
Shortest Reconfiguration Sequence for Sliding Tokens on
Spiders

Duc A. Hoang1 Amanj Khorramian2 Ryuhei Uehara1

1School of Information Science, JAIST, Japan
{hoanganhduc, uehara}@jaist.ac.jp
2University of Kurdistan, Sanandaj, Iran

khorramian@gmail.com

Suppose that two independent sets I and J of a graph with |I| = |J | are given, and a token
is placed on each vertex in I. The Sliding Token problem is to determine whether there
exists a sequence of independent sets which transforms I into J so that each independent set
in the sequence results from the previous one by sliding exactly one token along an edge in
the graph. It is one of the representative reconfiguration problems that attract the attention
from the viewpoint of theoretical computer science. For a yes-instance of a reconfiguration
problem, finding a shortest reconfiguration sequence has a different aspect. In general, even
if it is polynomial time solvable to decide whether two instances are reconfigured with each
other, it can be NP-hard to find a shortest sequence between them. In this paper, we show
that the problem for finding a shortest sequence between two independent sets is polynomial
time solvable for spiders (i.e., trees having exactly one vertex of degree at least three).

1 Introduction

Recently, the reconfiguration problems attracted the attention from the viewpoint of theoretical
computer science. The problem arises when we like to find a step-by-step transformation
between two feasible solutions of a problem such that all intermediate results are also feasible
and each step abides by a fixed reconfiguration rule, that is, an adjacency relation defined
on feasible solutions of the original problem. The reconfiguration problems have been studied
extensively for several well-known problems, including Independent Set, Satisfiability,
Set Cover, Clique, Matching, and so on. (See the surveys [4, 7] for more details.) In
general, the reconfiguration problems tend to be PSPACE-complete, and some polynomial time
algorithms are shown in restricted cases. Finding a shortest sequence in the context of the
reconfiguration problems is a new trend in theoretical computer science because it has a great
potential to characterize the class NP from a different viewpoint from the classic ones.

One of the important NP-complete problems is the Independent Set problem. For this
notion, the natural reconfiguration problem is called the Sliding Token problem introduced
by Hearn and Demaine [3]. Suppose that we are given two independent sets I and J of a graph
G = (V,E) such that |I| = |J |, and imagine that a token (coin) is placed on each vertex in I.
For convenience, sometimes we identify the token with the vertex it is placed on and simply say
“a token in an independent set.” Then, the Sliding Token problem is to determine whether
there exists a sequence S = 〈I1, I2, . . . , I`〉 of independent sets of G such that

(a) I1 = I, I` = J , and |Ii| = |I| = |J | for all i, 1 ≤ i ≤ `; and

(b) for each i, 2 ≤ i ≤ `, there is an edge xy in G such that Ii−1 \Ii = {x} and Ii \Ii−1 = {y}.

That is, Ii can be obtained from Ii−1 by sliding exactly one token on a vertex x ∈ Ii−1 to
its adjacent vertex y ∈ Ii along an edge xy ∈ E(G). Such a sequence S, if exists, is called a
TS-sequence in G between I and J .

For the Sliding Token problem, some polynomial time algorithms have been provided as
follows: Linear time algorithms have been shown for cographs (also known as P4-free graphs)
and trees. Polynomial time algorithms are shown for bipartite permutation graphs, claw-free
graphs, and cacti. On the other hand, PSPACE-completeness is also shown for graphs of
bounded tree-width, planar graphs, and planar graphs with bounded bandwidth. (See [5] for
more details.)

In this context, we aim to find a shortest sequence of the Sliding Token problem, which is
called the Shortest Sliding Token problem, for these graph classes. There are two variants
of this problem. One is the decision variant, that is, another integer ` is also given as a part
of input, and we have to decide whether there exists a shortest sequence between I and J of
length at most `. The other one (non-decision variant) asks us to output all independent sets
of the shortest sequence itself. The length ` is not necessarily polynomial in |V (G)| in general.
When ` is not polynomial, we may have that the decision variant is in P, while the non-decision
one is not in P since it takes non polynomial time to the output sequence. We also note that
even when G is a perfect graph and ` is polynomial in |V (G)|, the decision variant of Shortest
Sliding Token is NP-complete (see [6, Theorem 5]).

