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Reconfiguration Problems

adjacency relation
[reconfiguration rule]

configurations reconfiguration graph

Reconfiguration Problems ≡ The study of reconfiguration graphs

Typical Properties
adjacency is polynomial testable
reconfiguration graph is huge

Reconfiguration v.s. Solution Space
configurations ≡ feasible solutions of a problem
reconfiguration rule ≡ small change that preserves the “feasibility”
of a solution
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Fundamental Questions

path?

Reachability

find shortest path?

Shortest Reconf.

path of length ≤ `?

Bounded Reconf.

connected?

Connectivity
diameter?

Diameter
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Example: 15-puzzle

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

path?

8 15 13 3

7

5 1 2 4

9 12 11 6

1410

8 15 13 3

10 7

5 1 2 4

9 12 11 6

14

16!
configurations

Configuration Placement of 15 tokens labeled
1, 2, . . . , 15, on a 4× 4 grid.

Adjacency
[Token Sliding]

A token can be slid to an adjacent
unoccupied vertex.

Problem Complexity Reference
Reach. P [Johnson and Story 1879]
Conn. P [Wilson 1974]
Shortest
Reconf.

NP-complete [Ratner and Warmuth 1990]

Bounded
Reconf.

NP-complete [Goldreich 2011]

Diam. P [Kornhauser et al. 1984]

Generalization
[v.d. Heuvel, CoRe’17]
◦ (n2 − 1)-puzzle
◦ Sliding-Block
◦ Pebble Motion
◦ Robot Motion
◦ and so on
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Motivation

Theory Understand the solution space of a problem.
Application Model real-world situations involving movement and change.

Games & Puzzles.

Frequency Re-Assignment. Robot Motion.

R

R ObstacleRobot
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Reconfiguration Problems
An Incomplete History [Nishimura, CanaDAM’17]

Before 2011 Lots of work not called reconfiguration
2011 Reconfiguration framework [Ito et al. 2011]

◦ Study Reachability questions
◦ Several classic NP-complete problems have PSPACE-complete
reconfiguration variants
◦ Several problems in P whose reconfiguration variants are also
in P

Since 2011 Lots of work called reconfiguration (and also lots of work not
called reconfiguration)

Surveys on Reconfiguration:
Jan van den Heuvel (2013). “The complexity of change”. In: Surveys in Combinatorics
2013. Ed. by Simon R. Blackburn et al. London Mathematical Society Lecture Note
Series. Cambridge University Press, pp. 127–160. doi: 10.1017/CBO9781139506748.
005
Naomi Nishimura (2018). “Introduction to Reconfiguration”. In: Algorithms 11.4.
doi: 10.3390/a11040052
Reconfiguration Web Portal: http://www.ecei.tohoku.ac.jp/alg/core/
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Reconfigurability of Independent Set

path?

Sliding Token [Hearn and Demaine 2005]
Configuration Independent set (viewed as a set of tokens) of a graph
Adjacency A token can be slid to an adjacent unoccupied vertex
[Token Sliding]
Problem Reachability
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Reconfigurability of Independent Set

path?

Token Jumping [Kamiński et al. 2012]
Configuration Independent set (viewed as a set of tokens) of a graph
Adjacency A token can be moved to an unoccupied vertex
[Token Jumping]
Problem Reachability

Multiple Token Jump [de Berg et al. 2016]
Configuration Independent set (viewed as a set of tokens) of a graph
Adjacency p tokens can be moved simultaneously to unoccupied vertices
Problem Find smallest p such that any two independent sets of equal size

are connected by a path in the reconfiguration graph
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Reconfigurability of Independent Set

path?

Token Addition and Removal [Ito et al. 2011]
Configuration Independent set (viewed as a set of tokens) of a

graph
Adjacency A token can be added or removed
[Token Addition and Removal] (] remaining tokens ≥ k)
Problem Reachability
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Reachability problems for Independent Set

AdjacencyGraph TS TAR TJ Complexity Reference

planar ∩ maximum degree 3 © © © PSPACE-complete [Hearn and Demaine 2005]
general

© © © PSPACE-complete

line

⇐ Matching Reconf. © © P [Ito et al. 2011]

perfect

© © © PSPACE-complete

even-hole-free

© © P

cograph

© P
[Kamiński et al. 2012]

cograph

© © P [Bonsma 2014]

bounded bandwidth

© © © PSPACE-complete [Wrochna 2014]

claw-free (⊃ line)

© © © P [Bonsma et al. 2014]

tree (⊂ even-hole-free)

© © © P [Demaine et al. 2014]

bipartite permutation

©

bipartite distance-hereditary

© P [Fox-Epstein et al. 2015]

planar ∩ maximum degree 3 ∩
bounded bandwidth

© © © PSPACE-complete [van der Zanden 2015]

cactus

© © P [Mouawad et al. 2014]

cactus

© P [Hoang and Uehara 2016]

interval (⊂ even-hole-free)

