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Combinatorial A QuiCk NOte

Reconfiguration

Hoang Anh D > We talk about decision problems (output YES or NO)
> Complexity Classes (time (# steps) and space (# memory
A Quick Note cells) are w.r.t length of the input)

» P: Problems can be “solved efficiently” in polynomial time

» NP: Problems can be “verified efficiently” in polynomial
time

» PSPACE: Problems can be “solved efficiently” in
polynomial space

PSPACE-complete “more difficult”
PSPACE
PSPACE-hard

NP-complete “difficult”

w NP-hard

“easy”

Provided that P C NP C PSPACE

Figure: Complexity Classes P, NP, and PSPACE
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A Quick Note

A Quick Note

NP-hard

PSPACE-hard

=B

polynomial

,

)

7,

1
! >
computational
difficulty

“easy” problem

any instance can be solved
in polynomial time

“hard” problem

some instance cannot be solved
in polynomial time (unless P = NP)
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Combinatorial A Brief Overview of Reconfiguration

Reconfiguration

Hoang Anh Ditc Reconfiguration Setting

> A description of what states (= configurations) are

> One or more allowed moves between states (=
reconfiguration rule(s))

Reconfiguration
AL
W%

Rubik’s cube ——

A&»

sliding coins
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Figure: Reconfiguration [Anna Lubiw, CoRe2019] 5/24
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Combinatorial A Brief Overview of Reconfiguration

Reconfiguration

Hoang Anh Diic
Two major viewpoints

asS a process or as a graph

Reconf. Reconf. Example
Process Graph RuBIK’S CUBE
state node
move edge

[reconf. rule]

seq. of moves path
[reconf. sequence]

Figure: Combinatorial Reconfiguration
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Combinatorial A Brief Overview of Reconfiguration

Reconfiguration

Hoang Anh Diic . . .
Two major directions

Algorithmic and Graph-Theoretic

> Algorithmic Questions
» REACHABILITY: Given two states S and T, is there a
sequence of moves that transforms S into T'? [One of
the most considered questions]
% SHORTEST TRANSFORMATION: Given two states S and
T and some positive integer ¢, is there a sequence of
moves that transforms S into T' using at most ¢ moves?
> CONNECTIVITY: Is there a sequence of moves between
any pair of states?
% and so on
> Graph-Theoretic Questions
» GRAPH PROPERTIES: Is the reconfiguration graph
connected? bipartite? Eulerian? Hamiltonian?, and so on
» GRAPH CLASSIFICATION: Does the reconfiguration graph
belong to some specific graph class (e.g., planar graphs,
perfect graphs, etc.)?
»> and so on

7/24



Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

Reconfiguration vs. Solution Space

> States: are feasible solutions of a computational problem

> Reconfiguration rule: describes “small” changes in a
feasible solution

Hoang Anh Dic

Theoretical Motivation

| SAT formula ¢ = (z Ay) V z |

State = Feasible Solution (assignment of variables (,y, z) makes ¢ true)

Reconfiguration Rule: flip exactly one bit

000 001 000 001
O O

O O O
110 111 110 111 110 111
Search Problem Reconfiguration Problem Enumeration Problem
Check if at least one Find a sequence of List all feasible solutions
feasible solution exists adjacent feasible solutions
among 2" candidates among 2" candidates among 2" candidates
for n variables for n variables for n variables

Note: In Reconfiguration Problem, we do NOT know which ones among the other
2" — 2 candidates are feasible solutions 8/24




Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

[Gopalan, Kolaitis, Maneva, and Papadimitriou 2009]
> ... studied structural and connectivity-related properties of
the space of solutions of Boolean satisfiability problems

Theoretical Motivation

SIAM J. COMPU?
Vol. 38, No. 6, pp.

