On The Complexity of Distance- d Independent Set Reconfiguration

Duc A. Hoang ${ }^{\text {a,b }}$
${ }^{a}$ VNU University of Science, Hanoi, Vietnam
hoanganhduc@hus.edu.vn
${ }^{\mathrm{b}}$ Graduate School of Informatics, Kyoto University, Kyoto, Japan ${ }^{1}$
hoang.duc.8r@kyoto-u.ac.jp

The 17th International Conference and Workshops on Algorithms and Computation (WALCOM 2023, Hsinchu, Taiwan)

March 22-24, 2023

Outline

1 Distance- d Independent Set Reconfiguration (D d ISR)

2 Observations

- Graph Powers
- Graphs With Bounded Diameter Components

3 General Graphs

4 Chordal Graphs and Split Graphs

5 Open Question: Trees

Distance- d Independent Set Reconfiguration (D d ISR)

Distance- d Independent Sets (D d ISs)

Let G be a simple, undirected graph and let $d \geq 2$ be a fixed integer.

- An independent set (IS) of G is a vertex subset where no two members are joined by an edge.
- A distance-d independent set (DdIS) of G is a vertex subset where no two members are joined by a path on at most d vertices.
- Any IS is a D2IS and vice versa.
- Any $\mathrm{D} d \mathrm{IS}$ is an IS, but an IS may not be a $\mathrm{D} d \mathrm{IS}$ for $d \geq 3$.

Figure: Some size-2 $\mathrm{D} d \mathrm{ISs}$ of C_{6} for $d \in\{2,3\}$.

Distance- d Independent Set (D d IS)

Maximum Distance- d Independent Set (MaxD d IS) ($d \geq 2$)
Input: (G, k)
Question: Is there a $\mathrm{D} d \mathrm{IS}$ of G having at least k members?

Distance- d Independent Set ($\mathbf{D} d \mathbf{I S}$)

Maximum Distance- d Independent Set (MaxD d IS $)(d \geq 2)$
Input: (G, k)
Question: Is there a $\mathrm{D} d \mathrm{IS}$ of G having at least k members?

Table: Computational complexity of MAxDdIS on some graphs.

Graph	$\mathbf{d}=\mathbf{2}$	$\mathbf{d} \geq \mathbf{3}$
general	NP-C [Garey and Johnson 1979]	NP-C
bipartite	P	
	(König-Egerváry's Theorem)	NP-C
chordal	P	NP-C al. 2014]Por odd d
	[Gavril 1972]	P for even d
[Eto et al. 2014]		

Distance- d Independent Set (D $d \mathbf{I S}$)

Maximum Distance- d Independent Set (MaxD d IS $)(d \geq 2)$
Input: (G, k)
Question: Is there a $\mathrm{D} d \mathrm{IS}$ of G having at least k members?

Table: Computational complexity of MAxDdIS on some graphs.

Graph	$\mathbf{d}=\mathbf{2}$	$\mathbf{d} \geq \mathbf{3}$
general	NP-C	NP-C
	[Garey and Johnson 1979]	[Kong and Zhao 1993]
bipartite	P	
	(König-Egerváry's Theorem)	NP-C
chordal	P	NP-C for odd d
	[Gavril 1972]	P for even d
	[Eto et al. 2014]	

■ For other graph classes, see [Katsikarelis et al. 2020]; [Yamanaka et al. 2019]; [Montealegre and Todinca 2016]; [Jena et al. 2018].

Distance- d Independent Set Reconfiguration (D d ISR)

Imagine that a token is placed on each vertex of a $\mathrm{D} d \mathrm{IS} A$. (Assuming no vertex has more than one token.)

Figure: TS/TJ-moves to obtain a new adjacent D2IS (\equiv independent set).

Distance- d Independent Set Reconfiguration (D d ISR)

Imagine that a token is placed on each vertex of a $\mathrm{D} d \mathrm{IS} A$. (Assuming no vertex has more than one token.)

- A D $d \mathrm{IS} B$ is adjacent to A under Token Sliding (TS) if it is obtained from A by moving a single token from one vertex to an unoccupied adjacent vertex.

Figure: TS/TJ-moves to obtain a new adjacent D2IS (\equiv independent set).

Distance- d Independent Set Reconfiguration (D d ISR)

Imagine that a token is placed on each vertex of a $\mathrm{D} d \mathrm{IS} A$. (Assuming no vertex has more than one token.)

