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Prof. Ertel’s Lectures at Ravensburg-Weingarten University in
2011

https://youtu.be/IW-HI0Pqgsk&t=4455 (Computing
with Probabilities)
https://youtu.be/wbbAA8og4D8 (Computing with
Probabilities, The Principle of Maximum Entropy)
https://youtu.be/MWAWjCUuDUs (The Maximum Entropy
Method)
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Method, LEXMED)
https://youtu.be/xfv8xIk1-x4 (LEXMED, Reasoning
with Bayesian Networks)
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Introduction
Recall: The Flying Penguin Example

1. Tweety is a penguin
2. Penguins are birds
3. Birds can fly

Formalized in PL1, the
knowledge base KB is:

penguin(tweety)
penguin(x) ⇒ bird(x)

bird(x) ⇒ fly(x)

It can be derived (for example, by resolution): fly(twetty).
If penguin(x) ⇒ ¬fly(x) (= “Penguins cannot fly”) is added to
the knowledge base KB, then ¬fly(twetty) can also be derived.

⇒ The knowledge base is inconsistent . (Because the logic is
monotonic; i.e., new knowledge can not void old knowledge.)
⇒ Probabilistic Logic is useful.

Formalize the statement “Nearly all birds can fly” (e.g., “99% of
all birds can fly”).
Correctly carry out inferences on it.
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Introduction

Reasoning with uncertain or incomplete knowledge is
important

In everyday situations and also in many technical
applications of AI, heuristic processes are very important .

Example: Use heuristic techniques when looking for a
parking space in city traffic.

Heuristics alone are often not enough, especially when a
quick decision is needed given incomplete knowledge.

Let’s just sit back
and think about
what to do!
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Introduction

Example 1
If a patient experiences pain in the right lower abdomen and a
raised white blood cell (leukocyte) count, this raises the
suspicion that it might be appendicitis.
Stomach pain right lower ∧ Leukocytes > 10000 → Appendicitis

If Stomach pain right lower ∧
Leukocytes > 10000 is true,
we can use Modus Ponens to
derive Appendicitis
⇒ This model is too coarse.
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Introduction

When building their medical expert system MYCIN, Shortliffe
and Buchanan [Shortliffe 1976] developed a calculus using
so-called certainty factors, which allowed the certainty of facts
and rules to be represented .

Each rule A → B is assigned a certain factor β.
A →β B means the conditional probability P (B | A) = β.

Stomach pain right lower ∧ Leukocytes > 10000 →0.6
Appendicitis

Formulas for connecting the factors of rules
Calculus is incorrect
Inconsistent results could be derived
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Introduction

There were also (unsuccessful) attempts to solve this
problem by using non-monotonic logic and default logic.

Default logic: a special type of non-monotonic logic.
In the Flying Penguin Example, the first three given rules
are default. The newly added rule penguin(x) ⇒ ¬fly(x)
“override” the default rule bird(x) ⇒ fly(x) in the case of
penguin, and for other birds the default rule still applies.

Dempster-Schäfer theory: assigns a belief function Bel(A)
to a logical proposition A, whose value gives the degree of
evidence for the truth of A.
Fuzzy logic: demonstrates considerable weaknesses
when reasoning under uncertainty in more complex
applications.

The meaning (semantics) of a proposition in fuzzy logic is
not clearly defined.
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Introduction
Reasoning with conditional probabilities

Conditional probabilities instead of implication (as it is
known in logic)

Significantly better in modeling everyday causal reasoning.
Subjective probabilities

For example, if you are in the middle of the street and do not
know whether you should turn left or right. (That is, the
probabilities of turning left and turning right are unknown.)
From mathematical viewpoint, if you don’t know the
probabilities, you do nothing.
From AI viewpoint, you need to make a decision. So (even if
you don’t know anything) you “assume” that turning left and
right have the same probability 0.5 and make a decision
based on this “assumption”.
The “assumption” you made may not be true but it is
subjective to you.

