

Sliding tokens on unicyclic graphs

Duc A. Hoang¹ Ryuhei Uehara¹

¹ Japan Advanced Institute of Science and Technology Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan. {hoanganhduc, uehara}@jaist.ac.jp

January 26-28, 2016

- INSTANCE:
 - Collection of configurations.
 - Allowed transformation rule(s).
- QUESTION: For any two configurations A, B from the given collection, can A be transformed to B using the given rule(s)?

A classic example is the so-called 15-puzzle.

8	15	13	3
10		14	7
5	1	2	4
9	12	11	6

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Jan van den Heuvel (2013). "The complexity of change". In: *Surveys in Combinatorics 2013*. Ed. by Simon R. Blackburn, Stefanie Gerke, and Mark Wildon. Cambridge University Press, pp. 127–160

January 26-28, 2016

Sliding tokens on unicyclic graphs

• INSTANCE:

• A graph
$$G = (V, E)$$
.

- INSTANCE:
 - A graph G = (V, E).
 - **2** Two independent sets I, J.

Figure: An independent set of a graph. Independent vertices are marked with black tokens.

- INSTANCE:
 - A graph G = (V, E).
 - **2** Two independent sets I, J.
 - "Reconfiguration" rules: TS,
 TJ, TAR.

Figure: An independent set of a graph. Independent vertices are marked with black tokens

TS: Slide tokens along edges (SLIDING TOKEN).

2 TJ: A token "jumps" from one vertex to another.

TAR: Add or Remove tokens

- INSTANCE:
 - A graph G = (V, E).
 - **2** Two independent sets I, J.
 - "Reconfiguration" rules: TS, TJ, TAR.
- QUESTION: Can *I* be transformed to *J* using one of the given rules such that all intermediate sets are independent?

Figure: An independent set of a graph. Independent vertices are marked with black tokens.

- TJ: A token "jumps" from one vertex to another.
- TAR: Add or Remove tokens.

Figure: A YES-instance under TS rule.

Sliding tokens on unicyclic graphs

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

Why study these problems?

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015). (b) CoRe 2015 (Sendai, Japan) -Recent results + future directions of combinatorial reconfiguration.

Why study these problems?

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

(b) CoRe 2015 (Sendai, Japan) -Recent results + future directions of combinatorial reconfiguration.

(c) Several PSAPCE-hardness results were shown using reduction from ISRECONF.

Why study these problems?

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

(c) Several PSAPCE-hardness results were shown using reduction from ISRECONF.

(b) CoRe 2015 (Sendai, Japan) -Recent results + future directions of combinatorial reconfiguration.

(d) Recently, several problems related to $\operatorname{ISRECONF}$ have been extensively studied.

Sliding tokens on unicyclic graphs

SCIENCE AND TECHNOLOGY

Erik D. Demaine^a, Martin L. Demaine^a, Eli Fox-Epstein^b, Duc A. Hoang^{c,*}, Takehiro Ito^{d,e}, Hirotaka Ono^f, Yota Otachi^c, Ryuhei Uehara^c, Takeshi Yamada^c

^a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Se, Cambridge, MA 02139, USA

b Department of Computer Science, Brown University, 115 Waterman Screet, Providence, RI 02912-1910, USA

⁶ School of Information Science, Japan Advanced Institute of Science and Technology, Aschidai 1-1, Nomi, Ishikawa 923-1292, Japan

⁴ Graduare School of Information Sciences, Tohoku University, Aoba-yame 6-6-05, Sendai, 980-8579, Japan

* CREST, JST, 4-1-8 Honcho, Kawaguchi, Saisama, 332-0012, Japan

¹ Faculty of Economics, Nyushu University, Hakazaki 6-19-1, Higashi-ku, Rukuoka, 812-8581, Japan

ARTICLE INFO

ABSTRACT

Arcicle history: Received 3 March 2015 Received in revised form 2 July 2015 Accurrent 16 July 2015 Suppose that we are given two independent sets I_b and I_r of a graph tand imagine that a token is placed on each vertex in I_b . Then, the SLIT is to determine whether there exists a sequence of independent set:

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Erik D. Demaine^a, Martin L. Demaine^a, Eli Fox-Epstein^b, Duc A. Hoang^c, Takehiro Ito^d, e, Hirotaka Ono^f, Yota Otachi^c, Ryuhei Uehara^c, Takeshi Ya

* MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA

b Department of Computer Science, Brown University, 115 Waterman Screet, Providence, RI 02912-1910, USA

⁶ School of Information Science, Japan Advanced Institute of Science and Technology, Aschidai 1-1, Nomi, Ishikawa 923-1292, Japa

