第157回アルゴリズム研究会

Sliding tokens on unicyclic graphs

Duc A. Hoang ¹ Ryuhei Uehara ¹

¹ Japan Advanced Institute of Science and Technology Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan. {hoanganhduc, uehara}@jaist.ac.jp

March 06, 2016

The Reconfiguration Problem

- Instance:
 - Collection of configurations.
 - 2 Allowed transformation rule(s).
- QUESTION: For any two configurations A, B from the given collection, can A be transformed to B using the given rule(s)?

A classic example is the so-called 15-puzzle.

8	15	13	3
10		14	7
5	1	2	4
9	12	11	6

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Jan van den Heuvel (2013). "The complexity of change". In: *Surveys in Combinatorics 2013*. Ed. by Simon R. Blackburn, Stefanie Gerke, and Mark Wildon. Cambridge University Press, pp. 127–160

Independent Set Reconfiguration (ISRECONF)

- Instance:
 - **1** A graph G = (V, E).

Independent Set Reconfiguration (ISReconf)

- Instance:

 - 2 Two independent sets I, J.

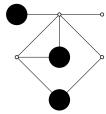


Figure: An independent set of a graph. Independent vertices are marked with black tokens.

Independent Set Reconfiguration (ISReconf)

- Instance:

 - 2 Two independent sets I, J.
 - "Reconfiguration" rules: TS, TJ, TAR.

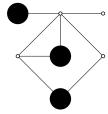


Figure: An independent set of a graph. Independent vertices are marked with black tokens.

- TS: Slide tokens along edges (SLIDING TOKEN).
- TJ: A token "jumps" from one vertex to another.
- TAR: Add or Remove tokens.

Independent Set Reconfiguration (ISRECONF)

- Instance:

 - 2 Two independent sets I, J.
 - "Reconfiguration" rules: TS, TJ, TAR.
- QUESTION: Can I be transformed to J using one of the given rules such that all intermediate sets are independent?

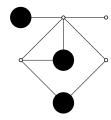


Figure: An independent set of a graph. Independent vertices are marked with black tokens.

- TS: Slide tokens along edges (SLIDING TOKEN).
- 2 TJ: A token "jumps" from one vertex to another.
- TAR: Add or Remove tokens.

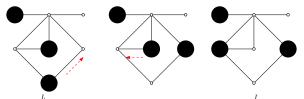
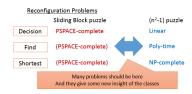
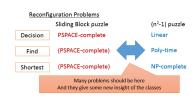


Figure: A YES-instance under TS rule.



(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).



(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

(b) CoRe 2015 (Sendai, Japan) - Recent results + future directions of combinatorial reconfiguration.

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

(b) CoRe 2015 (Sendai, Japan) - Recent results + future directions of combinatorial reconfiguration.

(c) Several PSAPCE-hardness results were shown using reduction from ISRECONE.

(a) New insight of "complexity" inspired by games/puzzles (Picture © Ryuhei Uehara @ ICALP 2015).

(b) CoRe 2015 (Sendai, Japan) - Recent results + future directions of combinatorial reconfiguration.

Rec	onfiguration of Cliques in a	Gra	ph		
Takehiro Ito 1, Hirotaka Ouo 2, and Yota Otachi 1189		Vertex Cover Reconfiguration			
		alversi		and	Beyond
Shortest R	econfiguration of Sliding Tokens on a Caterpillar		Amer E.	Monawad ^{1*} , Naomi l	Nishimura ^{1*} , and Venkatesh
	Takeshi Yamada [†] and Ryuhei Uehara [‡]			David R. Cheriton School of Computer Science University of Waterloo, Ontario, Camada. (aabdunou, ninki)@univerloo.ca 7 The Institute of Mathematical Sciences	
	Reconfiguration of Vertex	c Co	vers i	Chr	unai, hudia. himec.rem.in
Abstract. a graph on vortex in I	a guph su unter in I Takehiro Ito ^(SE) , Hjroyuki Noolia, and Xiao Zhou unter in I				ATTON (VCR) problem, given gr I T of G of size at most k, we det arter additions or servorals and
there exist so that rec	Graduate School of Information Sciences, Tohoku University, Abba-yama 6-6-03, Sendal 1904-8579, Japan (takehir, zibo) @seci. tohoku ac.jp, nooka.hiroyuki@sc.scsi.tohoku.ac.jp				
	Abstruct. Suppose that we are given to graph G, together with an integer thresh				

(c) Several PSAPCE-hardness results were shown using reduction from ISRECONE.

