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Distance-𝑑 Independent Set Reconfiguration
(D𝑑ISR)



Distance-𝑑 Independent Sets (D𝑑ISs)
Let 𝐺 be a simple, undirected graph and let 𝑑 ≥ 2 be a fixed integer.

An independent set (IS) of 𝐺 is a vertex subset where no two members
are joined by an edge.
A distance-𝑑 independent set (D𝑑IS) of 𝐺 is a vertex subset where no
two members are joined by a path on at most 𝑑 vertices.
Any IS is a D2IS and vice versa.
Any D𝑑IS is an IS, but an IS may not be a D𝑑IS for 𝑑 ≥ 3.

Figure: Some size-2 D𝑑ISs of 𝐶6 for 𝑑 ∈ {2, 3}.

D2IS: YES
D3IS: YES

D2IS: YES
D3IS: NO
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Distance-𝑑 Independent Set (D𝑑IS)
Maximum Distance-𝑑 Independent Set (MaxD𝑑IS) (𝑑 ≥ 2)
Input: (𝐺, 𝑘)
Question: Is there a D𝑑IS of 𝐺 having at least 𝑘 members?

Table: Computational complexity of MaxD𝑑IS on some graphs.

Graph d = 2 d ≥ 3

general NP-C NP-C
[Garey and Johnson 1979] [Kong and Zhao 1993]

bipartite P NP-C
(König-Egerváry’s Theorem) [Eto et al. 2014]

chordal P
NP-C for odd 𝑑
P for even 𝑑

[Gavril 1972] [Eto et al. 2014]

For other graph classes, see [Katsikarelis et al. 2020]; [Yamanaka et al.
2019]; [Montealegre and Todinca 2016]; [Jena et al. 2018].
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Distance-𝑑 Independent Set Reconfiguration (D𝑑ISR)
Imagine that a token is placed on each vertex of a D𝑑IS 𝐴. (Assuming no
vertex has more than one token.)

A D𝑑IS 𝐵 is adjacent to 𝐴 under Token
Sliding (TS) if it is obtained from 𝐴 by
moving a single token from one vertex to
an unoccupied adjacent vertex.
A D𝑑IS 𝐵 is adjacent to 𝐴 under Token
Jumping (TJ) if it is obtained from 𝐴 by
moving a single token from one vertex to
any unoccupied vertex.

Figure: TS/TJ-moves to obtain a new
adjacent D2IS (≡ independent set).

TS

TS

TJ

TJ

TJ
TJ

TJ
TJ

Distance-𝑑 Independent Set Reconfiguration (D𝑑ISR) (𝑑 ≥ 2) under
R ∈ {TS, TJ}
Input: (𝐺, 𝐼, 𝐽,R, 𝑑)
Question: Is there a sequence of adjacent D𝑑ISs under R between 𝐼 and 𝐽?
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Distance-𝑑 Independent Set Reconfiguration (D𝑑ISR)
Graph d = 2 d ≥ 3

TS TJ TS TJ

planar PSPACE-C

PSPACE-C

[Hearn and Demaine 2005]

general PSPACE-C

PSPACE-C

[Ito et al. 2011]

perfect PSPACE-C

PSPACE-C

[Kamiński et al. 2012]

even-hole-free PSPACE-C P

unknown PSPACE-C if 𝑑 is odd

(⊇ split) [Kamiński et al. 2012]

unknown if 𝑑 is even

chordal PSPACE-C P

unknown PSPACE-C if 𝑑 is odd

(⊇ split) (⊆ even-hole-free)

P if 𝑑 is even

split PSPACE-C P

P PSPACE-C if 𝑑 = 3

[Belmonte et al. 2021] (⊆ even-hole-free)

P if 𝑑 ≥ 4

cograph P P

P

[Kamiński et al. 2012] [Bonsma 2016]

claw-free P

unknown

[Bonsma et al. 2014]

tree P P

unknown P

[Demaine et al. 2015] (⊆ even-hole-free)

bipartite permutation P unknown

unknown

[Fox-Epstein et al. 2015]

cactus P P

unknown

[Hoang and Uehara 2016] [Mouawad et al. 2018]

interval P P

unknown P

[Bonamy and Bousquet 2017] (⊆ even-hole-free)

bipartite PSPACE-C NP-C

unknown

[Lokshtanov and Mouawad 2019]

What happen here?