© © © P [Bonamy and Bousquet 2017]
© PSPACE-complete

bipartite

© © NP-complete [Lokshtanov and Mouawad 2018]

* Main Parts of Our Results

For other problems, see [Nishimura 2018, Section 4]
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Our Results for Sliding Token

Graph Reachability Diameter Reference
ISAAC 2014trees O(n) O(n2) Theor. Comp. Sci. 600, 132–142

cactus graphs O(n2) O(n2) ISAAC 2016
* Here, n is the number of vertices of the corresponding graph.

Main Results Consequences
Hereditary
classes

For an instance (G, I, J) of Sliding Token, where G is one of the
graphs above and I, J are independent sets of G.

1 One can identify all structures that forbid the existence of a path
between I and J in the corresponding reconfiguration graph in
polynomial time.

2 Without these forbidden structures, such a path exists iff |I| = |J |.

(G, I) Structure S(G, I)

(G, J) Structure S(G, J)
same?

(G′, I ′, J ′)yes
|V (G′)| < |V (G)|

and no S in G′

return nono
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What next?

In the rest of this section, we shall present:
1 How to apply the general framework for trees.
2 High-level idea regarding how to identify forbidden structures for

cactus graphs.
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What are trees, cactus graphs?
A block of a graph is either an edge or a maximal 2-connected subgraph.
A graph can be decomposed into a collection of blocks, where any two
blocks share at most one common vertex. Intuitively, one can view

a tree as a graph whose block is an edge;
a cactus graph as a graph whose block is either an edge or a cycle.

(a) A tree (b) A cactus graph

Figure: An example of (a) a tree, (b) and a cactus graph. Two blocks sharing the
same vertex are colored by distinct colors.
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Sliding Token for trees
For an instance (T, I, J) of Sliding Token, where T is a tree and I, J
are independent sets of T .

Forbidden Structure: Rigid Tokens
Intuitively, a token t placed on vertex u ∈ I is (T, I)-rigid if it can-
not be moved at all. If t is not (T, I)-rigid, we say that it is (T, I)-
movable.

(T, I)-movable

(T, I)-rigid (T, I)-rigid

(T, I)-movable

Lemma: One can find the set R(T, I) of all (T, I)-rigid tokens in
O(n) time, where n = |V (T )|.

Proof Sketch. Among (T, I)-movable tokens, there must be a token that can
immediately be moved to one of its neighbors. The removal of such a token does
not change the rigidity of other tokens.
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Sliding Token for trees
Lemma: If R(T, I) 6= R(T, J) then (T, I, J) is a no-instance.

Lemma: If R(T, I) = R(T, J) = ∅ then (T, I, J) is a yes-instance
iff |I| = |J |.

Proof Sketch. Construct an intermediate independent set I∗.
Pick a safe vertex v, i.e., a vertex of degree-1 whose unique neighbor u
has at most one neighbor of degree ≥ 2, and add v to I∗.
Remove v, u, and the resulting isolated vertices. Repeat the process.
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Sliding Token for trees

Input: (T, I, J).
Output: yes if there is a path between I, J in the corresponding recon-

figuration graph; and no otherwise.

Step 1: If R(T, I) 6= R(T, J), return no. Otherwise, go to Step 2.
Step 2: Let F be the forest obtained by removing all vertices in
NT [R(T, I)] = NT [R(T, J)]. If |I ∩ V (F ′)| = |J ∩ V (F ′)| for every
component (tree) F ′ of F then return yes. Otherwise, return no.

Running Time: O(n), where n = |V (T )|.
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Generalization of rigid tokens
The concept of rigid tokens can be generalized.

u

(G, I)-rigid token (G, I,W )-confined token
cannot be moved “out of” G[W ]cannot be moved “out of” G[{u}]

W

u

exampleexample
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Generalization: trees ⇒ cactus graphs
For an instance (G, I, J) of Sliding Token, where G is a cactus graph
and I, J are independent sets of G.

Forbidden Structure

Rigid Tokens similar to trees

Confined Cycles new structure

Intuitively, an induced cycle C of G is (G, I)-confined if I ∩ V (C)
forms a maximum independent set of C (of size b|V (C)|/2c) and all
tokens in I ∩ V (C) are (G, I, V (C))-confined.

(G, I)-confined

not (G, I)-confined

(G, I)-confined

(G, I)-rigid
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Generalization: trees ⇒ cactus graphs

Lemma: One can respectively find the sets R(G, I) and C(G, I)
of all (G, I)-rigid tokens and (G, I)-confined cycles in O(n2) time,
where n = |V (G)|.