(d) Recently, several problems related to ISRECONF have been extensively studied.

Linear-time algorithm for sliding tokens on trees

Erik D. Demaine ^a, Martin L. Demaine ^a, Eli Fox-Epstein ^b, Duc A. Hoang ^{c,*}, Takehiro Ito ^{d,e}, Hirotaka Ono ^f, Yota Otachi ^c, Ryuhei Uehara ^c, Takeshi Yamada ^c

A R T I C L E I N F O

Article hisory:
Received 3 March 2015
Received in revised form 2 July 2015
Arranged 16 July 2015

ABSTRACT

Suppose that we are given two independent sets I_b and I_T of a graph : and imagine that a token is placed on each vertex in I_b . Then, the SLIL is to determine whether there exists a sequence of independent set:

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

^a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA
^b Department of Computer Science, Brown University, 115 Waterman Street, Providence, M 02912-1910, USA

^c School of Information Science, Japan Advanced Institute of Science and Technology, Aschida: 1-1, Nomi, Ishikowa 923-1292, Japan ^d Graduste School of Information Sciences, Tohoku University, Aoba-yuma 6-6-05, Sendai, 980-8579, Japan

^{*} CREST, JST, 4-1-8 Honcho, Kawaguchi, Saisama, 332-0012, Japan

Featuley of Economics, Kyushu University, Hakozaki 6-19-1, Higushi-ku, Fukuoka, 812-8581, Japan

Linear-time algorithm for sliding tokens on trees

Erik D. Demaine a, Martin L. Demaine a, Eli Fox-Epstein b, Duc A. Hoang c, Takehiro Ito d,e, Hirotaka Onof, Yota Otachic, Ryuhei Ueharac, Takeshi Ya

ABSTRACT

- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI 02912-1910, USA School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikowa 923-1292, Japa ⁴ Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan
- a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Sc, Cambridge, MA 02139, USA * CREST, IST, 4-1-8 Hondro, Kowastuchi, Saisema, 332-0012, Jepon Faculty of Economics, Kyushu University, Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan

ARTICLE INFO Article history. Received in revised form 2 luly 2015

Received 3 March 2015

Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . TI is to determine whether there exists a sequence of indep

(a) (Demaine et al. 2015) @ Theo.

Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein^{1 (ES)}, Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

- Brown University, Providence, USA ef@cs.brown.edu
- ² JAIST, Nomi, Japan (hoanganhduc.otachi.uehara)@iaist.ac.ip

Abstract. Sliding Token is a natural reconfiguration problem in which vertices of independent sets are iteratively replaced by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKEN is polynomial-time decidable on bipartite graphs. Along the way, we give efficient algorithms for Sliding Token on bipartite permutation and bipartite distance-hereditary graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

Linear-time algorithm for sliding tokens on trees

Erik D. Demaine a, Martin L. Demaine a, Eli Fox-Epstein b, Duc A. Hoang c, Takehiro Ito de, Hirotaka Onof, Yota Otachic, Ryuhei Ueharac, Takeshi Ya

- a MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Sc, Cambridge, MA 02139, USA Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI 02912-1910, USA School of Information Science, Japan Advanced Institute of Science and Technology, Aschida: 1-1, Nomi, Ishikawa 923-1292, Japa ⁴ Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan
- * CREST, IST, 4-1-8 Hondro, Kowastuchi, Saisema, 332-0012, Jepon Faculty of Economics, Kyushu University, Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan

ARTICLE INFO Article history. Received 3 March 2015 Received in revised form 2 luly 2015

ABSTRACT

Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . TI is to determine whether there exists a sequence of indep

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein^{1 (ES)}, Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

- Brown University, Providence, USA ef@cs.brown.edu
- 2 JAIST, Nomi, Japan (hoanganhduc.otachi.uehara)@iaist.ac.ip

Abstract. Sliding Token is a natural reconfiguration problem in which vertices of independent sets are iteratively replaced by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKEN is polynomial-time decidable on bipartite graphs. Along the way, we give efficient algorithms for Sliding Token on bipartite permutation and bipartite distance-hereditary graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

Linear-time algorithm for sliding tokens on trees

Erik D. Demaine ^a, Martin L. Demaine ^a, Eli Fox-Epstein ^b, Duc A. Hoang ^c, Takehiro Ito ^d,e, Hirotaka Ono ^f, Yota Otachi ^c, Ryuhei Uehara ^c, Takeshi Ya

