
LA Symposium 2015 (Winter)

Sliding tokens on unicyclic graphs

Duc A. Hoang 1 Ryuhei Uehara 1

1Japan Advanced Institute of Science and Technology
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.

{hoanganhduc, uehara}@jaist.ac.jp

January 26–28, 2016

January 26–28, 2016 Sliding tokens on unicyclic graphs 1/9



The Reconfiguration Problem

○ Instance:
1 Collection of configurations.
2 Allowed transformation rule(s).

○ Question: For any two configurations A,B from the given
collection, can A be transformed to B using the given rule(s)?

A classic example is the so-called 15-puzzle.
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Jan van den Heuvel (2013). “The complexity of change”. In: Surveys in
Combinatorics 2013. Ed. by Simon R. Blackburn, Stefanie Gerke, and Mark Wildon.
Cambridge University Press, pp. 127–160
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Independent Set Reconfiguration (ISReconf)

○ Instance:
1 A graph G = (V,E).

2 Two independent sets I, J .
3 “Reconfiguration” rules: TS,

TJ, TAR.

○ Question: Can I be
transformed to J using one of
the given rules such that all
intermediate sets are
independent?

Figure: An independent set of a graph.
Independent vertices are marked with black
tokens.

1 TS: Slide tokens along
edges (sliding token).

2 TJ: A token “jumps”
from one vertex to
another.

3 TAR: Add or Remove
tokens.

Ib Ir

Figure: A Yes-instance under TS rule.
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Why study these problems?

(a) New insight of “complexity”
inspired by games/puzzles (Picture ©
Ryuhei Uehara @ ICALP 2015).

(b) CoRe 2015 (Sendai, Japan) -
Recent results + future directions of
combinatorial reconfiguration.

(c) Several PSAPCE-hardness results
were shown using reduction from
ISReconf.

(d) Recently, several problems related
to ISReconf have been extensively
studied.
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Sliding tokens on unicyclic graphs

(a) (Demaine et al. 2015) @ Theo.
Comp. Sci. [I am a co-author]

(b) (Fox-Epstein et al. 2015) @
ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that
cannot be slid at all) plays a key role.

○ For bipartite graphs, all (G, I)-rigid tokens can be determined in
linear time. (Fox-Epstein et al. 2015)

○ What about graphs containing odd cycles?

● Unicyclic graphs is a good start.
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Rigid tokens in unicyclic graphs

A unicyclic graph is a connected graph that contains exactly one cycle.

I1 I2 I3

Figure: I1
G
↭ I2 and I2

G
° I3.

We say that the token t placed at u ∈ I is (G, I)-rigid if for every

independent set I ′ such that I
G↭ I ′, u ∈ I ′. Denote by R(G, I) the set of

all (G, I)-rigid tokens.

v1

v2

v3 v4

v5

v6

v7

Figure: The token on v6 is (G, I)-rigid, while the tokens on v1 and v3 are not.
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Rigid tokens in unicyclic graphs

Lemma: Let I be an independent set of a unicyclic graph G
(∣V (G)∣ = n). Assume that the unique cycle C of G is of length k
(3 ≤ k ≤ ∣V (G)∣).

For any vertex u ∈ I, the token t on u is (G, I)-rigid if
and only if for every vertex v ∈ N(G,u), there exists a vertex
w ∈ (N(G,v) ∖ {u}) ∩ I satisfying one of the following conditions:

(i) The token tw on w is (G′, I ∩G′)-rigid, where G′ = G −N[G,u].
(ii) u ∉ V (C), {v,w} ⊆ V (C), the token tw on w is not

(G′, I ∩G′)-rigid, and for any independent set I ′ of G′ such that

I ∩G′
G′↭ I ′, the path P = C − v satisfies ∣P ∩ I ′∣ = ⌊k/2⌋.

u

v

w

C

G′

O(n2)
Our contribution

(happen only when k is

odd)
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C

O(n) for forests

(Demaine et al. 2015)
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Sliding tokens on unicyclic graphs

The following algorithm checks if I
G↭ J .

Step 1. Compute R(G, I) and R(G,J). If R(G, I) ≠ R(G,J), then
return no; otherwise go to Step 2.

Time: O(n2) × (∣I ∣ + ∣J ∣)⇒ O(n3)

Step 2. Delete the vertices in R(G, I) = R(G,J) and its neighbors
from G, and obtain a subgraph F consisting of q connected
components G1,G2, . . . ,Gq. If the number of tokens in I and
J are equal for every component, then return yes; otherwise,
return no.

Time: O(n)
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Open Questions

1 Standard question: What is the complexity of ISReconf for . . .
graph under . . . rule?

○ bipartite graphs, cactus graphs, block graphs, interval graphs, etc.
○ TS, TJ, TAR.

2 Also, it is natural to ask questions about the length of the
reconfiguration sequence (number of intermediate sets required to
transform the source configuration to the target one).

○ The sliding token problem for trees was shown to be in P
(Demaine et al. 2015), but the corresponding Shortest
Reconfiguration problem is still open?

○ Known polynomial-time result:
Takeshi Yamada and Ryuhei Uehara. “Shortest Reconfiguration of Sliding

Tokens on a Caterpillar”. In: WALCOM 2016, Nepal, March 29-31, 2016

(To be appeared)

3 The connection decision problem v.s. reconfiguration v.s. shortest
reconfiguration provides a different view of “complexity” inspired by
games/puzzles.
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