Probability theory is well-founded.
Reasoning with uncertain and incomplete knowledge.

Maximum entropy method (MaxEnt) and the medical expert
system LEXMED.
Bayesian networks.
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Computing with Probabilities

Example 2
For a single roll of a fair (unbiased) die (experiment),

The probability of the event “rolling a six” equals 1/6.
The probability of the occurrence “rolling an odd number”
is equal to 1/2.

Definition
Sample space Ω: the finite set of all possible outcomes
for an experiment.
Event: subset of Ω.

If the outcome of an experiment is included in an event E,
then event E has occurred.
A and B are events ⇒ A ∪ B is an event.

Elementary event: subset of Ω containing exactly one
element.
Sure event: Ω.
Impossible event: ∅.
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Computing with Probabilities

We will use propositional logic notation for set operations.

Set notation Propositional logic Description
A ∩ B A ∧ B intersection / and
A ∪ B A ∨ B union / or

A ¬A complement / negation
Ω t certain event / true
∅ f impossible event / false

A, B, etc.: random variables.
We consider only discrete random variables with finite
value range.
Example:

The variable face_number for a dice roll is discrete with the
values 1, 2, 3, 4, 5, 6.
The probability of rolling a five or a six is equal to 1/3.

P (face_number ∈ {5, 6})
= P (face_number = 5 ∨ face_number = 6) = 1/3.
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Computing with Probabilities

Definition
Let Ω = {ω1, ω2, . . . , ωn} be finite. There is no preferred
elementary event, which means that we assume a symmetry
related to the frequency of how often each elementary event
appears. The probability P (A) of the event A is then

P (A) = |A|
|Ω|

= Number of favorable cases for A

Number of possible cases
.

Example 3
Throwing a die, the probability for an even number is

P (face_number ∈ {2, 4, 6}) = |{2, 4, 6}|
|{1, 2, 3, 4, 5, 6}|

= 3
6 = 1

2 .
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Computing with Probabilities

Any elementary event has the probability 1/|Ω| (Laplace
assumption).
Applicable only at finite event sets.
To describe events we use variables with the appropriate
number of values.

Example: Variable eye_color can take on the values green,
blue, brown.
eye_color = blue then describes an event because we are
dealing with a proposition with the truth values t or f .

Binary (boolean) variables (i.e., variables that can take on
the values t and f ) are propositions themselves.

Write P (JohnCalls) instead of P (JohnCalls = t).



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

13 Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

Computing with Probabilities

Theorem 1
(1) P (Ω) = 1.
(2) P (∅) = 0, which means that the impossible event has a

probability of 0.
(3) For pairwise exclusive events A and B, it is true that

P (A ∨ B) = P (A) + P (B).
(4) For two complementary events A and ¬A, it is true that

P (A) + P (¬A) = 1.
(5) For arbitrary events A and B, it is true that

P (A ∨ B) = P (A) + P (B) − P (A ∧ B).
(6) For A ⊆ B, it is true that P (A) ≤ P (B).
(7) If A1, A2, . . . , An are the elementary events, then

n∑
i=1

P (Ai) = 1 (normalization condition).

Exercise 1 ([Ertel 2025], Exercise 7.1, p. 171)
Prove the propositions from Theorem 1.
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Computing with Probabilities

For binary variables A, B,
P (A ∧ B) = P (A, B) stands for the probability of the event
A ∧ B.
Distribution or joint probability distribution P(A, B) of the
variables A and B is the vector

(P (A, B), P (A, ¬B), P (¬A, B), P (¬A, ¬B))

Distribution in matrix form
P(A, B) B = t B = f

A = t P (A, B) P (A, ¬B)
A = f P (¬A, B) P (¬A, ¬B)
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Computing with Probabilities

In general,
d variables X1, X2, . . . , Xd with n values each
The distribution contains the values
P (X1 = x1, . . . , Xd = xd)
x1, . . . , xd each may have n different values
The distribution can therefore be represented as a
d-dimensional matrix with a total of nd elements.
By the normalization condition, one of these nd values is
redundant.
Thus, the distribution is characterized by nd − 1 unique
values.
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Conditional Probability

Example 4
On Landsdowne street in Boston, the speed of 100 vehicles is
measured. For each measurement it is also noted whether the driver
is a student. The results are

Event Freq. Relative
freq.

