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Moving Tokens on Graphs



Token Reconfiguration in a Graph

• A token (coin) is placed at each vertex of a vertex-subset
X of a graph. A rule R of moving tokens is given.

• Checking if a token-set X is obtained from another
token-set Y by applying R exactly once can be done in
polynomial time.

• Each set of tokens X satisfies some property P
• Checking if X satisfies P can be done in polynomial time.

Example: 15-puzzle

• X : fifteen labeled tokens,
and one unlabeled token.

• R: Swap the unlabeled
token with an adjacent
labeled one.
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Token Reconfiguration in a Graph

Given: two sets of tokens X,Y (both satisfy P )
Question: decide if there exists a sequence of token-sets

(X1, X2, . . . , Xℓ), X1 = X , Xℓ = Y (all Xi satisfy
P for i ∈ {1, 2, . . . , ℓ}) between X and Y such
that Xi is obtained from Xi−1 by applying R ex-
actly once to the tokens inXi−1 (i ∈ {2, 3, . . . , ℓ})
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Token Reconfiguration in a Graph

Token Reconfiguration can be used in planning robot motion.

• Graph Motion Planning with One Robot (GMP1R)
[Papadimitriou et al. 1994]

• It is NP-complete to decide if a solution of length k exists
in a general graph.

• Multi-Robot Path Planning (for example, see [Ryan 2007])
• The path length should be minimized.
• Robots may need to “detour away” from their shortest
paths to let other robots pass.



Some Other Reconfiguration Problems

Token Reconfiguration is a reconfiguration problem.

(a) Sliding-Block Puzzle (b) Rubik’s Cube

(c) Frequency Re-Assignment (d) Rush Hour



Learn More About Reconfiguration

Surveys on Reconfiguration
Jan van den Heuvel (2013). “The Complexity of Change.” In:
Surveys in Combinatorics. Vol. 409. London Mathematical
Society Lecture Note Series. Cambridge University Press,
pp. 127–160. doi: 10.1017/CBO9781139506748.005
Naomi Nishimura (2018). “Introduction to Reconfiguration.”
In: Algorithms 11.4. (article 52). doi: 10.3390/a11040052

Online Web Portal (maintained by Takehiro Ito)
http://www.ecei.tohoku.ac.jp/alg/core/

https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.3390/a11040052
http://www.ecei.tohoku.ac.jp/alg/core/


Reconfiguration of Independent Sets



Independent Set Reconfiguration in a Graph

… is Token Reconfiguration where

• Each token-set X forms an independent set, i.e., no two
tokens in X are connected by an edge.

• The rule R can be:
• Token Sliding (TS) [Hearn and Demaine 2005]: A token can
only be moved to one of its (unoccupied) neighbors.

• Token Addition and Removal (TAR(k)) [Ito et al. 2011]: One
can either add or remove a token such that the number of
remaining tokens is at least k.

• Token Jumping (TJ) [Kamiński et al. 2012]: A token can be
moved to any unoccupied vertex.



Independent Set Reconfiguration in a Graph
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Independent Set Reconfiguration in a Graph

One can also form the corresponding reconfiguration graph.

• Each token-set is a vertex.
• Two token-sets X,Y are adjacent if one can be obtained
from the other by applying R (TS/TAR(k)/TJ) exactly
once.
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Independent Set Reconfiguration in a Graph

One can also form the corresponding reconfiguration graph.

• Each token-set is a vertex.
• Two token-sets X,Y are adjacent if one can be obtained
from the other by applying R (TS/TAR(k)/TJ) exactly
once.

One may ask

• Reachability: a path between two vertices of a
reconfiguration graph?

• Shortest Reconfiguration: find a shortest path (if exists)
between two vertices of a reconfiguration graph?

• Connectivity: a reconfiguration graph is connected?
• Diameter: the diameter of a reconfiguration graph is
bounded?



Why Independent Sets?

• If all tokens are identical and we have no restriction on the
tokens.

Theorem (Heuvel 2013)
One can decide in polynomial time whether it is possible to
transform a token-set X into another token-set Y using at most
N TS-moves.

• If there is exactly one special token and other tokens are
identical.

Theorem (Heuvel 2013)
It is NP-complete to decide whether it is possible to transform a
token-set X into another token-set Y using at most N
TS-moves.

• So, what happen when all tokens are identical and satisfy
some additional property (say, independent)?
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Independent Set and its reconfiguration variants

• The Independent Set problem asks if there exists an
independent set of size at least k in a given graph.

