# A LaTeXML Demo

#### Duc A. Hoang

#### July 16, 2022

#### Abstract

This document is a test to see how things look like when combining HTML files generated with LaTeXML and Jekyll posts. This page contains a nice overview on how to use LaTeXML. Other versions of this document are available:

- HTML.
- TeX source.

### Contents

| 1        | Math formulas                                                                |                    |  |
|----------|------------------------------------------------------------------------------|--------------------|--|
| <b>2</b> | Theorems, Lemmas, etc                                                        | 2                  |  |
| 3        | Algorithm                                                                    | 2                  |  |
| 4        | Cross references4.1Test 1 of subsection4.2Test 2 of subsection and paragraph | <b>2</b><br>2<br>2 |  |
| 5        | Figure                                                                       | 3                  |  |
| 6        | ables 3                                                                      |                    |  |
| 7        | Source Code                                                                  |                    |  |
| 8        | References and Citation                                                      |                    |  |
|          |                                                                              |                    |  |

#### 1 Math formulas

Unordered list

- Inline formula:  $E = mc^2$ .
- Another formula: The equation  $ax^2 + bx + c = 0$  has at most two roots.

Ordered list

1. Element 1

- 2. Element 2
- 3. Element 3

Equation

$$E = mc^2 \tag{1.1}$$

$$\sqrt[3]{x^2 + 4x + 4} = ?$$

## 2 Theorems, Lemmas, etc

**Theorem 2.1** (Basic Theorem). We always have  $\mathcal{A} = \dots$  and  $\mathbb{N} \subseteq \mathbb{Z}$ 

*Proof.* It is well-known that ...

**Exercise 2.2.** In this exercise, we apply Theorem 2.1 to ...

### 3 Algorithm

Here is an example of an algorithm.

```
      Algorithm 1 An example algorithm

      Input: The inputs are ...

      Output: The outputs are ...

      1: A statement

      2: if The above statement is true then

      3: Do something

      4: else

      5: Do nothing
```

6: end if7: return something

Algorithm 1 computes ...

### 4 Cross references

As in Algorithm 1, we have ...

#### 4.1 Test 1 of subsection

This is an illustration of a subsection. This is an illustration of a subsection.

#### 4.2 Test 2 of subsection and paragraph

In this section, we will ... This is an illustration of a subsection. This is an illustration of a subsection. This is an illustration of a subsection.

**Test paragraph** This is an illustration of a paragraph. This is an illustration of a paragraph. This is an illustration of a paragraph.

## 5 Figure

A figure



Figure 1: A figure

Another figure taken from the sample llncs class.



Figure 2: A figure from llncs included with \includegraphics.

## 6 Tables

| Number | Description |
|--------|-------------|
| 1      | One         |
| 2      | Two         |
| 3      | Three       |

Table 1: A table.

| multi-row   | 1 | 2 | 3 |
|-------------|---|---|---|
| IIIuiti-iOw | 4 | 5 | 6 |
|             | 7 |   |   |

Table 2: A table with multi-row and multi-column.

| GG&A Hoofed Stock       |          |                                       |  |  |  |  |
|-------------------------|----------|---------------------------------------|--|--|--|--|
|                         | Price    |                                       |  |  |  |  |
| Year                    | low high | Comments                              |  |  |  |  |
| 1971                    | 97-245   | Bad year.                             |  |  |  |  |
| 72                      | 245-245  | Light trading due to a heavy winter.  |  |  |  |  |
| 73 245–2001 No gnus was |          | No gnus was very good gnus this year. |  |  |  |  |

Table 3: An example from LaTeXML Examples Page.

### 7 Source Code

Using verbatim environment.

```
\begin{table}[!ht]
\begin{tabularx}{\textwidth}{|X|X|}
\hline
Number & Description\\
\hline
1 & One \\
2 & Two \\
3 & Three \\
\hline
\end{tabularx}
\caption{A table.}
\end{table}
```

Using listing package.

```
import numpy as np
1
2
3
  def incmatrix(genl1,genl2):
4
      m = len(genl1)
5
      n = len(gen12)
6
      M = None #to become the incidence matrix
7
      VT = np.zeros((n*m,1), int) #dummy variable
8
9
       #compute the bitwise xor matrix
10
      M1 = bitxormatrix(genl1)
11
      M2 = np.triu(bitxormatrix(genl2),1)
12
13
       for i in range(m-1):
           for j in range(i+1, m):
14
15
               [r,c] = np.where(M2 == M1[i,j])
16
               for k in range(len(r)):
                   VT[(i)*n + r[k]] = 1;
17
                   VT[(i)*n + c[k]] = 1;
18
                   VT[(j)*n + r[k]] = 1;
19
20
                   VT[(j)*n + c[k]] = 1;
21
22
                   if M is None:
23
                        M = np.copy(VT)
24
                   else:
```

```
25 M = np.concatenate((M, VT), 1)
26 27 VT = np.zeros((n*m,1), int)
28 29 return M
```



### 8 References and Citation

See [2], or [3], or [1].

### References

- [1] Jane Doe. Another paper. In *Proceedings of some great conferences*. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
- [2] John Doe. An interesting article. Journal of nice papers, 10(1):1–20, 2018. doi: 10.1007/xxxxxx.
- [3] John Smith and Jane Doe. A nice preprint. arXiv preprint, 2018.