(© 2009 Society for Industrial and Applied Mathematics

THE CONNECTIVITY OF BOOLEAN SATISFIABILITY:
COMPUTATIONAL AND STRUCTURAL DICHOTOMIES*

PARIKSHIT GOPALANT, PHOKION G. KOLAITIS!, ELITZA MANEVA!, AND
CHRISTOS H. PAPADIMITRIOUY

Abstract. Boolean satisfiability problems are an important benchmark for questions about
complexity, algorithms, heuristics, and threshold phenomena. Recent work on heuristics and the
satisfiability threshold has centered around the structure and connectivity of the solution space.
Motivated by this work, we study structural and connectivity-related properties of the space of
solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer’s framework.
On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well as for the diameter of the connected components
of the solution space. On the computational side, we establish dichotomy theorems for the complexity
of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our
results assert that the intractable side of the computational dichotomies is PSPACE-complete, while
the tractable side—which includes but is not limited to all problems with polynomial-time algorithms
for satisfiability—is in P for the st-connectivity question, and in coNP for the connectivity question.
The diameter of components can be exponential for the PSPACE-complete cases, whereas in all
other cases it is linear; thus, diameter and complexity of the connectivity problems are remarkably
aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the
subgraphs induced by the solution space possess certain good structural properties, whereas in the
intractable cases, the subgraphs can be arbitrary.

Key words. Boolean satisfiability, computational complexity, PSPACE, PSPACE-completeness,
dichotomy theorems, graph connectivity

9/24



Combinatorial
Reconfiguration

Hoang Anh Diic

Theoretical Motivation

Understanding Solution Space and
Complexity of Problems

[Ito et al. 2011]
... find a step-by-step transformation between two feasible

>

solutions of a problem such that all intermediate results
are also feasible

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the complexity of reconfiguration problems

Takehiro Ito**, Erik D. Demaine®, Nicholas J.A. Harvey ¢, Christos H. Papadimitriou d
Martha Sideri®, Ryuhei Uehara', Yushi Uno®

* Graduate School of Information Sciences, Toloku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

© MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge. MA 02139, USA

< Department of Combinatorics and Optimization, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
4 Computer Science Division, University of California at Berkeley, Soda Hall 689, EECS Department, Berkeley, CA 94720, USA

© Department of Computer Science, Athens University of Economics and Business, Patision 76, Athens 10434, Greece

“School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

% Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531. Japan

ARTICLE INFO ABSTRACT

Article history: Reconfiguration problems arise when we wish to find a step-by-step transformation

Received 30 May 2010 between two feasible solutions of a problem such that all intermediate results are

;STD"'“ in revised form 26 November also feasible. We that a host of rec I problems derived from
NP-complet PSPACE lete, Iso NP-hard i

Accepted 3 December 2010 b l"'( ral reconfigucat e £ probl P la'hl f 1

Comtmunicated by ). Dias In contrast several reconfiguration versions of roblems in P ae solvabe i polynomia
ime.

Keywords ©2010 Elsevier B.V. All rights reserved.

Approximation
Graph algorithm
e
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Understanding Solution Space and
Complexity of Problems

Theoretical Motivation

[Ito et al. 2011]

> ... find a step-by-step transformation between two feasible

solutions of a problem such that all intermediate results
are also feasible

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the complexity of reconfiguration problems

Takehiro Ito**, Erik D. Demaine®, Nicholas J.A. Harvey ¢, Christos H. Papadimitriou d
Martha Sideri®, Ryuhei Uehara', Yushi Uno®

> Showed that several classic NP-complete problems have
PSPACE-complete reconfiguration variants
» Deciding the “reachability” between solutions of a
“difficult” problem may sometimes be “more difficult”
than the problem itself

> Named the area “Reconfiguration”. Opened new research
directions

D/24




Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

Theoretical Motivation PSPACE-complete  “more difficult”
QUANTIFIED SAT
PSPACE-hard

NP[3SAT NP-hard

“easy”

Provided that P C NP C PSPACE

Figure: Using problems to “characterize” complexity classes

NP-complete “difficult”
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Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems
Theoretical Motivation INDEPENPEN’I.‘ i IR | —— PSPACE-complete  “more difficult”
on bipartite graphs
under TS PSPACE-hard
INDEPENPENT. ST IRGIoRTT NP-complete “difficult”
on bipartite graphs
under TJ/TAR NP-hard