Graph Independent Set Independent Set Reconf.1

general NP-complete [Garey and
Johnson 1979]

PSPACE-complete [Ito et
al. 2011]

perfect P [Grötschel et al. 1981] PSPACE-complete
[Kamiński et al. 2012]

interval P [Frank 1975] P [Kamiński et al. 2012;
Bonamy and Bousquet
2017]

Unknown2 NP-hard P

1In all problems, the Reachability question is considered.
2This open question was first proposed in [Kamiński et al. 2012]



Complexity under TS/TJ/TAR

Theorem (Kamiński et al. 2012)
TAR and TJ are equivalent, in the sense that, given two
independent sets I, J of size k of a graph G,

(a) From a TJ-sequence between I and J , one can construct a
TAR(k − 1)-sequence between I and J .

(b) From a TAR(k − 1)-sequence between I and J , one can
construct a TJ-sequence between I and J .



Complexity under TS/TJ/TAR

Graph TS TAR/TJ

planar PSPACE-complete
[Hearn and De-
maine 2005]

PSPACE-complete
[Hearn and De-
maine 2005]

cograph (P4-free) P [Kamiński et al.
2012]

P [Bonsma 2014]

bipartite PSPACE-complete
[Lokshtanov and
Mouawad 2018]

NP-complete
[Lokshtanov and
Mouawad 2018]

split PSPACE-complete
[Belmonte et al.
2018]

P [Kamiński et al.
2012]

In all problems, the Reachability question is considered.



Detour of token(s)

• Under TS, sometimes a token needs to make detour.

TS TS TSTS

• This makes the problem of finding a shortest
TS-sequence between two independent sets (if exists)
quite challenging, even on a tree.

• Very recently, K. Sugimori (University of Tokyo) announced
at AAAC 2018 (the 11th Annual Meeting of the Asian
Association for Algorithms and Computation) that the
problem can be solved in polynomial time for trees.

• To the best of our knowledge, it is unknown whether the
problem can be solved efficiently when the given graph
contains cycle(s).



Detour of token(s)

• Under TS, sometimes a token needs to make detour.

TS TS TSTS

• This makes the problem of finding a shortest
TS-sequence between two independent sets (if exists)
quite challenging, even on a tree.

• Very recently, K. Sugimori (University of Tokyo) announced
at AAAC 2018 (the 11th Annual Meeting of the Asian
Association for Algorithms and Computation) that the
problem can be solved in polynomial time for trees.

• To the best of our knowledge, it is unknown whether the
problem can be solved efficiently when the given graph
contains cycle(s).



Detour of token(s)

• Under TS, sometimes a token needs to make detour.

TS TS TSTS

• This makes the problem of finding a shortest
TS-sequence between two independent sets (if exists)
quite challenging, even on a tree.

• Very recently, K. Sugimori (University of Tokyo) announced
at AAAC 2018 (the 11th Annual Meeting of the Asian
Association for Algorithms and Computation) that the
problem can be solved in polynomial time for trees.

• To the best of our knowledge, it is unknown whether the
problem can be solved efficiently when the given graph
contains cycle(s).



Detour of token(s)

• Under TS, sometimes a token needs to make detour.

TS TS TSTS

• This makes the problem of finding a shortest
TS-sequence between two independent sets (if exists)
quite challenging, even on a tree.

• Very recently, K. Sugimori (University of Tokyo) announced
at AAAC 2018 (the 11th Annual Meeting of the Asian
Association for Algorithms and Computation) that the
problem can be solved in polynomial time for trees.

• To the best of our knowledge, it is unknown whether the
problem can be solved efficiently when the given graph
contains cycle(s).



Hardness with small graph parameters

Theorem (Wrochna 2014)
Independent Set Reconfiguration remains PSPACE-complete
even for graphs of bandwidth at most c, for some constant c.

• The bandwidth bw(G) of a graph G is defined as follows

bw(G) = min
f

max
uv∈E(G)

|f(u)− f(v)|,

where f : V (G) → {1, 2, . . . , |V (G)|} represents a way of
labeling vertices of G with integers from 1 to |V (G)|..

• It is well-known that c is very large, but to the best of our
knowledge, it is unknown how large c is.

• To the best of our knowledge, it is unknown whether the
problem can be solved efficiently even for graphs of
bandwidth 2.
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Open Problems



Open Problems

Problem 1
Is there any graph class G such that Independent Set for G is
NP-hard, while some variant of Independent Set
Reconfiguration for G is in P?

Conjecture
G is even-hole-free, i.e., for a graph G ∈ G, G contains no
induced n-cycles for n ≥ 4.



Open Problems

Problem 2
What is the complexity of deciding if there is a TS-sequence
containing at most N moves between two independent sets
when the given graph contains cycle(s)?

Conjecture
The problem of deciding if there is a TS-sequence containing
at most N TS-moves between two independent sets is
NP-hard for cactus graphs.



Open Problems

Problem 3
What is the complexity of Independent Set Reconfiguration
for graphs of bandwidth 2?

Conjecture
Independent Set Reconfiguration for graphs of bandwidth 2

can be solved in polynomial time.



Thank you very much for your attention!
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