Lemma: If either R(G, I) 6= R(G, J) or C(G, I) 6= C(G, J) then
(G, I, J) is a no-instance.

Lemma: If R(G, I) = R(G, J) = ∅ and C(G, I) = C(G, J) = ∅
then (G, I, J) is a yes-instance iff |I| = |J |.

May 07, 2018 Hoang Anh Duc (JAIST) 21/30



Outline

1 Background and Motivation
Reconfiguration Problems
Reconfigurability of Independent Set

2 Our Results

3 Future Works

4 Publications

May 07, 2018 Hoang Anh Duc (JAIST) 22/30



Future Works: Other graph classes

It is well-known that
Theorem ([van der Zanden 2015]): There exists a constant c
such that Independent Set Reconfiguration (under TS, TJ,
or TAR) is PSPACE-complete even for planar graphs of maximum
degree 3 and of bandwidth/treewidth/pathwidth/cliquewidth at most
c.

An interesting open question is whether there exists efficient algorithms for
solving the problem when the input graph is of small
bandwidth/treewidth/pathwidth/cliquewidth. Interesting target graphs
are:

1 Series-parallel graphs (≡ graphs of treewidth ≤ 2). Cactus graphs is
one of its subclasses.

2 Distance-hereditary graphs (whose cliquewidth ≤ 3).
3 Bandwidth-2 graphs (≡ graphs of bandwidth ≤ 2).
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Future Works: Bandwidth-2 graphs
A graph G = (V, E) is a bandwidth-2 (bw2) graph if there exists a
one-to-one function f : V → {1, 2, . . . , |V |} (called a bw2 layout of G)
such that its bandwidth bw(f) = maxuv∈E |f(u)− f(v)| is at most 2. For
a layout f , we use the notation f = (u1, u2, . . . , un), where n = |V | and
ui = f−1(ui).

Conjecture: Sliding Token for bandwidth-2 graphs is in P.

Lemma ([Makedon et al. 1993]): Let G = (V, E), |V | = n ≥ 3,
be a bw2 biconnected graph. Let f = (u1, u2, . . . , un) be a bw2
layout of G. Then, the pairs (u1, u2), (ui, ui+2), 1 ≤ i ≤ n− 2, and
(un−1, un) are all edges of G.

u1 u2 u3 u4 u5 u6 u7

cycles ⇒ bw2 biconnected graphs
cactus graphs ⇒ bw2 graphs
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Future Works: Shortest Reconf. for Trees

In this thesis, we’ve claimed that
Theorem: Independent Set Reconfiguration for trees (un-
der TS, TJ, TAR) is in P.

Moreover,
Theorem ([Kamiński et al. 2012]): Shortest Reconfigura-
tion for Independent Set Reconfiguration under TJ and
TAR rules are in P for even-hole-free graphs (⊃ trees).

Interestingly, the following question remains open for trees.
Shortest Sliding Token [Yamada and Uehara 2016]
Configuration Independent set (viewed as a set of tokens) of a graph
Adjacency
[Token Sliding]

A token can be slid to an adjacent unoccupied vertex

Problem Shortest Reconfiguration
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Future Works: Shortest Reconf. for Trees

Theorem ([Yamada and Uehara 2016]): Shortest Sliding
Token for caterpillars (⊂ trees) is in P.

Theorem (in discussion with Amanj Khorramian and Ryuhei
Uehara [unpublished]): Shortest Sliding Token for spiders
(i.e., trees having exactly one vertex of degree ≥ 3) is in P.
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Future Works: Shortest Reconf. for Trees
Conjecture: Shortest Sliding Token for trees is in P.

Key Structure: Auxiliary Graph A(T, I, J)

For an instance (T, I, J), we define the corresponding (directed)
auxiliary graph A(T, I, J) such that V (A(T, I, J)) = V (T ) and

E(A(T, I, J)) =
{

(x, y) : xy ∈ E(T ) and
∣∣∣I ∩ V (T x

y )
∣∣∣ ≤∣∣∣J ∩ V (T x

y )
∣∣∣}, where T x

y is the subtree of T induced by y and its

descendants when regarding x as the root of T .

I

J

(a) An instance (T, I, J)

(b) The auxiliary graph A(T, I, J)
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Future Works: Structure of Reconfiguration Graphs

In general, one may study the structure of the corresponding
reconfiguration graph of Independent Set Reconfiguration (under
TS, TJ, TAR). Some interesting problems are:

1 Which graph can be a reconfiguration graph of Independent Set
Reconfiguration?

I Under TJ/TAR: First studied in [Fatehi et al. 2017].
I Under TS: Open.

2 Whether the reconfiguration graph and its corresponding original
graph belong to the same graph classes?

3 and so on.
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