
WAAC 2018 (Fukuoka, Japan)

Shortest Reconfiguration Sequence

for Sliding Tokens on Spiders

Duc A. Hoang1 Amanj Khorramian2 Ryuhei Uehara1

August 26–27, 2018

1School of Information Science, JAIST, Japan

2University of Kurdistan, Sanandaj, Iran

Reconfiguration and Sliding Tokens

Reconfiguration: An Overview

15-puzzle Rubik’s Cube Rush-Hour

They are all examples of Reconfiguration Problems:

Given two configurations, and a specific rule describing how

a configuration can be transformed into a (slightly)

different one

Ask whether one can transform one configuration into an-

other by applying the given rule repeatedly

The figures were originally downloaded from various online sources, especially Wikipedia

Reconfiguration: An Overview

New insights into the computational complexity theory

Given Two configurations A,B, and a transformation rule

Decision Decide if A can be transformed into B

Find A transformation sequence between them?

Shortest A shortest transformation sequence between them?

Sliding-block Puzzle 15-puzzle

See also the “Masterclass Talk: Algorithms and Complexity for Japanese Puzzles” by R. Uehara at ICALP 2015

The figures were originally downloaded from various online sources, especially Wikipedia

Reconfiguration: An Overview

New insights into the computational complexity theory

Sliding-block Puzzle 15-puzzle

Decision PSPACE-complete Linear

Find PSPACE-complete Poly-time

Shortest PSPACE-complete NP-complete

Sliding-block Puzzle 15-puzzle

See also the “Masterclass Talk: Algorithms and Complexity for Japanese Puzzles” by R. Uehara at ICALP 2015

The figures were originally downloaded from various online sources, especially Wikipedia

Reconfiguration: An Overview

Real-world situations involving movement and change

Frequency Re-Assignment

Assignment ≡ Vertex-Coloring

Re-assign ≡ Re-color Vertices

R

R ObstacleRobot

Robot Motion

Robots & Obstacles ≡ Tokens

Moving Robots ≡ Sliding Tokens

Reconfiguration: An Overview

Surveys on Reconfiguration

Jan van den Heuvel (2013). “The Complexity of Change”. In:

Surveys in Combinatorics. Vol. 409. London Mathematical

Society Lecture Note Series. Cambridge University Press,

pp. 127–160. doi: 10.1017/CBO9781139506748.005

Naomi Nishimura (2018). “Introduction to Reconfiguration”. In:

Algorithms 11.4. (article 52). doi: 10.3390/a11040052

Online Web Portal

http://www.ecei.tohoku.ac.jp/alg/core/

https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.3390/a11040052
http://www.ecei.tohoku.ac.jp/alg/core/

The Sliding Token problem

Sliding Token [Hearn and Demaine 2005]

Given two independent sets (token sets) I, J of a graph G,

and the Token Sliding (TS) rule

Ask whether there is a TS-sequence that transforms I into

J (and vice versa)

v1

v2
v3

v4

v5

I = I1

v1

v2
v3

v4

I2

v5

v1

v2
v3

v5

v4

I3

v1

v2
v3

v5

v4

I4

v1

v3

v2

v5

v4

J = I5

A TS-sequence that transforms I = I1 into J = I5. Vertices of an

independent set are marked with black circles (tokens).

Note: This is a variant of Sliding-block Puzzle

The Shortest Sliding Token problem

Shortest Sliding Token [Yamada and Uehara 2016]

Given a yes-instance (G, I, J) of Sliding Token, where

I, J are independent sets of a graph G

Ask find a shortest TS-sequence that transforms I into J

(and vice versa)

v1

v2
v3

v4

v5

I = I1

v1

v2
v3

v4

I2

v5

v1

v2
v3

v5

v4

I3

v1

v2
v3

v5

v4

I4

v1

v3

v2

v5

v4

J = I5

A shortest TS-sequence that transforms I = I1 into J = I5. Vertices of

an independent set are marked with black circles (tokens).

Note: This is a variant of Sliding-block Puzzle

The Shortest Sliding Token problem

Theorem (Kamiński et al. 2012)

It is is NP-complete to decide if there is a TS-sequence having at

most ` token-slides between two independent sets I, J of a

perfect graph G even when ` is polynomial in |V (G)|.

Theorem (Kamiński et al. 2012)

Shortest Sliding Token can be solved in linear time for

cographs (P4-free graphs).

Theorem (Yamada and Uehara 2016)

Shortest Sliding Token can be solved in polynomial time for

proper interval graphs, trivially perfect graphs, and caterpillars.