^d Graducze School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

* CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitema, 332-0012, Jepan

Faculty of Economics, Ryushu University, Hakazaki 6-19-1, Higashi-ku, Pukuoka, 812-8581, Japan

ARTICLE INFO

ABSTRACT

Arcicle history: Received 3 March 2015 Received in revised form 2 July 2015 Accurrent 16 July 2015 Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . This to determine whether there exists a sequence of independence of the set of the s

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein^{1 (El)}, Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

¹ Brown University, Providence, USA of@cs.brown.edu ² JAIST, Nomi, Japan {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. SLUNK TOKIN is a natural reconfiguration problem in which vertices of independent stars are iteratively neighbors. We develop techniques that may be useful in answering the conjecture that SLUNKO TOKIN's jo plynomial-time deviable on bipartite graphs. Along the way, we give efficient algorithms for SLUNKO TOKIN's on bipartite permutation and bipartite distance-herefulty argabs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

Erik D. Demaine^a, Martin L. Demaine^a, Eli Fox-Epstein^b, Duc A. Hoang^c. Takehiro Ito^d, e, Hirotaka Ono^f, Yota Otachi^c, Ryuhei Uehara^c, Takeshi Ya

^a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Se, Cambridge, MA 02139, USA

b Department of Computer Science, Brown University, 115 Waterman Screet, Providence, RI 02912-1910, USA

⁶ School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japa

^d Graducce School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

* CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitema, 332-0012, Jepan

¹ Faculty of Economics, Nyushu University, Hakazaki 6-19-1, Higushi-ku, Pukuoka, 812-8581, Japan

ARTICLE INFO

ABSTRACT

Arcicle history: Received 3 March 2015 Received in revised form 2 July 2015 Accurrent 16 July 2015 Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . This to determine whether there exists a sequence of independence of the set of the s

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author] Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein^{1 (El)}, Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

¹ Brown University, Providence, USA ef@cs.brown.edu ² JAIST, Nomi, Japan {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. SLIDING TOKIN is a natural reconfigurated by neighbors, which vertices of independent stars are iteratively engeded by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKINS is polynomial-time devidable on bipartite graphs. Along the way, we give efficient algorithms for SLIDING TOKINS on bipartite permutation and bipartite distance-hereding graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

Erik D. Demaine^a, Martin L. Demaine^a, Eli Fox-Epstein^b, Duc A. Hoang^c. Takehiro Ito^d, e, Hirotaka Ono^f, Yota Otachi^c, Ryuhei Uehara^c, Takeshi Ya

^a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Sc, Cambridge, MA 02139, USA

b Department of Computer Science, Brown University, 115 Waterman Screet, Providence, RI 02912-1910, USA

⁶ School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japa

^d Graducce School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

* CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitema, 332-0012, Jepan

¹ Faculty of Economics, Nyushu University, Hakazaki 6-19-1, Higushi-ku, Pukuoka, 812-8581, Japan

ARTICLE INFO

ABSTRACT

Arcfcle history: Received 3 March 2015 Received in revised form 2 July 2015 Accurrent 16 July 2015 Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . TI is to determine whether there exists a sequence of indep

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author] Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein¹^(El), Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

¹ Brown University, Providence, USA ef@cs.brown.edu ² JAIST, Nomi, Japan {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. SLIDING TOKIN is a natural reconfigurated by neighbors, which vertices of independent stars are iteratively engeded by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKINS is polynomial-time devidable on bipartite graphs. Along the way, we give efficient algorithms for SLIDING TOKINS on bipartite permutation and bipartite distance-hereding graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

• For bipartite graphs, all (G, I)-rigid tokens can be determined in linear time. (Fox-Epstein et al. 2015)

Erik D. Demaine^a, Martin L. Demaine^a, Eli Fox-Epstein^b, Duc A. Hoang^c. Takehiro Ito^d, e, Hirotaka Ono^f, Yota Otachi^c, Ryuhei Uehara^c, Takeshi Ya

^a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Sc, Cambridge, MA 02139, USA

b Department of Computer Science, Brown University, 115 Waterman Street, Providence, N 02912-1910, USA

- ⁶ School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japa
- ^d Graduese School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

ARTICLE INFO

ABSTRACT

Arcfcle history: Received 3 March 2015 Received in revised form 2 July 2015 Accurrent 16 July 2015 Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . TI is to determine whether there exists a sequence of indep

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein¹^(El), Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

¹ Brown University, Providence, USA ef@cs.brown.edu ² JAIST, Nomi, Japan {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. SUDING TOKEN is a natural reconfigurated by neighbors, which vertices of independent stars are iteratively neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKEN is polynomial-time devidable on bipartite graphs. Along the way, we give efficient algorithms for SLIDING TOKEN on bipartite permutation and bipartite distance-hereding graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

- For bipartite graphs, all (G, I)-rigid tokens can be determined in linear time. (Fox-Epstein et al. 2015)
- What about graphs containing odd cycles?
 - Unicyclic graphs is a good start.