/ m “easy”

INDEPENDENT SET RECONF.
on bipartite graphs having no cycles
under TS/TJ/TAR

Mvided that P C NP C PSPACE

Figure: Using problems to “characterize” complexity classes
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Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

INDEPENDENT SET RECONF.
on bipartite graphs
under TS

| —— PSPACE-complete  “more difficult”

Theoretical Motivation

PSPACE-hard

INDEPENDENT SET RECONF. NP-complete “difficult”

on bipartite graphs
under TJ/TAR NP-hard
A breakthrough

[SODA 2018] / m “casy”

INDEPENDENT SET RECONF.
on bipartite graphs having no cycles
under TS/TJ/TAR

Mvided that P C NP C PSPACE

Figure: Using problems to “characterize” complexity classes

Daniel Lokshtanov and Amer E. Mouawad (2019). “The Complexity
of Independent Set Reconfiguration on Bipartite Graphs”. In: ACM
Transactions on Algorithms 15.1, 7:1-7:19. por: 10.1145/328082151/24
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Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

Reconfiguration provides new powerful tools for proving the
Theoretical Motivation hardness of a prob/em

> One of such tools is the Nondeterministic Constraint Logic
(NCL), first introduced in [Hearn and Demaine 2005]

line at www. m

SCIENCE @DIIEG" Theoretical
Computer Science

G ames Pu ZZIeS ELSEVIER Theoretical Computer Science 343 (2005) 72-96
&Computation

Robert A. Hearn
Erik D. Demaine

www.elsevier.com/locate/tcs

PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic
constraint logic model of computation

Robert A. Hearn*, Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA

Abstract

We presenta model of based on reversing edge directions in weighted
directed graphs with minimum in-flow constraints on vertices. Deciding whether this simple graph
model can be manipulated in order to reverse the direction of a particular edge is shown to be PSPACE-
complete by a reduction from Quantified Boolean Formulas. We prove this resultin a variety of special
cases including planar graphs and highly restricted vertex configurations, some of which correspond
10 a kind of passive constraint logic. Our framework is inspired by (and indeed a generalization of)
the “Generalized Rush Hour Logic™ developed by Flake and Baum [Theoret. Comput. Sci. 270(1-2)

(2002) 895]. 12/24
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Combinatorial Understanding Solution Space and

Reconfiguration

Complexity of Problems

> Input:

» Each state/configuration involves a graph having red
(weight 1) and blue (weight 2) edges where each edge is
oriented such that (*) the sum of weights of in-coming
arcs at each vertex is at least 2

» Reconfiguration Rule: Each move involves re-orienting
an edge such that (*) is satisfied

Theoretical Motivation

> Question: |s there a sequence of moves that transforms
one given configuration into another? (PSPACE-complete
even on planar graphs having only two types of vertices)

e

) AND vertex ) OR vertex

(a) An NCL configuration

13/24
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Theoretical Motivation An Application Of NCL

RusH HOUR (the puzzle, not the movie) is PSPACE-complete

%,g %

THE rasTEST

I THE BIGGEST
IMEET  MOUTH IN
THE WEST.



https://boardgamereview.co.uk/wp-content/uploads/2020/11/Rush-Hour-Puzzle-Game-1024x1024.png
https://images06.kaleidescape.com/transformed/covers/1134x1624s/167/16752869.jpg
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Theoretical Motivation

Understanding Solution Space and
Complexity of Problems

[Flake and Baum 2002]

Reduce from QUANTIFIED
SAT. Use 3 “primitive
devices” and more
complicated ‘gadgets” built
from the ‘devices”

Theoretical
Computer Science

Theoretcal Compater Scence 270 (2002) 895-911

Mathematical Games
Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants™

Gary William Flake*, Eric B. Baum

NEC Rescarch Insiate. 4 Indeperdence Way. Princcron, NJ 08540, USA

Reccived June 1999 svised Febnury 2001 sccepid February 2001
Commnicaed by A, Frcnke

Abstract

Rush Hour is a children’s game that consists of 2 grid bourd, several cars 1

o move cither vericlly or harizorsally (but not both), & special target car, and
th prinste of the . Thegos ofthe game i 0 i seqencs of el moves Lt slows
o ightly a

he grid. We consider a s veron of e

an legally exit the grid is PSPACE-
il revensible logic such that move.