The Shortest Sliding Token problem

Very recently, it has been announced that

Theorem (Sugimori, AAAC 2018)

Shortest Sliding Token can be solved in O(poly(n)) when

the input graph is a tree T on n vertices.

• Sugimori-san’s algorithm uses a dynamic programming

approach. (We believe that it is correct.)

• The order of poly(n) seems to be large.

Theorem (Our Result)

Shortest Sliding Token can be solved in O(n2) when the

input graph is a spider G (i.e., a tree having exactly one vertex of

degree at least 3) on n vertices.

• We hope that our algorithm provides new insights into

improving Sugimori-san’s algorithm.

The Shortest Sliding Token problem

Very recently, it has been announced that

Theorem (Sugimori, AAAC 2018)

Shortest Sliding Token can be solved in O(poly(n)) when

the input graph is a tree T on n vertices.

• Sugimori-san’s algorithm uses a dynamic programming

approach. (We believe that it is correct.)

• The order of poly(n) seems to be large.

Theorem (Our Result)

Shortest Sliding Token can be solved in O(n2) when the

input graph is a spider G (i.e., a tree having exactly one vertex of

degree at least 3) on n vertices.

• We hope that our algorithm provides new insights into

improving Sugimori-san’s algorithm.

Shortest Sliding Token for

Spiders

Spider Graphs

v

L1 L2

L3

A spider graph

A spider G is specified in terms of

• a body vertex v whose degree is at least 3; and

• d = degG(v) legs L1, L2, . . . , Ld attached to v

Our Approach

The body vertex v is crucial. Roughly speaking, we explicitly

construct a shortest TS-sequence when

• max{|I ∩NG(v)|, |J ∩NG(v)|} = 0

No token is in the neighbor NG(v) of v

• max{|I ∩NG(v)|, |J ∩NG(v)|} ≤ 1

At most one token (from either I or J) is in the neighbor

NG(v) of v

• max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2

At least two tokens (from either I or J) are in the neighbor

NG(v) of v

Target assignments

A target assignment is simply a bijective mapping f : I → J .

Observe that

• Any TS-sequence S induces a target assignment fS .

• Thus, each S uses at least
∑

w∈I distG(w, fS(w)) token-slides.

Indeed,

Lemma (Key Lemma)

One can construct in linear time a target assignment f that

minimizes
∑

w∈I distG(w, f(w)), where distG(x, y) denotes the

distance between two vertices x, y of a spider G.

Case 1: max{|I ∩NG(v)|, |J ∩NG(v)|} = 0

w f(w)x

Pwf(w)

NG[Pwf(w)]

y

Observation

In the figure above, w can be moved to f(w) along the shortest

path Pwf(w) between them only after both x and y are moved.

Theorem

When max{|I ∩NG(v)|, |J ∩NG(v)|} = 0, one can construct a

(shortest) TS-sequence using M∗ token-slides between I and J ,

where M∗ = mintarget assignment f
∑

w∈I distG(w, f(w)).

Moreover, this construction takes O(|V (G)|2) time.

Hint: The Key Lemma allows us to pick a “good” target

assignment, and the above observation tells us which token should

be moved first.

Case 1: max{|I ∩NG(v)|, |J ∩NG(v)|} = 0

w f(w)x

Pwf(w)

NG[Pwf(w)]

y

Observation

In the figure above, w can be moved to f(w) along the shortest

path Pwf(w) between them only after both x and y are moved.

Theorem

When max{|I ∩NG(v)|, |J ∩NG(v)|} = 0, one can construct a

(shortest) TS-sequence using M∗ token-slides between I and J ,

where M∗ = mintarget assignment f
∑

w∈I distG(w, f(w)).

Moreover, this construction takes O(|V (G)|2) time.

Hint: The Key Lemma allows us to pick a “good” target

assignment, and the above observation tells us which token should

be moved first.

Detour

We say that a TS-sequence S makes detour over an edge

e = xy ∈ E(G) if S at some time moves a token from x to y, and

at some other time moves a token from y to x.

v1

v2
v3

v4

v5

I = I1

v1

v2
v3

v4

I2

v5

v1

v2
v3

v5

v4

I3

v1

v2
v3

v5

v4

I4

v1

v3

v2

v5

v4

J = I5

S makes detour over e = v4v5

Case 2: max{|I ∩NG(v)|, |J ∩NG(v)|} ≤ 1

Special Case

• w and f(w) are both placed in

NG(v) ∩ V (Li);

• the number of I-tokens and

J-tokens in Li are equal.