^{*} CREST, JST, 4-1-8 Honcho, Kawaguchi, Saisama, 332-0012, Japan

¹ Faculty of Economics, Kyushu University, Hakazaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan

A unicyclic graph is a connected graph that contains exactly one cycle.

We say that the token t placed at $u \in I$ is (G, I)-rigid if for every independent set I' such that $I \stackrel{G}{\Leftrightarrow} I'$, $u \in I'$. Denote by R(G, I) the set of all (G, I)-rigid tokens.

Figure: The token on v_6 is (G, I)-rigid, while the tokens on v_1 and v_3 are not.

Sliding tokens on unicyclic graphs

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$.

Lemma: Let *I* be an independent set of a unicyclic graph *G* (|V(G)| = n). Assume that the unique cycle *C* of *G* is of length *k* $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token *t* on *u* is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $w \in (N(G, v) \setminus \{u\}) \cap I$ satisfying one of the following conditions:

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token t on u is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $w \in (N(G, v) \setminus \{u\}) \cap I$ satisfying one of the following conditions: (i) The token t_w on w is $(G', I \cap G')$ -rigid, where G' = G - N[G, u]. (ii) $u \notin V(C), \{v, w\} \subseteq V(C)$, the token t_w on w is not $(G', I \cap G')$ -rigid, and for any independent set I' of G' such that $I \cap G' \stackrel{G'}{\leftrightarrow} I'$, the path P = C - v satisfies $|P \cap I'| = \lfloor k/2 \rfloor$.

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token t on u is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $w \in (N(G, v) \setminus \{u\}) \cap I$ satisfying one of the following conditions: (i) The token t_w on w is $(G', I \cap G')$ -rigid, where G' = G - N[G, u]. (ii) $u \notin V(C)$, $\{v, w\} \subseteq V(C)$, the token t_w on w is not $(G', I \cap G')$ -rigid, and for any independent set I' of G' such that $I \cap G' \stackrel{G'}{\Leftrightarrow} I'$, the path P = C - v satisfies $|P \cap I'| = \lfloor k/2 \rfloor$.

The following algorithm checks if $I \stackrel{G}{\nleftrightarrow} J$.

- **Step 1.** Compute R(G, I) and R(G, J). If $R(G, I) \neq R(G, J)$, then return NO; otherwise go to **Step 2**.
- **Step 2.** Delete the vertices in R(G, I) = R(G, J) and its neighbors from G, and obtain a subgraph \mathcal{F} consisting of q connected components G_1, G_2, \ldots, G_q . If the number of tokens in I and J are equal for every component, then return YES; otherwise, return NO.

The following algorithm checks if $I \stackrel{G}{\Leftrightarrow} J$.

Step 1. Compute R(G, I) and R(G, J). If $R(G, I) \neq R(G, J)$, then return NO; otherwise go to **Step 2**.

Time: $O(n^2) \times (|I| + |J|) \Rightarrow O(n^3)$

Step 2. Delete the vertices in R(G, I) = R(G, J) and its neighbors from G, and obtain a subgraph \mathcal{F} consisting of q connected components G_1, G_2, \ldots, G_q . If the number of tokens in I and J are equal for every component, then return YES; otherwise, return NO.

Time: O(n)

Open Questions

- Standard question: What is the complexity of ISRECONF for ... graph under ... rule?
 - bipartite graphs, cactus graphs, block graphs, interval graphs, etc.
 - TS, TJ, TAR.
- Also, it is natural to ask questions about the length of the reconfiguration sequence (number of intermediate sets required to transform the source configuration to the target one).
 - The SLIDING TOKEN problem for trees was shown to be in P (Demaine et al. 2015), but the corresponding SHORTEST RECONFIGURATION problem is still open?
 - Known polynomial-time result:

Takeshi Yamada and Ryuhei Uehara. "Shortest Reconfiguration of Sliding Tokens on a Caterpillar". In: WALCOM 2016, Nepal, March 29-31, 2016 (To be appeared)

The connection decision problem v.s. reconfiguration v.s. shortest reconfiguration provides a different view of "complexity" inspired by games/puzzles.