- ^a MT Computer Science and Artificial Intelligence Loboxecoy, 22 Vassur S., Cambridge, Mo (27) 30, USA
 Department of Conquare Science, Forwant Interesty, 1719 Waterment Street, Providence, 18 (20) 22-170 IUSA
 School of Informacion Science, Japan Advanced Interium of Science and Technology, Asshidei 1-1, Nomi Jahikawa 923-1292, Japa
 de Caedauce School of Informacion Science, Toholou Informicy, Acab-yuma 6-6-05, Sendei, 1808-18578, Japan
- * CREST, JST, 4-1-8 Honcho, Kawaguchi, Saisama, 332-0012, Jepan
 Faculty of Economics, Krushu University, Hakazaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan

A R T I C L E I N F O

Article hissory:
Received 3 March 2015
Received in revised form 2 July 2015

ABSTRACT

Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . This to determine whether there exists a sequence of independent of the sequence o

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein¹ (¹⁸³), Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

- Brown University, Providence, USA ef@cs.brown.edu
 ² JAIST, Nomi, Japan
- ² JAIST, Nomi, Japan {hoanganhduc,otachi,uehara}@jaist.ac.jp

Abstract. SLIDING TOKEN is a natural reconfiguration problem in which vertices of independent sets are iteratively replaced by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKEN is polynomial-time decidable on bipartite graphs. Along the way, we give efficient algorithms for SLIDING TOKEN on bipartite permutation and bipartite distance-hereditary graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

 \circ For bipartite graphs, all (G, I)-rigid tokens can be determined in linear time. (Fox-Epstein et al. 2015)

Linear-time algorithm for sliding tokens on trees

Erik D. Demaine ^a, Martin L. Demaine ^a, Eli Fox-Epstein ^b, Duc A. Hoang ^c. Takehiro Ito ^d, e, Hirotaka Ono ^f, Yota Otachi ^c, Ryuhei Uehara ^c, Takeshi Ya

- ^a MT Computer Science and Artificial Intelligence Loboxecoy, 22 Vassur S., Cambridge, Mo (27) 30, USA
 Department of Conquare Science, Forwant Interesty, 1719 Waterment Street, Providence, 18 (20) 22-170 IUSA
 School of Informacion Science, Japan Advanced Interium of Science and Technology, Asshidei 1-1, Nomi Jahikawa 923-1292, Japa
 de Caedauce School of Informacion Science, Toholou Informicy, Acab-yuma 6-6-05, Sendei, 1808-18578, Japan
- * CREST, JST, 4-1-8 Honcho, Kawaguchi, Saisama, 332-0012, Jepan
 Faculty of Economics, Krushu University, Hakazaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan

A R T I C L E I N F O

Arcicle hissory:
Received 3 March 2015
Received in revised form 2 July 2015

ABSTRACT

Suppose that we are given two independent sets I_b and I_r and imagine that a token is placed on each vertex in I_b . To is to determine whether there exists a sequence of independent of the set of the sequence of th

(a) (Demaine et al. 2015) @ Theo. Comp. Sci. [I am a co-author]

Sliding Token on Bipartite Permutation Graphs

Eli Fox-Epstein¹ (¹⁸³), Duc A. Hoang², Yota Otachi², and Ryuhei Uehara²

- Brown University, Providence, USA ef@cs.brown.edu
 JAIST, Nomi, Japan
- (hoanganhduc,otachi,ushara)@jaist.ac.jp

Abstract. SLIDING TOKEN is a natural reconfiguration problem in which vertices of independent sets are iteratively replaced by neighbors. We develop techniques that may be useful in answering the conjecture that SLIDING TOKEN'S in polynomial-time decidable on bipartite graphs. Along the way, we give efficient algorithms for SLIDING TOKEN on bipartite permutation and bipartite distance-hereditary graphs.

(b) (Fox-Epstein et al. 2015) @ ISAAC 2015. [I am a co-author]

In both of two papers, the characterization of rigid tokens (tokens that cannot be slid at all) plays a key role.

- \circ For bipartite graphs, all (G, I)-rigid tokens can be determined in linear time. (Fox-Epstein et al. 2015)
- What about graphs containing odd cycles?
 - Unicyclic graphs is a good start.

A unicyclic graph is a connected graph that contains exactly one cycle.

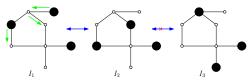


Figure: $I_1 \overset{G}{\Leftrightarrow} I_2$ and $I_2 \overset{G}{\Leftrightarrow} I_3$.