In this case, any TS-sequence must (at

least) make detour over either e1 or e2.

v

Li

xf(x)

w = f(w)

e1

e2

|I ∩ V (Li)| = |J ∩ V (Li)|

• To handle this case, simply move both w and f(w) to v. The

problem now reduces to Case 1.

• This is not true when each leg of G contains the same

number of I-tokens and J-tokens. However, this case is easy

and can be handled separately.

• When the above case does not happen, slightly modify the

instance to reduce to Case 1.

Case 3: max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2

We consider only the case |I ∩NG(v)| ≥ 2 and |J ∩NG(v)| ≤ 1.

Other cases are similar.
fixed fixed

fixed

v v v

Take Si with minimum length

(I1
G
! J)

S1 S2 S3

(I2
G
! J) (I3

G
! J)

• For any TS-sequence S, exactly one of the d = degG(v)

situations (as in the above example) must happen.

• Applying the above trick (regardless of J-tokens) reduces the

problem to known cases (either Case 1 or Case 2).

•

Case 3: max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2

Issue

We don’t know exactly how many detours the constructed

sequence S performs.

Involve the following directed auxiliary graph A(G, I, J).

• V (A(G, I, J)) = V (G); and

• E(A(G, I, J)) =

{
(x, y) : xy ∈

E(G) and
∣∣I ∩ V (Gx

y)
∣∣ ≤∣∣J ∩ V (Gx

y)
∣∣},

where Gx
y is the subtree induced by y and

its descendants when regarding x as root.

v

fixed

no
detour

de
to

ur

de
to

ur

Case 3: max{|I ∩NG(v)|, |J ∩NG(v)|} ≥ 2

Issue

We don’t know exactly how many detours the constructed

sequence S performs.

Involve the following directed auxiliary graph A(G, I, J).

• V (A(G, I, J)) = V (G); and

• E(A(G, I, J)) =

{
(x, y) : xy ∈

E(G) and
∣∣I ∩ V (Gx

y)
∣∣ ≤∣∣J ∩ V (Gx

y)
∣∣},

where Gx
y is the subtree induced by y and

its descendants when regarding x as root.

v

fixed

no
detour

de
to

ur

de
to

ur

Conclusion

Conclusion

• We provided a O(n2)-time algorithm for solving Shortest

Sliding Token for spiders on n vertices.

• A shortest TS-sequence is explicitly constructed, along with

the number of detours it makes.

• Our algorithm is optimal in the number of token-slides, as

there exists a TS-sequence having Ω(n2) token-slides

(see Demaine et al. 2015).

Future Work

Extend the framework in order to improve Sugimori-san’s

algorithm for Shortest Sliding Token for trees.

Bibliography i

Demaine, Erik D., Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang,

Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and

Takeshi Yamada (2015). “Linear-time algorithm for sliding tokens on

trees”. In: Theoretical Computer Science 600, pp. 132–142. doi:

10.1016/j.tcs.2015.07.037.

Hearn, Robert A. and Erik D. Demaine (2005). “PSPACE-Completeness

of Sliding-Block Puzzles and Other Problems through the

Nondeterministic Constraint Logic Model of Computation”. In:

Theoretical Computer Science 343.1-2, pp. 72–96. doi:

10.1016/j.tcs.2005.05.008.

Heuvel, Jan van den (2013). “The Complexity of Change”. In: Surveys in

Combinatorics. Vol. 409. London Mathematical Society Lecture Note

Series. Cambridge University Press, pp. 127–160. doi:

10.1017/CBO9781139506748.005.

https://doi.org/10.1016/j.tcs.2015.07.037
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1017/CBO9781139506748.005

Bibliography ii

Kamiński, Marcin, Paul Medvedev, and Martin Milanič (2012).

“Complexity of independent set reconfigurability problems”. In:

Theoretical Computer Science 439, pp. 9–15. doi:

10.1016/j.tcs.2012.03.004.

Nishimura, Naomi (2018). “Introduction to Reconfiguration”. In:

Algorithms 11.4. (article 52). doi: 10.3390/a11040052.

Yamada, Takeshi and Ryuhei Uehara (2016). “Shortest reconfiguration

of sliding tokens on a caterpillar”. In: Proceedings of WALCOM 2016.

Ed. by Mohammad Kaykobad and Rossella Petreschi. Vol. 9627. LNCS.

Springer, pp. 236–248. doi: 10.1007/978-3-319-30139-6_19.

https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.3390/a11040052
https://doi.org/10.1007/978-3-319-30139-6_19

	Reconfiguration and Sliding Tokens
	Shortest Sliding Token for Spiders
	Conclusion