From this viewpoint, the length of a token sliding is a key feature of the Shortest Sliding
Token problem. If the length is not in polynomial in total, there exists at least one token
that slides non polynomial times. That is, the token visits the same vertex many times in its
slides. That is, some tokens make detours in the sequence (the notion of detour is important
and precisely defined later). In order to concentrate on the detours of tokens, it is a natural
constraint that the graph itself has no cycle, that is, the graph is a tree. The decision variant
of the Sliding Token problem on a tree can be solved in linear time [1]. Polynomial-time
algorithms for the Shortest Sliding Token problem were first investigated in [10]. Among
them, they give a polynomial time algorithm for caterpillars, which form quite simple trees,
and this is the first graph class that required detours to solve the Shortest Sliding Token
problem. A caterpillar is a tree that consists of a “backbone” called a spine with many pendants,
or leaves attached to the spine. Each pendant can be used to escape a token, however, the
other tokens cannot pass through it. Therefore, the ordering of tokens on the spine is fixed. In
this paper, we consider the Shortest Sliding Token problem on a spider, which is a tree
with one central vertex of degree more than 2. On this graph, we can use each “leg” as a stack
and exchange tokens using these stacks. Therefore, we have many ways to handle the tokens,
and hence we need more analyses to find a shortest sequence. In this paper, we give O(n2) time
algorithms for the Shortest Sliding Token problem on a spider, where n is the number of
vertices. The algorithm is constructive, and the sequence itself can be output in O(n2) time.
As mentioned in [10], the length of a sequence can be Ω(n2), hence our algorithm is optimal
for the length of the sequence. Due to space restriction, several statements are omitted. For
more information, the readers are referred to the full version of this extended abstract [5].

Note Recently, it is announced that the Shortest Sliding Token problem on a tree
can be solved in polynomial time by Sugimori [9]. His algorithm is based on a dynamic
programming on a tree [8]: though it runs in polynomial time, it seems to have much larger
degree comparing to our case-analysis based algorithm.

2 Preliminaries

For common use graph theoretic definitions, we refer the readers to the textbook [2]. Through-
out this paper, we denote by V (G) and E(G) the vertex-set and edge-set of a graph G, respec-
tively. We always use n for denoting |V (G)|. For a vertex x ∈ V (G), we denote by NG(x) the
set {y ∈ V (G) : xy ∈ E(G)} of neighbors of x, and by NG[x] the set NG(x) ∪ {x} of closed
neighbors of x. In a similar manner, for an induced subgraph H of G, the set NG[H] is defined
as
⋃

x∈V (H)NG[x]. The degree of x, denoted by degG(x), is the size of NG(x). For x, y ∈ V (G),
the distance distG(x, y) between x and y is simply the length (i.e., the number of edges) of a
shortest xy-path in G.

For a tree T , we denote by Pxy the (unique) shortest xy-path in T , and by T x
y the subtree

of T induced by y and its descendants when regarding T as the tree rooted at x. A spider
graph (or starlike tree) is indeed a tree having exactly one vertex (called its body) of degree at
least 3. For a spider G with body v and a vertex w ∈ NG(v), the path Gv

w is called a leg of G.
By definition, it is not hard to see that two different legs of G have no common vertex.

Let (G, I, J) be an instance of Shortest Sliding Token. A target assignment from I to J
is simply a bijective mapping f : I → J . A target assignment f is called proper if there exists a
TS-sequence in G between I and J that moves the token on w to f(w) for every w ∈ I. Given a
target assignment f : I → J from I to J , one can also define the target assignment f−1 : J → I
from J to I as follows: for every x ∈ J , f−1(x) = {y ∈ I : f(y) = x}. Let F be the set of all
target assignments from I to J . We define M∗(G, I, J) = minf∈F

∑
w∈I distG(w, f(w)).

Let S = 〈I1, I2, . . . , I`〉 be a TS-sequence between two independent sets I = I1 and J = I`
of a graph G. Indeed, one can describe S in term of token-slides as follows: S = 〈x1 →
y1, x2 → y2, . . . , x`−1 → y`−1〉, where xi and yi (i ∈ {1, 2, . . . , ` − 1}) satisfy xiyi ∈ E(G),
Ii \ Ii+1 = {xi}, and Ii+1 \ Ii = {yi}. The reverse of S (which reconfigures J to I), denoted by
rev(S), is defined by rev(S) = 〈I`, . . . , I2, I1〉. One can also describe rev(S) in term of token-
slides: rev(S) = 〈y`−1 → x`−1, . . . , y2 → x2, y1 → x1〉. For an edge e = xy ∈ E(G), we say that
S makes detour over e if both x→ y and y → x are members of S. The number of detours S
makes over e, denoted by DG(S, e), is defined to be twice the minimum between the number of
appearances of x → y and the number of appearances of y → x. The total number of detours
S makes in G, denoted by DG(S), is defined to be

∑
e∈E(G)DG(S, e). Let S be the set of all

TS-sequences in G between two independent sets I, J . We define D∗(G, I, J) = minS∈S DG(S).