Vehicle observed 100 1
Driver is a student (S) 30 0.3
Velocity (speed) too high (V ) 10 0.1
Driver is a student and speeding (S ∧ V ) 5 0.05

Do students speed more frequently than the average person, or than
non-students?
Answer: conditional probability .
The probability for speeding under the condition that the driver is a
student :

P (V | S) = |Driver is a student and speeding|
|Driver is a student|

= 5
30 = 1

6 ≈ 0.17.

The probability for speeding in general : P (V ) = 0.1.
Thus, students speed more frequently than the average person.
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Computing with Probabilities
Conditional Probability

Definition
For two events A and B, the probability P (A | B) for A under
the condition B (conditional probability) is defined by

P (A | B) = P (A ∧ B)
P (B)

P (A | B) = probability of A regarding event B only, i.e.

P (A | B) = |A ∧ B|
|B|

.

Indeed, this can be proved as follows.

P (A | B) = P (A ∧ B)
P (B) =

|A∧B|
|Ω|
|B|
|Ω|

= |A ∧ B|
|B|

.
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Computing with Probabilities
Conditional Probability

Definition
If, for two events A and B, P (A | B) = P (A), then these
events are called independent . In other words, A and B are
independent if the probability of the event A is not influenced
by the event B.

Theorem 2
For independent events A and B, it follows from the definition
that P (A ∧ B) = P (A) · P (B).
Example 5

A roll of two dice.
If the two dice are independent , the probability of rolling
two sixes
P (D1 = 6 ∧ D2 = 6) = P (D1 = 6) · P (D2 = 6) = 1

6 · 1
6 = 1

36 .
If, by some magic power, dice 2 is always the same as
dice 1, P (D1 = 6 ∧ D2 = 6) = 1

6 .

Exercise 2
Prove Theorem 2.
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Computing with Probabilities
Conditional Probability

Product Rule: For two events A and B,
P (A ∧ B) = P (A | B) · P (B).
Chain Rule: For random variables X1, . . . , Xn,

P(X1, . . . , Xn) = P(Xn | X1, . . . , Xn−1) · P(X1, . . . , Xn−1)
= P(Xn | X1, . . . , Xn−1) · P(Xn−1 | X1, . . . , Xn−2)
· P(X1, . . . , Xn−2)
= P(Xn | X1, . . . , Xn−1) · P(Xn−1 | X1, . . . , Xn−2)
· P(X1, . . . , Xn−2) · . . . · P(Xn | X1) · P(X1)

=
n∏

i=1
P(Xi | X1, . . . , Xi−1).

(Because the chain rule holds for all values of the (random)
variables X1, . . . , Xn, it has been formulated for the distribution
using the symbol P.)
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Example 6
For n = 3 events, the chain rule for events A1, A2, A3 is

P (A1, A2, A3) = P (A3 | A1, A2) · P (A2 | A1) · P (A1).

We randomly draw 3 cards without replacement from deck
with 52 cards.
Event Ai = {draw an ace in the i-th try}.
The probability that we have picked three aces

P (A1, A2, A3) = P (A3 | A1, A2) · P (A2 | A1) · P (A1)

= 2
50 · 3

51 · 4
52 = 1

5525 .



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities

21 Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

Computing with Probabilities
Conditional Probability

Example 7
For n = 2 random variables X1 and X2 which can both
take values t and f , for example, we have

P (X1 = t, X2 = t) = P (X1, X2)
= P (X1 = t | X2 = t) · P (X2 = t) = P (X1 | X2) · P (X2),
P (X1 = t, X2 = f) = P (X1, ¬X2)
= P (X1 = t | X2 = f) · P (X2 = f) = P (X1 | ¬X2) · P (¬X2).