Emulating this logic only requires three types of devices (two switches and one crossover), hus,
our proof technique can be casily generalzed to other games and planning problems in which
e Fam b primi deviee ein b comsiuted. © 2003 Fscvier Senee B, Al rights
reserved.

Keywords: Games; PSPACE-completencss; Reversible logie; Motion planing; Dual-ral logic

[Hearn and Demaine 2005]

Reduce from NCL. Use
2 'gadgets”

o0 RA. Hearn, E.D. Demaine / Theoretical Computer Science 343 (2005) 72-96,

'Eﬁhzﬂ ‘ o :J_j_. ‘ m":
F

@ ® ©

Fig. 14, Rush Hour ayout and ver

adgets. (s) Layout. (b) AND. () Protected Or.

‘eneric crossover construction (Section 3.2), we do not need a crossover
do not need the miscellancous wiring gadgets used in [4].)

Rush Hour layout. e tile the grid with our vertex gadgets. as shown in Fig. 14(a). One
block (T) s the target, which must be moved to the bottom left comer; it is released when
apr ticular port block slides into a vertex.

-colored blocks represent the “cell walls”, which unlike in our lding-blocks con-
t shared. They are arranged so that they may
izger” blocks, whose motion serves to satisfy the vertex constraints. M
colored blocks are fillers: some of them may move, but they do not disrupt the vertices™
operation.

As in the sliding-blocks construction, edges are directed inward by sliding blocks out of
the vertex gadgets: edges are directed outward by slidi
10 port block may ever slide out into an adjacent vertesx: this helps keep the cell walls fixed.

structior
blocks are “tri

dium-

15/24



Combinatorial Real-World Applications

Reconfiguration

Hoang Anh Dic Robot Motion Planning

[Murata, Kurokawa, and Kokaji 1994]

Real-World Applications Self-Assembling Machine

Satoshi Murata, Haruhisa Kurokawa, Shigeru Kokaji
Mechanical Engineering Laboratory, AIST, MITI
1-2 Namiki, Tsukuba, 305 JAPAN

Abstract - The design of a machine which is d of h because of geometrical
h ical units is described. We show the constraints. Therefore, only a few examples of this kind
design of both hardware and control software of the unit. exist. Kokaji [1] made a link locomotion mechanism called
Each unit can connect with other units and change the a“fractal machine” by using homogeneous link units. It has
connection by itself. In spite of its simple mechanism, a set a recursive structure like Sherpinski’s gasket, and the size

We of the machine can be changed by adding/subtracting units.

Tha rannaction hatwesn nnite hawavar o fivad in tha

of these units realizes various mechanical function.
developed control software of the u-:+ -+~
“self-assembly," one of the basic
machine. A set of these units can form
whole system by themselves. The §
information about local geome:
communication, and cooperate 1o for.
through a diffusion-like process. Ther
controller to supervise these units, a
each unit is completely the same. Thre,
been built to test the basic movements,
self-assembly has been verified by coi
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Real-World Applications

Real-World Applications

Robot Motion Planning
A recent research presented at SWAT (Scandinavian

Symposium and Workshops on Algorithm Theory) 2024
Sliding (Hyper-)Cubes [Kostitsyna et al. 2024]

> Each configuration is a connected collection of n robot
units (= lattice-aligned unit (hyper-)cubes)
> Reconfiguration rule: Slide or Rotation

aE2 B P

> Given two configurations, is there a sequence of moves
that transforms one configuration into the other?