3 Shortest Sliding Token for spiders

In this section, we show that Shortest Sliding Token for spiders can be solved in polynomial
time. For an independent set I of a graph G, the token on u ∈ I is (G, I)-rigid if for any I ′

with I
G
! I ′, u ∈ I ′. We note that rigid token plays an important role in designing a linear-

time algorithm for deciding whether there is a TS-sequence between two independent sets of
a tree [1]. As a spider is also a tree, for an instance (G, I, J) of Shortest Sliding Token

for spiders, we can assume without loss of generality that I
G
! J and there are no (G, I)-rigid

and (G, J)-rigid tokens.
The content of this sections is organized as follows. In Section 3.1, we prove some useful

observations for trees, which clearly also hold for spiders. Then, in Section 3.2, we claim that
given an instance (G, I, J) of Shortest Sliding Token for spiders, one can construct a target
assignment f : I → J that minimizes

∑
w∈I distG(w, f(w)). Finally, in Section 3.3, we show

how to use such a target assignment f for explicitly constructing a TS-sequence of shortest
length between I and J .

3.1 Observations for trees

Lemma 1. Let I, J be two independent sets of a tree T such that I
T
! J . Then, for every

TS-sequence S between I and J , len(S) ≥M∗(T, I, J) + D∗(T, I, J).

3.2 Target assignment

In this section, we claim that for an instance (G, I, J) of Shortest Sliding Token for spiders,
one can construct a target assignment f : I → J such that M∗(G, I, J) =

∑
w∈I distG(w, f(w))

in polynomial time.
For convenience, we always assume that the given spider G has body v and degG(v) legs

L1, . . . , LdegG(v). Moreover, we assume without loss of generality that these legs are labeled
such that |I ∩ V (Li)| − |J ∩ V (Li)| ≤ |I ∩ V (Lj)| − |J ∩ V (Lj)| for 1 ≤ i ≤ j ≤ degG(v);
otherwise, we simply re-label them. For each leg Li (i ∈ {1, 2, . . . ,degG(v)}), we define the
corresponding independent sets ILi and JLi as follows: IL1 = (I ∩ V (L1)) ∪ (I ∩ {v}); JL1 =
(J ∩V (L1))∪ (J ∩{v}); and for i ∈ {2, . . . , d}, we define ILi = I ∩V (Li) and JLi = J ∩V (Li).
In this way, we always have v ∈ IL1 (resp. v ∈ JL1) if v ∈ I (resp. v ∈ J).

Under the above assumptions, we claim that Algorithm 1 indeed constructs our desired
target assignment. More formally,

Algorithm 1 Find a target assignment between two independent sets I, J of a spider G such
that M∗(G, I, J) =

∑
w∈I distG(w, f(w)).

Input: Two independent sets I, J of a spider G with body v.
Output: A target assignment f : I → J such that M∗(G, I, J) =

∑
w∈I distG(w, f(w)).

1: for i = 1 to degG(v) do
2: while ILi 6= ∅ and JLi 6= ∅ do
3: Let x ∈ ILi be such that distG(x, v) = maxx′∈ILi

distG(x′, v).
4: Let y ∈ JLi be such that distG(y, v) = maxy′∈JLi

distG(y′, v).
5: f(x)← y; ILi ← ILi \ {x}; JLi ← JLi \ {y}.
6: end while
7: end for
8: while

⋃degG(v)
i=1 ILi 6= ∅ and

⋃degG(v)
i=1 JLi 6= ∅ do . From this point, for any leg L, either

IL = ∅ or JL = ∅.
9: Take a leg Li such that there exists x ∈ ILi satisfying distG(x, v) =

min
x′∈

⋃degG(v)
i=1 ILi

distG(x′, v).

10: Take a leg Lj such that there exists y ∈ JLj satisfying distG(y, v) =
max

y′∈
⋃degG(v)

i=1 JLi

distG(y′, v).

11: f(x)← y; ILi ← ILi \ {x}; JLj ← JLj \ {y}.
12: end while
13: return f .