- A DdIS B is adjacent to A under Token Sliding (TS) if it is obtained from A by moving a single token from one vertex to an unoccupied adjacent vertex.
- A $\mathrm{D} d \mathrm{IS} B$ is adjacent to A under Token Jumping (TJ) if it is obtained from A by moving a single token from one vertex to any unoccupied vertex.

Figure: TS/TJ-moves to obtain a new adjacent D2IS (\equiv independent set).

Distance- d Independent Set Reconfiguration (D d ISR)

Imagine that a token is placed on each vertex of a $\mathrm{D} d \mathrm{IS} A$. (Assuming no vertex has more than one token.)

- A DdIS B is adjacent to A under Token Sliding (TS) if it is obtained from A by moving a single token from one vertex to an unoccupied adjacent vertex.
- A DdIS B is adjacent to A under Token Jumping (TJ) if it is obtained from A by moving a single token from one vertex to any unoccupied vertex.

Figure: TS/TJ-moves to obtain a new adjacent D2IS (\equiv independent set).

Distance- d Independent Set Reconfiguration (D d ISR) ($d \geq 2$) under $R \in\{T S, T J\}$
Input: (G, I, J, R, d)
Question: Is there a sequence of adjacent $\mathrm{D} d \mathrm{ISs}$ under R between I and J ?

Distance- d Independent Set Reconfiguration (D d ISR)

Graph	d $=2$		$\mathbf{d} \geq 3$	
	TS	TJ	TS	TJ
planar	PSPACE-C[Hearn and Demaine 2005]			
general	$\begin{gathered} \text { PSPACE-C } \\ \text { [Ito et al. 2011] } \end{gathered}$			
perfect	PSPACE-C[Kamiński et al. 2012]			
even-hole-free	$\begin{gathered} \text { PSPACE-C } \\ (\supseteq \text { split }) \end{gathered}$	P [Kamiński et al. 2012]		
chordal	$\begin{gathered} \text { PSPACE-C } \\ (\supseteq \text { split }) \end{gathered}$	P $(\subseteq$ even-hole-free)		
split	PSPACE-C [Belmonte et al. 2021]	P (\subseteq even-hole-free)	What happen	
cograph	P [Kamiński et al. 2012]	P [Bonsma 2016]		
claw-free	P[Bonsma et al. 2014]			
tree	P [Demaine et al. 2015]	P (\subseteq even-hole-free)		
bipartite permutation	P [Fox-Epstein et al. 2015]	unknown		
cactus	P [Hoang and Uehara 2016]	P [Mouawad et al. 2018]		
interval	P [Bonamy and Bousquet 2017]	P (\subseteq even-hole-free)		
bipartite	PSPACE-C [Lokshtanov and M	$\begin{aligned} & \text { NP-C } \\ & \text { uawad 2019] } \end{aligned}$		

Distance- d Independent Set Reconfiguration (D d ISR)

Graph	$\mathbf{d}=2$		$\mathbf{d} \geq 3$	
	TS	TJ	TS	TJ
planar	PSPACE-C[Hearn and Demaine 2005]		PSPACE-C	
general	$\begin{gathered} \hline \text { PSPACE-C } \\ {[\text { Ito et al. 2011] }} \end{gathered}$		PSPACE-C	
perfect	PSPACE-C[Kamiński et al. 2012]		PSPACE-C	
even-hole-free	$\begin{gathered} \text { PSPACE-C } \\ (\supseteq \text { split }) \end{gathered}$	P [Kamiński et al. 2012]	unknown	PSPACE-C if d is odd unknown if d is even
chordal	$\begin{gathered} \text { PSPACE-C } \\ (\supseteq \text { split }) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (\subseteq \text { even-hole-free) } \end{gathered}$	unknown	PSPACE-C if d is odd P if d is even
split	PSPACE-C [Belmonte et al. 2021]	P (\subseteq even-hole-free)	P	$\begin{gathered} \text { PSPACE-C if } d=3 \\ \text { P if } d \geq 4 \end{gathered}$
cograph	P [Kamiński et al. 2012]	P [Bonsma 2016]		P
claw-free	P[Bonsma et al. 2014]		unknown	
tree	P [Demaine et al. 2015]	$\begin{gathered} \mathrm{P} \\ (\subseteq \text { even-hole-free }) \end{gathered}$	unknown	P
bipartite permutation	P [Fox-Epstein et al. 2015]	unknown	unknown	
cactus	P [Hoang and Uehara 2016]	[Mouawad et al. 2018]	unknown	
interval	P [Bonamy and Bousquet 2017]	P (\subseteq even-hole-free)	unknown	P
bipartite	PSPACE-C [Lokshtanov and M	NP-C uawad 2019]	unknown	