Then, the chain rule for distribution P(X1, X2) reads

P(X1, X2) = P(X2 | X1) · P(X1),

which means

P(X1, X2) =


P (X1, X2)

P (X1, ¬X2)
P (¬X1, X2)

P (¬X1, ¬X2)

 =


P (X2 | X1) · P (X1)

P (¬X2 | X1) · P (X1)
P (X2 | ¬X1) · P (¬X1)

P (¬X2 | ¬X1) · P (¬X1)


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Since A ↔ (A ∧ B) ∨ (A ∧ ¬B) is true for binary variables
A and B, we also have

P (A) = P ((A ∧ B) ∨ (A ∧ ¬B))
= P (A ∧ B) + P (A ∧ ¬B). A ∧ B and A ∧ ¬B are

pairwise exclusive

In general,

P (X1 = x1, . . . , Xd−1 = xd−1)

=
∑
xd

P (X1 = x1, . . . , Xd−1 = xd−1, Xd = xd)

The application of this formula is called marginalization.
Marginalization can also be applied to distribution
P(X1, . . . , Xd). The resulting distribution P(X1, . . . , Xd−1)
is called the marginal distribution.
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Example 8
Leuko Leukocyte value higher than 10000

App Patient has appendicitis (appendix inflammation)

P(App, Leuko) App ¬App Total
Leuko 0.23 0.31 0.54

¬Leuko 0.05 0.41 0.46
Total 0.28 0.72 1

For example, it holds:

P (Leuko) = P (App, Leuko) + P (¬App, Leuko) = 0.54

P (Leuko | App) = P (Leuko, App)
P (App) = 0.23

0.28 ≈ 0.82.
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P (A | B) = P (A ∧ B)
P (B) as well as P (B | A) = P (A ∧ B)

P (A) .

Theorem 3 (Bayes’ Theorem)

P (A | B) = P (B | A) · P (A)
P (B)

Exercise 3
Prove Theorem 3.
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Example 9 (Appendicitis example)

P (App | Leuko) = P (Leuko | App) · P (App)
P (Leuko) = 0.82 · 0.28

0.54 ≈ 0.43.

Assuming that appendicitis affects the biology of all
humans the same, regardless of ethnicity.
P (Leuko | App) is a universal value that is valid worldwide.
P (App | Leuko), on the other hand, is not universal,
because this value is influenced by the a priori probabilities
P (App) and P (Leuko). Each of these can vary according
to on’s life circumstances.

For example, P (Leuko) is dependent on whether a
population has a high or low rate of exposure to infectious
diseases. In the tropics, this value can differ significantly
from that of cold regions.

Bayes’ theorem, however, makes it easy for us to take the
universally valid value P (Leuko | App), and compute
P (App | Leuko) which is useful for diagnosis.
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Example 10
Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”
A: Alarm, B: Burglar. The seller claims P (A | B) = 0.99
Thus with high certainty: If alarm then burglary!

No! Be careful!
What does this mean when we hear the alarm go off?

Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P (B) = 0.001.
Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P (A) = 0.1.
Thus, P (B | A) = (P (A | B) · P (B))/P (A) ≈ 0.01 ⇒ There
will be too many false alarms!

Additionally, we have P (A) = P (A | B) · P (B) + P (A |
¬B) · P (B) = 0.00099 + P (A | ¬B) · 0.999 = 0.1, which
implies P (A | ¬B) ≈ 0.1 ⇒ The alarm will be triggered
roughly every tenth day that there is not a break-in
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Example 10
Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”
A: Alarm, B: Burglar. The seller claims P (A | B) = 0.99
Thus with high certainty: If alarm then burglary!
No! Be careful!
What does this mean when we hear the alarm go off?

Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P (B) = 0.001.
Assume that the alarm system is triggered not only by
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Example 10
Sales representative: “Very reliable burglar alarm, reports
any burglar with 99% certainty”
A: Alarm, B: Burglar. The seller claims P (A | B) = 0.99
Thus with high certainty: If alarm then burglary!
No! Be careful!
What does this mean when we hear the alarm go off?
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which break-ins are rare, with P (B) = 0.001.
Assume that the alarm system is triggered not only by
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yard, which results in P (A) = 0.1.
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Exercise 4 ([Ertel 2025], Exercise 7.2, p. 171)
The gardening hobbyist Max wants to statistically analyze his
yearly harvest of peas. For every pea pod he picks he
measures its length xi in centimeters and its weight yi in
grams. He divides the peas into two classes, the good and the
bad (empty pods). The measured data (xi, yi) are

x 1 2 2 3 3 4 4 5 6

2 3 4 4 5 5 6 6 6y
good pea: bad pea:

x

y

4 6 6 7

2 2 3 3

(a) From the data, compute the probabilities
P (y > 3 | Class = good) and P (y ≤ 3 | Class = good).
Then use Bayes’ formula to determine
P (Class = good | y > 3) and P (Class = good | y ≤ 3).

(b) Which of the probabilities computed in subproblem (a)
contradicts the statement “All good peas are heavier than
3 grams”?
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The Principle of Maximum Entropy

A calculus for reasoning under uncertainty can be realized
using probability theory.
Often too little knowledge for solving the necessary
equations ⇒ new ideas are needed.
Idea from E.T. Jaynes (Physicist): Given missing
knowledge, one can maximize the entropy of the desired
probability distribution.

More precisely,
Take the precisely stated prior data or testable information
about a probability distribution. [What you already know.]
Consider the set of all candidate probability distributions that
satisfy those constraints. [What are the possibilities given
what you know?]
Choose the distribution from this set that maximizes the
(information) entropy. [What is the least biased choice given
what you know?]

Intuition: MaxEnt picks the distribution that agrees with what
you know and is otherwise as uniform as possible – it does
not introduce any extra (unjustified) structure.

Application to the LEXMED project.
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The Principle of Maximum Entropy

Let X be a discrete random variable with possible values
x1, x2, . . . , xn and probability distribution P(X) = (p1, p2, . . . , pn),
where pi = P (X = xi).

Definition
The (information) entropy H of the distribution P(X) is defined as

H(P) = −
n∑

i=1
pi log pi

Entropy is a measure of the uncertainty associated with a random
variable.

The higher the entropy , the more uncertain or unpredictable the
variable is.
If one outcome has probability 1 and all others 0, then the entropy is
0 (no uncertainty).
If all outcomes are equally likely, then the entropy is maximized
(maximum uncertainty).

Entropy is measured in nats when using the natural logarithm (ln)
and in bits when using the base-2 logarithm (log2). (The choice of
base for log depends on the context and application.)
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

Modus Ponens
A, A ⇒ B

B
Generalization to probability rules

P (A) = α, P (B | A) = β

P (B) = ?
Given: two probability values α, β, Find: P (B).
Marginalization

P (B) = P (A, B) + P (¬A, B)
= P (B | A) · P (A) + P (B | ¬A) · P (¬A)

The values of P (A), P (¬A), and P (B | A) are known. But
P (B | ¬A) is unknown.
We cannot make an exact statement about P (B) with
classical probability theory, but at the most we can
estimate P (B) ≥ P (B | A) · P (A).
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

Distribution

P(A, B) = (P (A, B), P (A, ¬B), P (¬A, B), P (¬A, ¬B))

Abbreviation

p1 = P (A, B)
p2 = P (A, ¬B)
p3 = P (¬A, B)
p4 = P (¬A, ¬B)

These four parameters (unknowns) p1, . . . , p4 define the
distribution.
Out of it, any probability for A and B can be calculated.
Four equations are required to calculate these unknowns.
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

Normalization condition: p1 + p2 + p3 + p4 = 1.
From the given values P (A) = α and P (B | A) = β we
calculate

P (A, B) = P (B | A) · P (A) = αβ

P (A) = P (A, B) + P (A, ¬B).