Lemma 2. Let (G, I, J) be an instance of Shortest Sliding Token where I, J are inde-
pendent sets of a spider G with body v. Let f : I → J be a target assignment produced from
Algorithm 1. Then,

(i) Algorithm 1 constructs f in O(|I|) time; and

(ii) for an arbitrary target assignment g : I → J ,
∑

w∈I distG(w, g(w)) ≥
∑

w∈I distG(w, f(w)).
In other words, f satisfies M∗(G, I, J) =

∑
w∈I distG(w, f(w)).

Note that from Algorithm 1, one can naturally define a total ordering < on vertices of I as
follows: for x, y ∈ I, set x < y if x is assigned before y.

3.3 Construction of a shortest TS-sequence for spiders

Algorithm 2 Construct a total ordering ≺ of vertices in I.

Input: The natural ordering < on vertices of I derived from Algorithm 1.
Output: A total ordering ≺ of vertices in I.

1: while there exists w such that K(w,<) 6= ∅ do
2: Let w be the smallest element of I with respect to < such that K(w,<) 6= ∅.
3: Let L be the leg of G such that w ∈ IL.
4: for x ∈ K(w,<) do . Originally, x > w
5: Set x ≺ w.
6: end for
7: if

∣∣K2(w,<)
∣∣ ≥ 2 then . K2(w,<) in reverse order

8: for x, y ∈ K2(w,<) do
9: if x < y then

10: Set x � y.
11: end if
12: end for
13: end if
14: if min{

∣∣K1(w,<)
∣∣, ∣∣K2(w,<)

∣∣} ≥ 1 then
15: for x ∈ K1(w,<) and y ∈ K2(w,<) do . Originally, x > y
16: Set x ≺ y.
17: end for
18: end if
19: if min{

∣∣K1(w,<)
∣∣, ∣∣I1L \K1(w,<)

∣∣} ≥ 1 then
20: for x ∈ I1L \K1(w,<) and y ∈ K1(w,<) do . Originally, x < y
21: Set x ≺ y.
22: end for
23: end if
24: for x, y ∈ I whose ordering has not been defined in ≺ do
25: if x < y then
26: Set x ≺ y.
27: end if
28: end for
29: for x, y ∈ I do . Re-define < to use in the next iteration
30: if x ≺ y then
31: Set x < y.
32: end if
33: end for
34: end while
35: return The total ordering ≺ of vertices in I.

In this section, we describe a polynomial-time algorithm for solving Shortest Sliding
Token for spiders, provided that a target assignment f produced from Algorithm 1 is given.

Let (G, I, J) be an instance of Shortest Sliding Token for spiders. Assume that the
body v of the given spider G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} = 0. In this case, we claim
that one can construct a TS-sequence S in G of length M∗(G, I, J) between I and J . (Recall

that we assumed I
G
! J and no (G, I)-rigid and (G, J)-rigid tokens exist.)

We first define some useful notations. Let f : I → J be a target assignment produced
from Algorithm 1. For each leg L of G, we define I1L = {w ∈ IL : f(w) /∈ JL} and I2L =

{w ∈ IL : f(w) ∈ JL}. Given a total ordering / on vertices of I and a vertex x ∈ I, we
define K(x, /) = NG[Pxf(x)] ∩ {y ∈ I : x / y}. If x ∈ IL for some leg L of G, we define
K1(x, /) = K(x, /) ∩ I1L and K2(x, /) = K(x, /) ∩ I2L. By definition, it is not hard to see that
I1L and I2L (resp. K1(x, /) and K2(x, /)) form a partition of IL (resp. K(x, /)).

Starting from the natural total ordering < produced from Algorithm 1, one can construct
a total ordering ≺ on vertices of I as described in Algorithm 2. Indeed, we claim that under
the above assumptions, Algorithm 2 correctly produces a total ordering ≺ on vertices of I such
that K(w,≺) = ∅ for every w ∈ I. More formally,

Lemma 3. Let (G, I, J) be an instance of Shortest Sliding Token for spiders, where the
body v of G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} = 0. Let f : I → J be a target assignment
produced from Algorithm 1, and < be the corresponding natural total ordering on vertices of I.
Assume that I = {w1, w2, . . . , w|I|} is such that w1 < w2 < · · · < w|I|. Let wi be the smallest
element in I (with respect to the ordering <) such that K(wi, <) 6= ∅, and L be the leg of G
such that wi ∈ IL. Then,

(i) K(wi, <) ⊆ IL. Additionally, wi ∈ I2L.