Distance- d Independent Set Reconfiguration (D d ISR)

Graph	$\mathbf{d}=2$		$\mathbf{d} \geq 3$	
	TS	TJ	TS	TJ
planar	PSPACE-C[Hearn and Demaine 2005]		PSPACE-C	
general	$\begin{gathered} \text { PSPACE-C } \\ \text { [Ito et al. 2011] } \end{gathered}$		PSPACE-C	
perfect	PSPACE-C[Kamiński et al. 2012]		PSPACE-C	
even-hole-free	$\begin{gathered} \text { PSPACE-C } \\ (\supseteq \text { split }) \end{gathered}$	P [Kamiński et al. 2012]	unknown	PSPACE-C if d is odd unknown if d is even
chordal	PSPACE-C (\supseteq split)	P (\subseteq even-hole-free)	unknown	PSPACE-C if d is odd P if d is even
split	PSPACE-C [Belmonte et al. 2021]	P (\subseteq even-hole-free)	P	$\begin{gathered} \text { PSPACE-C if } d=3 \\ \text { P if } d \geq 4 \end{gathered}$
cograph	P [Kamiński et al. 2012]	P [Bonsma 2016]		P
claw-free	P[Bonsma et al. 2014]		unknown	
tree	P [Demaine et al. 2015]	P (\subseteq even-hole-free)	unknown	P
bipartite permutation	P [Fox-Epstein et al. 2015]	unknown		unknown
cactus	P [Hoang and Uehara 2016]	P [Mouawad et al. 2018]		unknown
interval	P [Bonamy and Bousquet 2017]	P (\subseteq even-hole-free)	unknown	P
bipartite	PSPACE-C [Lokshtanov and M	NP-C nawad 2019]		unknown

Observations

Graph Powers

■ The s-th power of a graph G is the graph G^{s} with $V\left(G^{s}\right)=V(G)$ and $E\left(G^{s}\right)=\left\{u v: u, v \in V\left(G^{s}\right)=V(G)\right.$ and dist $\left.{ }_{G}(u, v) \leq s\right\}$.

- I is a $\mathrm{D} d \mathrm{IS}$ of $G \Leftrightarrow I$ is an independent set ($\equiv \mathrm{D} 2 \mathrm{IS})$ of G^{d-1}.

Figure: A graph G and its 2-nd power G^{2}.

$$
d=3
$$

G

G^{2}

Observation

MaxDdIS on G is YES \Leftrightarrow MaxD2IS on G^{d-1} is YES.

Graph Powers

Question

D d ISR under R on G is YES $\stackrel{?}{\Leftrightarrow}$ D2ISR under R on G^{d-1} is YES

Graph Powers

Question

$\mathrm{D} d \mathrm{ISR}$ under R on G is YES $\stackrel{?}{\Leftrightarrow} \mathrm{D} 2$ ISR under R on G^{d-1} is YES

Answer

- R = TJ: TRUE (edges in G^{d-1} are "irrelevant")

■ R = TS: FALSE (edges in G^{d-1} are "relevant")

Remind: Chordal Graphs and Split Graphs

- G is a chordal graph if every cycle C on four or more vertices in G has a chord-an edge joining two non-adjacent vertices in C.
- G is a split graph if $V(G)$ can be partitioned into two sets K and S which respectively induce a clique and an independent set.
- Any split graph is also chordal.

Figure: Examples of graphs that are (not) chordal/split.

chordal: YES
split: NO

chordal: YES
split: YES

Graphs With Bounded Diameter Components

Proposition 1

Suppose that any component of G has diameter at most c. DdISR under $\mathrm{R} \in\{\mathrm{TS}, \mathrm{TJ}\}$ on G is in P for any $d \geq c+1$.

- Any $\mathrm{D} d \mathrm{I}$ S of G where $d \geq c+1$ is of size exactly 1 .