So far, we have the following system of three equations

p1 + p2 + p3 + p4 = 1
p1 = αβ

p1 + p2 = α

Solve it as far as is possible, we get

p1 = αβ

p2 = α(1 − β)
p3 + p4 = 1 − α

One equation is missing!
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The Principle of Maximum Entropy
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To come to a definite solution despite this missing knowledge,
we change our point of view. We use the given equation as a
constraint for the solution of an optimization problem.
Find: Distribution p = (p3, p4) which maximizes the entropy

H(p) = −
n∑

i=1
pi ln pi = −p3 ln p3 − p4 ln p4

under the constraint p3 + p4 = 1 − α.
Why should the entropy function be maximized?

The entropy measures the uncertainty of a distribution up to a
constant factor.
Negative entropy is then a measure of the amount of
information a distribution contains.
Maximizing the entropy minimizes the information content of the
distribution.
Because we are missing information about the distribution, it
must somehow be added in. We could fix an ad hoc value, for
example p3 = 0.1. Yet it is better to determine the values p3 and
p4 such that the information added is minimal .
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

Problem: Maximizing H(p) = −p3 ln p3 − p4 ln p4 w.r.t the
constraint p3 + p4 − 1 + α = 0.
Method of Lagrange multipliers.
Lagrange function:

L = H(p) + λ(p3 + p4 − 1 + α)
= −p3 ln p3 − p4 ln p4 + λ(p3 + p4 − 1 + α)

Taking the partial derivatives with respect to p3 and p4

∂L

∂p3
= − ln p3 − 1 + λ = 0

∂L

∂p4
= − ln p4 − 1 + λ = 0

These two equations along with the constraint give us a
system of three equations and three unknowns p3, p4, λ.
Solving it, we have p3 = p4 = (1 − α)/2.
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

P (B) = P (A, B) + P (¬A, B) = p1 + p3 = αβ + 1 − α

2
= α(β − 1

2) + 1
2 = P (A)(P (B | A) − 1

2) + 1
2 .

When P (A) = 1 and
P (B | A) = 1, P (B) = 1
(Modus Ponens holds)

When P (A) = 1 and
P (B | A) = 0, P (B) = 0
(Modus Ponens holds)

When P (A) = 0, Modus
Ponens cannot be
applied, but our formula
results in the value 1/2
for P (B) irrespective of
P (B | A). When A is
false, we know nothing
about B, which reflects
our intuition exactly.

Figure: Curve array for P (B) as a function of
P (A) for different values of P (B | A).

We cannot make any prediction
about B when P (B | A) = 1/2.
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

A set of probabilistic equations is called consistent if there is at
least one solution, that is, one distribution which satisfies all
equations.

Theorem 4
Let there be a consistent set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function
with the given equations as constraints. The MaxEnt
distribution thereby defined has minimum information content
under the constraints.

It follows from this theorem that there is no distribution
which satisfies the constraints and has higher entropy than
the MaxEnt distribution.
A calculus, which leads to distributions with a higher
entropy is adding informations ad hoc, which again is not
justified.
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The Principle of Maximum Entropy
An Inference Rule for Probabilities

p3 and p4 always occur symmetrically.
Therefore, p3 = p4 (indifference).

Definition
If an arbitrary exchange of two or more variables in the
Lagrange equations results in equivalent equations, these
variables are called indifferent .

Theorem 5
If a set of variables {pi1 , pi2 , . . . , pik

} is indifferent, then the
maximum of the entropy under the given constraints is at the
point where pi1 = pi2 = · · · = pik

.
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The Principle of Maximum Entropy
Maximum Entropy Without Explicit Constraints

No knowledge given ⇒ All varibles are indifferent.
(Indifference Principle.)
No constraints beside the normalization condition
p1 + p2 + · · · + pn = 1.