(ii) Let ≺ be the total ordering of vertices in I defined as in lines 2–28 of Algorithm 2, where
the corresponding vertex w is replaced by wi. Then,

(ii-1) If x ∈ K(wi, <) then x > wi and x ≺ wi.

(ii-2) If x, y ∈ K1(wi, <) then x < y if and only if x ≺ y.

(ii-3) If x, y ∈ K2(wi, <) then x < y if and only if x � y.

(ii-4) If x ∈ K1(wi, <) and y ∈ K2(wi, <) then x > y and x ≺ y.

(ii-5) If x ∈ I1L \K1(wi, <) and y ∈ K1(wi, <) then wi < x < y and x ≺ y ≺ wi.

(ii-6) If x ∈ K(wi, <) ∪ I1L ∪ {wi} and y ∈ I \ (K(wi, <) ∪ I1L ∪ {wi}) then x < y if and
only if x ≺ y.

(ii-7) If x, y ∈ I \ (K(wi, <) ∪ I1L ∪ {wi}) then x < y if and only if x ≺ y.

(iii) Let ≺ be the total ordering of vertices in I described in (ii). Then, K(wi,≺) = ∅.
Moreover, if wj is the smallest element in I (with respect to the ordering ≺) such that
K(wj ,≺) 6= ∅, then K(wj ,≺) = K(wj , <).

wabcf(a)f(b) xe

f(d)

f(e)

f(x)

v

w < a < b < c < d < e < x

K(w,<)

K1(w,<) K2(w,<)

f(c) = d

I1L I2L

f(w)

d ≺ e ≺ x ≺ c ≺ b ≺ a ≺ w

Figure 1: An example of the orderings < and ≺ described in lines 2–28 of Algorithm 2. Tokens
in I (resp. J) are of black (resp. white) color.

We informally explain why Lemma 3 guarantees that the total ordering ≺ on vertices of I
produced from Algorithm 2 satisfies K(w,≺) = ∅ for every w ∈ I. Intuitively, Lemma 3(i) and

(ii) say that if wi ∈ IL is the “chosen” vertex in line 2 of Algorithm 2 for some leg L of G, then
only a subset K(wi, <)∪ I1L∪{wi} of IL contains “candidates” for “re-ordering”. Lemma 3(iii)
guarantees that after “re-ordering”, wi will never be chosen again1, and the next iteration of
the main while loop can be initiated. As Algorithm 2 can “choose” at most |I| vertices, and
each iteration involving the “re-ordering” of at most O(|I|) vertices, it will finally stop and
produce the desired ordering in O(|I|2) time.

Now, we are ready to prove the following lemma.

Lemma 4. Let (G, I, J) be an instance of Shortest Sliding Token for spiders where the
body v of G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} = 0. Assume that there exists a leg L of
G with |IL| 6= |JL|. Then, in O(n2) time, one can construct a TS-sequence S between I and J
such that len(S) = M∗(G, I, J).

In Lemma 4, we assumed that there is some leg L of G with |IL| 6= |JL|. In the next lemma,
we consider the case |IL| = |JL| for every leg L of G (regardless of whether max{|I ∩NG(v)|, |J ∩NG(v)|} =
0).

Lemma 5. Let (G, I, J) be an instance of Shortest Sliding Token for spiders. Let v be
the body of G. Assume that |IL| = |JL| for every leg L of G. Then, in O(n2) time, one can
construct a TS-sequence S between I and J such that len(S) = M∗(G, I, J).

Using Lemma 5, we can assume without loss of generality that for an instance (G, I, J) of
Shortest Sliding Token for spiders, there must be some leg L of G such that |IL| 6= |JL|.

Next, we show that when the body v of the given spider G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} ≤
1, under certain conditions, either a TS-sequence of length M∗(G, I, J) exists, or D∗(G, I, J) ≥
2 and a TS-sequence of length M∗(G, I, J) + 2 exists.

Lemma 6. Let (G, I, J) be an instance of Shortest Sliding Token for spiders where the
body v of G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} ≤ 1. Assume that |IL| 6= |JL| for some leg
L of G. Let x ∈ I (resp. y ∈ J) be such that I ∩ NG(v) = {x} (resp. J ∩ NG(v) = {y}),
provided that I ∩NG(v) 6= ∅ (resp. J ∩NG(v) 6= ∅). Then,

(i) If x and y both exist, and x ∈ IL and y ∈ JL for some leg L of G with |IL| = |JL|, then
for every TS-sequence S between I and J , DG(S) ≥ 2. Consequently, D∗(G, I, J) ≥ 2.
Moreover, one can construct in O(n2) time a TS-sequence between I and J of length
M∗(G, I, J) + 2.