Corollary 2

DdISR under $\mathrm{R} \in\{\mathrm{TS}, \mathrm{TJ}\}$ on split graphs (whose components having diameter ≤ 3) is in P for any $d \geq 4$.

General Graphs

General Graphs

Proposition 3

DdISR under TJ on general graph is PSPACE-complete for any $d \geq 3$.

- Reduction from D2ISR under TJ on general graphs-a PSPACE-complete whose complexity was shown in [Ito et al. 2011].

General Graphs

- Reduction from D2ISR under TJ on general graphs. Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$.

$$
d=3
$$

$$
d=4
$$

General Graphs

- Reduction from D2ISR under TJ on general graphs.

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$.

General Graphs

■ Reduction from D2ISR under TJ on general graphs.
Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$.

General Graphs

- Reduction from D2ISR under TJ on general graphs.

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$.

General Graphs

■ Reduction from D2ISR under TJ on general graphs.
Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$.

Claim 4
$(G, I, J, \mathrm{TJ}, 2)$ is $Y E S \Leftrightarrow\left(G^{\prime}, I, J, \mathrm{TJ}, d\right)$ is YES.

Chordal Graphs and Split Graphs

Chordal Graphs and Split Graphs

Proposition 5

DdISR under TJ on chordal graphs is in
(a) P for any even $d \geq 2$
(b) PSPACE-complete for any odd $d \geq 3$

Chordal Graphs and Split Graphs

Proposition 5

DdISR under TJ on chordal graphs is in
(a) P for any even $d \geq 2$
(b) PSPACE-complete for any odd $d \geq 3$
(a) Reduce to solving for $d=2$ on chordal graphs

- Any odd power of a chordal graph is also chordal [Balakrishnan and Paulraja 1983].
- D d ISR under TJ on G is YES \Leftrightarrow D2ISR under TJ on G^{d-1} is YES.
- D2ISR on chordal graphs is in P [Kamiński et al. 2012].

Chordal Graphs and Split Graphs

Proposition 5

DdISR under TJ on chordal graphs is in
(a) P for any even $d \geq 2$
(b) PSPACE-complete for any odd $d \geq 3$
(a) Reduce to solving for $d=2$ on chordal graphs

- Any odd power of a chordal graph is also chordal [Balakrishnan and Paulraja 1983].
- DdISR under TJ on G is YES \Leftrightarrow D2ISR under TJ on G^{d-1} is YES.
- D2ISR on chordal graphs is in P [Kamiński et al. 2012].
(b) Reduction from D2ISR under TJ on general graphs-a PSPACE-complete whose complexity was shown in [Ito et al. 2011].
- Similar to the reduction used by Eto et al.'s [Eto et al. 2014] to show NP-completeness of MAxDdIS on chordal graphs.

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$.

G^{\prime}

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$.
$\begin{array}{ccc}\bigcirc 1 & \bigcirc 2 \quad \bigcirc 3 \\ \bigcirc 4 & \bigcirc 5\end{array}$
G^{\prime}

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$.

$\bigcirc 1$		$\bigcirc 2$		$\bigcirc 3$
	$\bigcirc 4$		$\bigcirc 5$	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
x_{12}	x_{14}	x_{23}	x_{24}	x_{35}
		G^{\prime}		

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$.

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$. Vertices in the light-gray box forms a clique.

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$. Vertices in the light-gray box forms a clique. Each dotted path is of length $(d-3) / 2$.

$$
f(1) \quad f(4) \quad f(2) \quad f(5) \quad f(3)
$$

$$
d=3: G^{\prime} \text { is a split graph }
$$

G^{\prime}

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$. Vertices in the light-gray box forms a clique. Each dotted path is of length $(d-3) / 2$.

$$
d=3: G^{\prime} \text { is a split graph }
$$

G^{\prime}

Chordal Graphs and Split Graphs

Figure: Reduction $(G, I, J, \mathrm{TJ}, 2) \Rightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ for odd $d \geq 3$. Gray vertices are in $V\left(G^{\prime}\right)-V(G)$. Vertices in the light-gray box forms a clique. Each dotted path is of length $(d-3) / 2$.
$f(1) \quad f(4) \quad f(2) \quad f(5) \quad f(3)$

G^{\prime}

Claim 6

$(G, I, J, \mathrm{TJ}, 2)$ is $Y E S \Leftrightarrow\left(G^{\prime}, I^{\prime}, J^{\prime}, \mathrm{TJ}, d\right)$ is $Y E S$.