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 4 / 15



Distance-𝑑 Independent Set Reconfiguration (D𝑑ISR)
Graph d = 2 d ≥ 3

TS TJ TS TJ

planar PSPACE-C PSPACE-C
[Hearn and Demaine 2005]

general PSPACE-C PSPACE-C
[Ito et al. 2011]

perfect PSPACE-C PSPACE-C
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Observations



Graph Powers
The 𝑠-th power of a graph 𝐺 is the graph 𝐺𝑠 with 𝑉 (𝐺𝑠) = 𝑉 (𝐺) and
𝐸 (𝐺𝑠) = {𝑢𝑣 : 𝑢, 𝑣 ∈ 𝑉 (𝐺𝑠) = 𝑉 (𝐺) and dist𝐺 (𝑢, 𝑣) ≤ 𝑠}.
𝐼 is a D𝑑IS of 𝐺 ⇔ 𝐼 is an independent set (≡ D2IS) of 𝐺𝑑−1.

Figure: A graph 𝐺 and its 2-nd power 𝐺2.

G2G

d = 3

Observation
MaxD𝑑IS on 𝐺 is YES ⇔ MaxD2IS on 𝐺𝑑−1 is YES.
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Graph Powers

Question

D𝑑ISR under R on 𝐺 is YES
?⇔ D2ISR under R on 𝐺𝑑−1 is YES

Answer
R = TJ: TRUE (edges in 𝐺𝑑−1 are “irrelevant”)
R = TS: FALSE (edges in 𝐺𝑑−1 are “relevant”)

(𝐺, 𝐼, 𝐽, TS, 3): NO (𝐺2, 𝐼, 𝐽, TS, 2): YES
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Remind: Chordal Graphs and Split Graphs
𝐺 is a chordal graph if every cycle 𝐶 on four or more vertices in 𝐺 has a
chord—an edge joining two non-adjacent vertices in 𝐶.
𝐺 is a split graph if 𝑉 (𝐺) can be partitioned into two sets 𝐾 and 𝑆 which
respectively induce a clique and an independent set.
Any split graph is also chordal.

Figure: Examples of graphs that are (not) chordal/split.

chordal: NO
split: NO

chordal: YES
split: NO

chordal: YES
split: YES
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Graphs With Bounded Diameter Components

Proposition 1
Suppose that any component of 𝐺 has diameter at most 𝑐. D𝑑ISR under
R ∈ {TS, TJ} on 𝐺 is in P for any 𝑑 ≥ 𝑐 + 1.

Any D𝑑IS of 𝐺 where 𝑑 ≥ 𝑐 + 1 is of size exactly 1.

Corollary 2
D𝑑ISR under R ∈ {TS, TJ} on split graphs (whose components having diam-
eter ≤ 3) is in P for any 𝑑 ≥ 4.
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General Graphs

Proposition 3
D𝑑ISR under TJ on general graph is PSPACE-complete for any 𝑑 ≥ 3.

Reduction from D2ISR under TJ on general graphs—a PSPACE-complete
whose complexity was shown in [Ito et al. 2011].
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General Graphs
Reduction from D2ISR under TJ on general graphs.

Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 , 𝐽 , TJ, 𝑑) .

Gray vertices are in 𝑉 (𝐺′ ) − 𝑉 (𝐺) .

1 2 3

4 5𝑑 = 2

1 2 3

4 5

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑑 = 3

1 2 3

4 5

𝑑 = 4

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
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1

𝑥12
2

𝑥14
2

𝑥23
2

𝑥24
2 𝑥35

2

𝑥★

Claim 4
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼, 𝐽, TJ, 𝑑) is YES.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 10 / 15



General Graphs
Reduction from D2ISR under TJ on general graphs.

Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 , 𝐽 , TJ, 𝑑) .

Gray vertices are in 𝑉 (𝐺′ ) − 𝑉 (𝐺) .

1 2 3

4 5𝑑 = 2

1 2 3

4 5

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑑 = 3

1 2 3

4 5
𝑑 = 4

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑥12
2

𝑥14
2

𝑥23
2

𝑥24
2 𝑥35

2

𝑥★

Claim 4
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼, 𝐽, TJ, 𝑑) is YES.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 10 / 15



General Graphs
Reduction from D2ISR under TJ on general graphs.

Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 , 𝐽 , TJ, 𝑑) . Gray vertices are in 𝑉 (𝐺′ ) − 𝑉 (𝐺) .