(ii) Otherwise, one can construct in O(n2) time a TS-sequence between I and J of length
M∗(G, I, J).

For the rest of this section, we consider the case when the body v of the given spider G
satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2. More precisely, we claim that

Lemma 7. Let (G, I, J) be an instance of Shortest Sliding Token for spiders where the
body v of G satisfies max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2. Assume that |IL| 6= |JL| for some leg
L of G. Then, in O(n2) time, one can construct a TS-sequence S between I and J of shortest
length. Moreover, the value of DG(S) can be explicitly calculated.

Before proving Lemma 7, we define an useful notation for calculating the number of de-
tours. For an instance (T, I, J) of Shortest Sliding Token for trees, we define a directed
auxiliary graph A(T, I, J) as follows: V (A(T, I, J)) = V (T); and E(A(T, I, J)) = {(x, y) : xy ∈
E(T) and

∣∣I ∩ T x
y

∣∣ ≤ ∣∣J ∩ T x
y

∣∣}. By definition, the auxiliary graph A(G, J, I) can be obtained
from A(G, I, J) by simply reversing the directions of its edges.

Combining Lemmas 1, 5, 6, and 7, we have

1K(wi,≺) = ∅ always holds, since none of the members of K(wi, <) will ever be larger than wi in the new
orderings ≺ produced in the next iterations.

Theorem 8. Given an instance (G, I, J) of Shortest Sliding Token for spiders, one can
construct a shortest TS-sequence between I and J in O(n2) time.

4 Conclusion

In this paper, we have shown that one can indeed construct a TS-sequence of shortest length
between two given independent sets of a spider graph (if exists). Along the way, we proved sev-
eral interesting observations that remain true even when the input graph is a tree (Section 3.1).
We conjecture that these observations along with the structure of the auxiliary graph defined
in Section 3.3 will provide an useful framework for improving the polynomial-time algorithm
for Shortest Sliding Token for trees [9].

Acknowledgment R. Uehara was partially supported by JSPS KAKENHI Grant Num-
ber JP17H06287 and 18H04091.

References

[1] Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito,
Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. “Linear-time algorithm
for sliding tokens on trees”. In: Theoretical Computer Science 600 (2015), pp. 132–142.
doi: 10.1016/j.tcs.2015.07.037.

[2] Reinhard Diestel. Graph Theory. 4th. Vol. 173. Graduate Texts in Mathematics. Springer,
2010.

[3] Robert A. Hearn and Erik D. Demaine. “PSPACE-Completeness of Sliding-Block Puzzles
and Other Problems through the Nondeterministic Constraint Logic Model of Compu-
tation”. In: Theoretical Computer Science 343.1-2 (2005), pp. 72–96. doi: 10.1016/j.
tcs.2005.05.008.

[4] Jan van den Heuvel. “The Complexity of Change”. In: Surveys in Combinatorics. Vol. 409.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2013,
pp. 127–160. doi: 10.1017/CBO9781139506748.005.

[5] Duc A. Hoang, Amanj Khorramian, and Ryuhei Uehara. “Shortest Reconfiguration Se-
quence for Sliding Tokens on Spider”. In: arXiv preprints (2018). arXiv: 1806.08291.

[6] Marcin Kamiński, Paul Medvedev, and Martin Milanič. “Complexity of independent set
reconfigurability problems”. In: Theoretical Computer Science 439 (2012), pp. 9–15. doi:
10.1016/j.tcs.2012.03.004.

[7] Naomi Nishimura. “Introduction to Reconfiguration”. In: Algorithms 11.4 (2018). (article
52). doi: 10.3390/a11040052.

[8] Ken Sugimori. Personal communications. May 2018.

[9] Ken Sugimori. “Shortest Reconfiguration of Sliding Tokens on a Tree”. In: AAAC 2018.
May 2018.

[10] Takeshi Yamada and Ryuhei Uehara. “Shortest reconfiguration of sliding tokens on
a caterpillar”. In: Proceedings of WALCOM 2016. Ed. by Mohammad Kaykobad and
Rossella Petreschi. Vol. 9627. LNCS. Springer, 2016, pp. 236–248. doi: 10.1007/978-3-
319-30139-6_19.