Chordal Graphs and Split Graphs

Proposition 7

DdISR under TJ on split graphs is in
(a) PSPACE-complete for $d=3$
(b) P for any $d \neq 3$
(a) Consequence of the reduction on chordal graphs.
(b) The case $d=2$ was proved in [Kamiński et al. 2012]. We observed for $d \geq 4$ before.

Chordal Graphs and Split Graphs

Proposition 7

DdISR under TJ on split graphs is in
(a) PSPACE-complete for $d=3$
(b) P for any $d \neq 3$
(a) Consequence of the reduction on chordal graphs.
(b) The case $d=2$ was proved in [Kamiński et al. 2012]. We observed for $d \geq 4$ before.

Proposition 8

DdISR under TS on split graphs is in
(a) PSPACE-complete for $d=2$
(b) P for any $d \geq 3$
(a) [Belmonte et al. 2021].
(b) When $d=3$ and each token-set has at least two members, no token can be moved. We observed for $d \geq 4$ before.

Open Question: Trees

Open Question: Trees

Proposition 9

DdISR under TJ on trees is in P .

- The power of a tree is a chordal graph [Lin and Skiena 1995].
- D2ISR under TJ on chordal graphs is in P [Kamiński et al. 2012].

Open Question: Trees

Proposition 9

DdISR under TJ on trees is in P .

- The power of a tree is a chordal graph [Lin and Skiena 1995].
- D2ISR under TJ on chordal graphs is in P [Kamiński et al. 2012].

Proposition 10: [Demaine et al. 2015]

D2ISR under TS on trees is in P .
■ For a D2IS I of a tree T, Demaine et al. defined (T, I)-rigid tokens-the tokens that "cannot be moved at all".

- Crucial points leading to their algorithm:

1 For any D2IS I, all (T, I)-rigid tokens can be found in polynomial time.
2 For two D2ISs I and J, if (T, I)-rigid tokens and (T, J)-rigid tokens are the same, then I can be reconfigured to J under TS and vice versa.

Open Question: Trees

Proposition 9

DdISR under TJ on trees is in P .

- The power of a tree is a chordal graph [Lin and Skiena 1995].
- D2ISR under TJ on chordal graphs is in P [Kamiński et al. 2012].

Proposition 10: [Demaine et al. 2015]

D2ISR under TS on trees is in P .
■ For a D2IS I of a tree T, Demaine et al. defined (T, I)-rigid tokens-the tokens that "cannot be moved at all".

- Crucial points leading to their algorithm:

1 For any D2IS I, all (T, I)-rigid tokens can be found in polynomial time.
2 For two D2ISs I and J, if (T, I)-rigid tokens and (T, J)-rigid tokens are the same, then I can be reconfigured to J under TS and vice versa. [Not hold when $d \geq 3$]

Open Question: Trees

Observation

There are two $\mathrm{D} d \mathrm{ISs} I$ and $J(d \geq 3)$ such that I cannot be reconfigured to J under TS even when the sets of (T, I)-rigid tokens and (T, J)-rigid tokens are both empty.

Figure: I cannot be reconfigured into J under TS $(d \geq 3)$ even when there are no (T, I)-rigid and (T, J)-rigid tokens. Tokens in I (resp., J) are marked with the black (resp. gray) color. All tokens are of distance $d-1$ from u.

Note

Demaine et al.'s approach cannot be applied.

References

R
Belmonte, R., E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora (2021). "Token sliding on split graphs". In: Theory of Computing Systems 65.4, pp. 662-686. doi: 10.1007/s00224-020-09967-8. Katsikarelis, I., M. Lampis, and V. T. Paschos (2020). "Structurally parameterized d-scattered set". In: Discrete Applied Mathematics 308, pp. 168-186. dor: $10.1016 / \mathrm{j}$.dam. 2020.03.052.
Lokshtanov, D. and A. E. Mouawad (2019). "The complexity of independent set reconfiguration on bipartite graphs". In: ACM Transactions on Algorithms 15.1, 7:1-7:19. Doi: 10.1145/3280825.
Yamanaka, K., S. Kawaragi, and T. Hirayama (2019). "Exact Exponential Algorithm for Distance-3 Independent Set Problem". In: IEICE Transactions on Information and Systems 102.3, pp. 499-501. DOI: 10.1587/transinf. 2018FCL0002.