We can set p1 = · · · = pn = 1
n

.

Given a complete lack of knowledge, all worlds are equally
probable. That is, the distribution is uniform.

Example 11 (Special case: two variables A and B)
P (A, B) = P (A, ¬B) = P (¬A, B) = P (¬A, ¬B) = 1/4.
P (A) = P (B) = 1/2 and P (B | A) = 1/2.
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The Principle of Maximum Entropy
Maximum Entropy Without Explicit Constraints

As soon as the value of a condition deviates from the one
derived from the uniform distribution, the probabilities of the
worlds shift.

Example 12 (Special case: two variables A and B)
Assume that only P (B | A) = β is known.
Thus, P (A, B) = P (B | A)P (A) = βP (A). Therefore,
p1 = β(p1 + p2).
We derived two constraints:

βp2 + (β − 1)p1 = 0
p1 + p2 + p3 + p4 − 1 = 0

No symbolic solutions!
Solving the Lagrange equations numerically.
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Exercise 5 ([Ertel 2025], Exercise 7.3, p. 172)
You are supposed to predict the afternoon weather using a few
simple weather values from the morning of this day. The
classical probability calculation for this requires a complete
model, which is given in the following table.

(a) How many events are in the distribution for these three variables?

(b) Compute P (Prec = dry | Sky = clear, Bar = rising).
(c) Compute P (Prec = rain | Sky = cloudy).
(d) What would you do if the last row were missing from the table?



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

41 Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

The Principle of Maximum Entropy
Maximum Entropy Without Explicit Constraints

Exercise 6 ([Ertel 2025], Exercise 7.4, p. 172)
In a television quiz show, the contestant must choose between
three closed doors. Behind one door the prize awaits: a car.
Behind both of the other doors are goats. The contestant
chooses a door, e.g. number one. The host, who knows where
the car is, opens another door, e.g. number three, and a goat
appears. The contestant is now given the opportunity to
choose between the two remaining doors (one and two). What
is the better choice from his point of view? To stay with the
door he originally chose or to switch to the other closed door?
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Exercise 7 ([Ertel 2025], Exercise 7.5, p. 172)
Using the Lagrange multiplier method, show that, without
explicit constraints, the uniform distribution
p1 = p2 = · · · = pn = 1/n represents maximum entropy. Do not
forget the implicitly ever-present constraint
p1 + p2 + · · · + pn = 1. How can we show this same result using
indifference?
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The Principle of Maximum Entropy
Conditional Probability Versus Material Implication

We will now show that, for modeling reasoning, conditional
probability is better than what is known in logic as material
implication.

A B A ⇒ B P (A) P (B) P (B | A)
t t t 1 1 1
t f f 1 0 0
f t t 0 1 Undefined
f f t 0 0 Undefined

Question: What value does P (B | A) have, if only P (A) = α
and P (B) = γ are given?
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The Principle of Maximum Entropy
Conditional Probability Versus Material Implication

p1 = P (A, B), p2 = P (A, ¬B), p3 = P (¬A, B),
p4 = P (¬A, ¬B).
Constraints:

p1 + p2 = α

p1 + p3 = γ

p1 + p2 + p3 + p4 = 1

Again we maximize entropy under the given constraints
and obtain:

p1 = αγ, p2 = α(1−γ), p3 = γ(1−α), p4 = (1−α)(1−γ)

From p1 = αγ, we have P (A, B) = P (A) · P (B), which
means A and B are independent.

Exercise 8 ([Ertel 2025], Exercise 7.8, p. 173)
Prove that the above-mentioned results for p1, p2, p3, p4 are
correct.
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The Principle of Maximum Entropy
Conditional Probability Versus Material Implication

From definition, P (B | A) = P (A, B)
P (A) .

For P (A) ̸= 0, we have P (B | A) = P (B).
For P (A) = 0, P (B | A) stays undefined.