We say that the token t placed at $u \in I$ is (G,I)-rigid if for every independent set I' such that $I \overset{G}{\Leftrightarrow} I'$, $u \in I'$. Denote by $\mathsf{R}(G,I)$ the set of all (G,I)-rigid tokens.

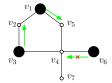


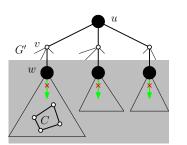
Figure: The token on v_6 is (G, I)-rigid, while the tokens on v_1 and v_3 are not.

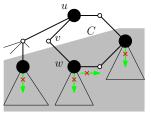
Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$.

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token t on u is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $v \in (N(G, v) \setminus \{u\}) \cap I$ satisfying one of the following conditions:

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token t on u is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $v \in N(G, v) \setminus \{u\} \cap I$ satisfying one of the following conditions:

- (i) The token t_w on w is $(G', I \cap G')$ -rigid, where G' = G N[G, u].
- (ii) $u \notin V(C)$, $\{v, w\} \subseteq V(C)$, the token t_w on w is not $(G', I \cap G')$ -rigid, and for any independent set I' of G' such that $I \cap G' \overset{G'}{\Leftrightarrow} I'$, the path P = C v satisfies $|P \cap I'| = \lfloor k/2 \rfloor$.



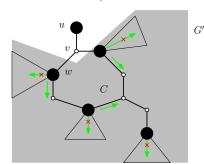


O(n) for forests

(Demaine et al. 2015

Lemma: Let I be an independent set of a unicyclic graph G (|V(G)| = n). Assume that the unique cycle C of G is of length k $(3 \le k \le |V(G)|)$. For any vertex $u \in I$, the token t on u is (G, I)-rigid if and only if for every vertex $v \in N(G, u)$, there exists a vertex $v \in (N(G, v) \setminus \{u\}) \cap I$ satisfying one of the following conditions:

- (i) The token t_w on w is $(G', I \cap G')$ -rigid, where G' = G N[G, u].
- (ii) $u \notin V(C)$, $\{v,w\} \subseteq V(C)$, the token t_w on w is not $(G',I\cap G')$ -rigid, and for any independent set I' of G' such that $I\cap G' \overset{G'}{\leadsto} I'$, the path P=C-v satisfies $|P\cap I'|=\lfloor k/2\rfloor$.



 $O(n^2)$

Our contribution (happen only when k is odd)

The following algorithm checks if $I \stackrel{G}{\Leftrightarrow} J$.

- **Step 1.** Compute R(G,I) and R(G,J). If $R(G,I) \neq R(G,J)$, then return NO; otherwise go to **Step 2**.
- **Step 2.** Delete the vertices in R(G,I) = R(G,J) and its neighbors from G, and obtain a subgraph $\mathcal F$ consisting of q connected components G_1,G_2,\ldots,G_q . If the number of tokens in I and J are equal for every component, then return YES; otherwise, return NO.

The following algorithm checks if $I \stackrel{G}{\Leftrightarrow} J$.

Step 1. Compute R(G,I) and R(G,J). If $R(G,I) \neq R(G,J)$, then return NO; otherwise go to **Step 2**.

Time: $O(n^2) \times (|I| + |J|) \Rightarrow O(n^3)$

Step 2. Delete the vertices in R(G,I) = R(G,J) and its neighbors from G, and obtain a subgraph $\mathcal F$ consisting of q connected components G_1,G_2,\ldots,G_q . If the number of tokens in I and J are equal for every component, then return YES; otherwise, return NO.

Time: O(n)

Open Questions

- Standard question: What is the complexity of ISRECONF for ... graph under ... rule?
 - o bipartite graphs, cactus graphs, block graphs, interval graphs, etc.
 - o TS, TJ, TAR.
- Also, it is natural to ask questions about the length of the reconfiguration sequence (number of intermediate sets required to transform the source configuration to the target one).
 - The SLIDING TOKEN problem for trees was shown to be in P (Demaine et al. 2015), but the corresponding SHORTEST RECONFIGURATION problem is still open?
 - Known polynomial-time result:
 Takeshi Yamada and Ryuhei Uehara. "Shortest Reconfiguration of Sliding Tokens on a Caterpillar". In: WALCOM 2016, Nepal, March 29-31, 2016 (To be appeared)
- The connection decision problem v.s. reconfiguration v.s. shortest reconfiguration provides a different view of "complexity" inspired by games/puzzles.