> First universal (= “always yes") result for 2D sliding model
is in [Dumitrescu and Pach 2006]
> Other variants

» Change shapes
» Change rules (= types of allowed movements) 17/24



Real-World Applications

Robot Motion Planning
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Real-World Applications
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https://www.youtube.com/watch?v=cRn-ZRu0Z18
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Combinatorial Real-World Applications

Reconfiguration

Hoang Anh Diic Robot Motion Planning

Real-World Applications

Mithews

P> Pl O 003741

Small cubes that self-assemble

https://www.youtube.com/watch?v=6aZbJS6LZbs

19/24
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For Motivating You Further

For Motivating You Further

A nice and inspiring introduction to Reconfiguration in Graph
Coloring (and other contexts) by Prof. Ruth Haas (U. Hawaii)
at the NCUWM (Nebraska Conference for Undergraduate

Women in Mathematics) 2021

5 2021 NCUWM Plenary 2: Ruth Haas.

Reconfiguration

Ruth Haas, U. Hawaii

January 2021

https://www.youtube. com/watch?v=gApwRCEC89Q

20/24
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Combinatorial For Motivating You Further

Reconfiguration

Hoang Anh Difc

An inspiring talk in 2021 by Robert A. Hearn—one of the
authors who introduced NCL [Hearn and Demaine 2005]

For Motivating You Further

G Gathering 4 Gardner.

Celebration of Mind

Reconfiguration

How Martin Gardner Inspired an Area of
Theoretical Computer Science

Bob Hearn

https://www.youtube.com/watch?v=4cWVjhBTDSY

21/24
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A more technical introduction at WALCOM (International
Conference and Workshops on Algorithms and Computation)
2022 about Reconfiguration by Prof. Takehiro Ito (Tohoku
Univ.)—one of the leading experts in this area

WALCOM 2022 The 16th International Conference and Workshops on Algorithms and Comput.. @ 4

R

Invitation to
Combinatorial Reconfiguration

nle E@@”m

Takehiro ITO
Tohoku University, Japan

https://youtu.be/gurIyuT3F8uw?t=21308

22/24
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Mathematics and Art: Unifying Perspectives 1 8

Heather M. Russell and Radmila Sazdanovic
Heather M. Russell and Radmila Sazdanovic (2021). “Mathematics
and Art: Unifying Perspectives”. In: Handbook of the Mathemat-
ics of the Arts and Sciences. Ed. by Bharath Sriraman. Springer,
pp. 497-525. DOI: 10.1007/978-3-319-57072-3_125

For Motivating

Contents

Introduction

um. . .

n Artistic Tool and M
y of Art, Culture, and Mathematics
themati

5 4

Examples of G
Unifying Perspectives
Conclusion

Abstract

In this chapter, we explore the interconnection of mathematics and art. We
discuss mathematics as a lens to understand artwork and investigate how math-
ematical thinking and mathematical tools contribute to the process of creating
art. Turning then to the manifestation of art within mathematics, we introduce
ideas and constructions from mathematical graph theory that can be appreciated

23/24
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el Surveys and Wiki Page

Reconfiguration

Rt o Bz > General Surveys

» Jan van den Heuvel (2013). "The Complexity of Change.
In: Surveys in Combinatorics. Vol. 409. London
Mathematical Society Lecture Note Series. Cambridge
University Press, pp. 127-160. DoOTI:
10.1017/cbo9781139506748.005

» Naomi Nishimura (2018). “Introduction to
Reconfiguration”. In: Algorithms 11.4, p. 52. DOTI:
10.3390/211040052

> Surveys on Specific Problems

» C.M. Mynhardt and S. Nasserasr (2019).
“Reconfiguration of Colourings and Dominating Sets in
Graphs”. In: 50 years of Combinatorics, Graph Theory,
and Computing. Ed. by Fan Chung et al. 1st. CRC Press,
pp. 171-191. por: 10.1201/9780429280092-10

» Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura,
and Sebastian Siebertz (2024). “A survey on the
parameterized complexity of reconfiguration problems".
In: Computer Science Review 53. (article 100663). DO
10.1016/j.cosrev.2024.100663

> Online Wiki: http://reconf.wikidot.com/
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Thanks for
your attention!
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