1 2 3

4 5𝑑 = 2

1 2 3

4 5

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑑 = 3

1 2 3

4 5
𝑑 = 4

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑥12
2

𝑥14
2

𝑥23
2

𝑥24
2 𝑥35

2

𝑥★

Claim 4
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼, 𝐽, TJ, 𝑑) is YES.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 10 / 15



General Graphs
Reduction from D2ISR under TJ on general graphs.

Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 , 𝐽 , TJ, 𝑑) . Gray vertices are in 𝑉 (𝐺′ ) − 𝑉 (𝐺) .

1 2 3

4 5𝑑 = 2

1 2 3

4 5

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑑 = 3

1 2 3

4 5
𝑑 = 4

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑥12
2

𝑥14
2

𝑥23
2

𝑥24
2 𝑥35

2

𝑥★

Claim 4
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼, 𝐽, TJ, 𝑑) is YES.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 10 / 15



General Graphs
Reduction from D2ISR under TJ on general graphs.

Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 , 𝐽 , TJ, 𝑑) . Gray vertices are in 𝑉 (𝐺′ ) − 𝑉 (𝐺) .

1 2 3

4 5𝑑 = 2

1 2 3

4 5

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑑 = 3

1 2 3

4 5
𝑑 = 4

𝑥12
1

𝑥14
1

𝑥23
1

𝑥24
1 𝑥35

1

𝑥12
2

𝑥14
2

𝑥23
2

𝑥24
2 𝑥35

2

𝑥★

Claim 4
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼, 𝐽, TJ, 𝑑) is YES.
Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 10 / 15



Chordal Graphs and Split Graphs



Chordal Graphs and Split Graphs

Proposition 5
D𝑑ISR under TJ on chordal graphs is in
(a) P for any even 𝑑 ≥ 2
(b) PSPACE-complete for any odd 𝑑 ≥ 3

(a) Reduce to solving for 𝑑 = 2 on chordal graphs
Any odd power of a chordal graph is also chordal [Balakrishnan and
Paulraja 1983].
D𝑑ISR under TJ on 𝐺 is YES ⇔ D2ISR under TJ on 𝐺𝑑−1 is YES.
D2ISR on chordal graphs is in P [Kamiński et al. 2012].

(b) Reduction from D2ISR under TJ on general graphs—a PSPACE-complete
whose complexity was shown in [Ito et al. 2011].

Similar to the reduction used by Eto et al.’s [Eto et al. 2014] to show
NP-completeness of MaxD𝑑IS on chordal graphs.
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(b) Reduction from D2ISR under TJ on general graphs—a PSPACE-complete
whose complexity was shown in [Ito et al. 2011].

Similar to the reduction used by Eto et al.’s [Eto et al. 2014] to show
NP-completeness of MaxD𝑑IS on chordal graphs.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 11 / 15



Chordal Graphs and Split Graphs

Proposition 5
D𝑑ISR under TJ on chordal graphs is in
(a) P for any even 𝑑 ≥ 2
(b) PSPACE-complete for any odd 𝑑 ≥ 3

(a) Reduce to solving for 𝑑 = 2 on chordal graphs
Any odd power of a chordal graph is also chordal [Balakrishnan and
Paulraja 1983].
D𝑑ISR under TJ on 𝐺 is YES ⇔ D2ISR under TJ on 𝐺𝑑−1 is YES.
D2ISR on chordal graphs is in P [Kamiński et al. 2012].
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Chordal Graphs and Split Graphs
Figure: Reduction (𝐺, 𝐼, 𝐽, TJ, 2) ⇒ (𝐺′ , 𝐼 ′ , 𝐽 ′ , TJ, 𝑑) for odd 𝑑 ≥ 3.

Gray vertices are in
𝑉 (𝐺′ ) − 𝑉 (𝐺) . Vertices in the light-gray box forms a clique. Each dotted path is of length (𝑑 − 3)/2.

1 2 3

4 5

𝐺
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4 5

𝑥12 𝑥14 𝑥23 𝑥24 𝑥35

𝑓 (1) 𝑓 (4) 𝑓 (2) 𝑓 (5) 𝑓 (3)

𝐺′

Claim 6
(𝐺, 𝐼, 𝐽, TJ, 2) is YES ⇔ (𝐺′, 𝐼 ′, 𝐽′, TJ, 𝑑) is YES.
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Chordal Graphs and Split Graphs
Proposition 7

D𝑑ISR under TJ on split graphs is in
(a) PSPACE-complete for 𝑑 = 3
(b) P for any 𝑑 ≠ 3

(a) Consequence of the reduction on chordal graphs.
(b) The case 𝑑 = 2 was proved in [Kamiński et al. 2012]. We observed for

𝑑 ≥ 4 before.