References

R
Jena, S. K., R. K. Jallu, G. K. Das, and S. C. Nandy (2018). "The maximum distance- d independent set problem on unit disk graphs". In: Proceedings of FAW 2018. Ed. by J. Chen and P. Lu. Vol. 10823. LNCS. Springer, pp. 68-80. doi: 10.1007/978-3-319-78455-7_6. Mouawad, A. E., N. Nishimura, V. Raman, and S. Siebertz (2018). "Vertex Cover Reconfiguration and Beyond". In: Algorithms 11.2. (article 20). Doi: $10.3390 / a 11020020$.
Bonamy, M. and N. Bousquet (2017). "Token sliding on chordal graphs". In: Proceedings of WG 2017. Vol. 10520. LNCS. Springer, pp. 127-139. dor: 10.1007/978-3-319-68705-6_10. Bonsma, P. S. (2016). "Independent set reconfiguration in cographs and their generalizations". In: Journal of Graph Theory 83.2, pp. 164-195. Doi: $10.1002 /$ jgt. 21992.

References

Hoang, D. A. and R. Uehara (2016). "Sliding Tokens on a Cactus". In: Proceedings of ISAAC 2016. Vol. 64. LIPIcs. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 37:1-37:26. DoI: 10.4230/LIPIcs.ISAAC.2016.37.

Montealegre, P. and I. Todinca (2016). "On distance- d independent set and other problems in graphs with "few" minimal separators". In: Proceedings of WG 2016. Ed. by P. Heggernes. Vol. 9941. LNCS. Springer, pp. 183-194. dor: 10.1007/978-3-662-53536-3_16.
(- Demaine, E. D., M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono, Y. Otachi, R. Uehara, and T. Yamada (2015). "Linear-time algorithm for sliding tokens on trees". In: Theoretical Computer Science 600, pp. 132-142. Doi: $10.1016 / \mathrm{j} . \mathrm{tcs} .2015 .07 .037$.
直 Fox-Epstein, E., D. A. Hoang, Y. Otachi, and R. Uehara (2015). "Sliding token on bipartite permutation graphs". In: Proceedings of ISAAC 2015. Vol. 9472. LNCS. Springer, pp. 237-247. doi: 10. 1007/978-3-662-48971-0_21.

References

擂
Bonsma, P. S., M. Kamiński, and M. Wrochna (2014). "Reconfiguring independent sets in claw-free graphs". In: Proceedings of SWAT 2014. Vol. 8503. LNCS. Springer, pp. 86-97. Dor: 10. 1007/978-3-319-08404-6_8.

Eto, Eto, F. Guo, and E. Miyano (2014). "Distance- d independent set problems for bipartite and chordal graphs". In: Journal of Combinatorial Optimization 27.1, pp. 88-99. DoI: 10.1007/s10878-012-9594-4. Kamiński, M., P. Medvedev, and M. Milanič (2012). "Complexity of independent set reconfigurability problems". In: Theoretical Computer Science 439, pp. 9-15. doi: 10.1016/j.tcs.2012.03.004.
Ito, T., E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno (2011). "On the complexity of reconfiguration problems". In: Theoretical Computer Science 412.12-14, pp. 1054-1065. Dor: $10.1016 / \mathrm{j} . \mathrm{tcs} .2010 .12 .005$.

References

专
Hearn, R. A. and E. D. Demaine (2005). "PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation". In: Theoretical Computer Science 343.1-2, pp. 72-96. doi: 10.1016/j.tcs.2005.05.008. Lin, Y.-L. and S. S. Skiena (1995). "Algorithms for square roots of graphs". In: SIAM Journal on Discrete Mathematics 8.1, pp. 99-118. doi: 10.1137/S089548019120016X.
(Kong, M. and Y. Zhao (1993). "On computing maximum k-independent sets". In: Congressus Numerantium 95, pp. 47-47.
困 Balakrishnan, R. and P. Paulraja (1983). "Powers of chordal graphs". In: Journal of the Australian Mathematical Society 35.2, pp. 211-217. DoI: 10.1017/S1446788700025696.

Garey, M. R. and D. S. Johnson (1979). Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Company.

References

Gavril, F. (1972). "Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph". In: SIAM Journal on Computing 1.2, pp. 180-187. Dor: 10.1137/0201013.

