both u /∈ I′ and u /∈ J′ hold, and u is

the unique neighbor of v in G. Therefore, we can

extend the reconfiguration sequence in G∗ between

I′ \ {v} and J′ \ {v} to a reconfiguration sequence

in G between I and J. We thus have I
G↭ J.

Put everything together, we finally have

Theorem 3.11. The sliding token problem can

be solved in O(n3) time for unicyclic graphs.
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[6] M. Kamiński, P. Medvedev, and M. Milanic̆.

Complexity of independent set reconfigurabil-

ity problems. Theoretical Computer Science,

439(0):9–15, 2012.

[7] J. van den Heuvel. The complexity of change.

In S. R. Blackburn, S. Gerke, and M. Wildon,

editors, Surveys in Combinatorics 2013, pages

127–160. Cambridge University Press, 2013.

[8] M. Wrochna. Reconfiguration in bounded

bandwidth and treedepth. arXiv preprints,

arXiv:1405.0847, 2014.

S12 – 12