Proposition 8
D𝑑ISR under TS on split graphs is in
(a) PSPACE-complete for 𝑑 = 2
(b) P for any 𝑑 ≥ 3

(a) [Belmonte et al. 2021].
(b) When 𝑑 = 3 and each token-set has at least two members, no token can

be moved. We observed for 𝑑 ≥ 4 before.
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Open Question: Trees



Open Question: Trees

Proposition 9
D𝑑ISR under TJ on trees is in P.

The power of a tree is a chordal graph [Lin and Skiena 1995].
D2ISR under TJ on chordal graphs is in P [Kamiński et al. 2012].

Proposition 10: [Demaine et al. 2015]
D2ISR under TS on trees is in P.

For a D2IS 𝐼 of a tree 𝑇 , Demaine et al. defined (𝑇, 𝐼)-rigid tokens—the
tokens that “cannot be moved at all”.
Crucial points leading to their algorithm:

1 For any D2IS 𝐼, all (𝑇, 𝐼)-rigid tokens can be found in polynomial time.
2 For two D2ISs 𝐼 and 𝐽, if (𝑇, 𝐼)-rigid tokens and (𝑇, 𝐽)-rigid tokens are

the same, then 𝐼 can be reconfigured to 𝐽 under TS and vice versa.

[Not
hold when 𝑑 ≥ 3]
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Open Question: Trees

Observation
There are two D𝑑ISs 𝐼 and 𝐽 (𝑑 ≥ 3) such that 𝐼 cannot be reconfigured to
𝐽 under TS even when the sets of (𝑇, 𝐼)-rigid tokens and (𝑇, 𝐽)-rigid tokens
are both empty.

Figure: 𝐼 cannot be reconfigured into 𝐽 under TS (𝑑 ≥ 3) even when there are no (𝑇, 𝐼 )-rigid and
(𝑇, 𝐽 )-rigid tokens. Tokens in 𝐼 (resp., 𝐽) are marked with the black (resp. gray) color. All tokens are of
distance 𝑑 − 1 from 𝑢.

𝑢

Note
Demaine et al.’s approach cannot be applied.
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independent set reconfigurability problems”. In: Theoretical Computer
Science 439, pp. 9–15. doi: 10.1016/j.tcs.2012.03.004.
Ito, T., E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri,
R. Uehara, and Y. Uno (2011). “On the complexity of reconfiguration
problems”. In: Theoretical Computer Science 412.12-14,
pp. 1054–1065. doi: 10.1016/j.tcs.2010.12.005.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 15 / 15

https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1007/s10878-012-9594-4
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2010.12.005


References

Hearn, R. A. and E. D. Demaine (2005). “PSPACE-completeness of
sliding-block puzzles and other problems through the nondeterministic
constraint logic model of computation”. In: Theoretical Computer
Science 343.1-2, pp. 72–96. doi: 10.1016/j.tcs.2005.05.008.
Lin, Y.-L. and S. S. Skiena (1995). “Algorithms for square roots of
graphs”. In: SIAM Journal on Discrete Mathematics 8.1, pp. 99–118.
doi: 10.1137/S089548019120016X.
Kong, M. and Y. Zhao (1993). “On computing maximum 𝑘-independent
sets”. In: Congressus Numerantium 95, pp. 47–47.
Balakrishnan, R. and P. Paulraja (1983). “Powers of chordal graphs”. In:
Journal of the Australian Mathematical Society 35.2, pp. 211–217. doi:
10.1017/S1446788700025696.
Garey, M. R. and D. S. Johnson (1979). Computers and intractability: A
guide to the theory of NP-completeness. W.H. Freeman and Company.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 15 / 15

https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1137/S089548019120016X
https://doi.org/10.1017/S1446788700025696


References

Gavril, F. (1972). “Algorithms for minimum coloring, maximum clique,
minimum covering by cliques, and maximum independent set of a
chordal graph”. In: SIAM Journal on Computing 1.2, pp. 180–187. doi:
10.1137/0201013.

Duc A. Hoang (VNU-HUS, KyotoU) D𝑑IS Reconfiguration March 22–24, 2023 15 / 15

https://doi.org/10.1137/0201013

	Distance-d Independent Set Reconfiguration (DdISR)
	Observations
	Graph Powers
	Graphs With Bounded Diameter Components

	General Graphs
	Chordal Graphs and Split Graphs
	Open Question: Trees
	References
	References