A B A ⇒ B P (A) P (B) P (B | A)
f t t α γ γ
f f t 0 γ Undefined
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The Principle of Maximum Entropy
MaxEnt-Systems

Often, MaxEnt optimization has no symbolic solution.
Therefore: numerical entropy maximization.
SPIRIT (Symmetrical Probabilistic Intensional Reasoning
in Inference Networks in Transition, www.xspirit.de):
Fernuniversität Hagen.
PIT (Probability Induction Tool, http://www.maxent.de):
Munich Technical University.
PIT uses Sequential Quadratic Programming (SQP) to find
an extremum of the entropy function numerically.
As input, PIT expects a file with the constraints:

var A{t,f}, B{t,f};

P([A=t]) = 0.6;
P([B=t] | [A=t]) = 0.3;

QP([B=t]);
QP([B=t] | [A=t]);

www.xspirit.de
http://www.maxent.de
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The Principle of Maximum Entropy
MaxEnt-Systems

Request QP([B=t])
Web front end on www.pit-systems.de (Inactive)
Result

Nr. Truth value Probability Query
1 UNSPECIFIED 3.800e-01 QP([B=t]);
2 UNSPECIFIED 3.000e-01 QP([A=t]-|>[B=t]);

P (B) = 0.38 and P (B | A) = 0.3.

Exercise 9 ([Ertel 2025], Exercise 7.6, p. 172)
Use the PIT system (http://www.pit-systems.de) or SPIRIT
(http://www.xspirit.de) to calculate the MaxEnt solution for
P (B) under the constraint P (A) = α and P (B | A) = β. Which
disadvantage of PIT, compared with calculation by hand, do
you notice here?

Exercise 10 ([Ertel 2025], Exercise 7.7, p. 172)
Given the constraints P (A) = α and P (A ∨ B) = β, manually
calculate P (B) using the MaxEnt method. Use PIT to check
your solution.

www.pit-systems.de
http://www.pit-systems.de
http://www.xspirit.de
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Web front end on www.pit-systems.de (Inactive)
Result

Nr. Truth value Probability Query
1 UNSPECIFIED 3.800e-01 QP([B=t]);
2 UNSPECIFIED 3.000e-01 QP([A=t]-|>[B=t]);

P (B) = 0.38 and P (B | A) = 0.3.

Exercise 9 ([Ertel 2025], Exercise 7.6, p. 172)
Use the PIT system (http://www.pit-systems.de) or SPIRIT
(http://www.xspirit.de) to calculate the MaxEnt solution for
P (B) under the constraint P (A) = α and P (B | A) = β. Which
disadvantage of PIT, compared with calculation by hand, do
you notice here?

Exercise 10 ([Ertel 2025], Exercise 7.7, p. 172)
Given the constraints P (A) = α and P (A ∨ B) = β, manually
calculate P (B) using the MaxEnt method. Use PIT to check
your solution.
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The Principle of Maximum Entropy
The Tweety example

P (bird | penguin) = 1 “penguins are birds”
P (flies | bird) ∈ [0.95, 1] “(almost all) birds can fly”
P (flies | penguin) = 0 “penguins cannot fly”

PIT input file:

var penguin{yes,no}, bird{yes,no}, flies{yes,no};

P([bird=yes] | [penguin=yes]) = 1;
P([flies=yes] | [bird=yes]) IN [0.95,1];
P([flies=yes] | [penguin=yes]) = 0;

QP([flies=yes]| [penguin=yes]);

Answer
Nr. Truth value Probability Query
1 UNSPECIFIED 0.000e+00 QP([penguin=yes]-|>[flies=yes]);
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The Principle of Maximum Entropy
The Tweety example

Probability intervals are often very helpful
second rule in the sense of “normally birds fly”:
P (flies| | bird) ∈ (0.5, 1]
MaxEnt enables non monotonic inference
MaxEnt is also successful on challenging benchmarks for
non monotonic inference
Application of MaxEnt within the medical expert system
LEXMED
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LEXMED

Manfred Schramm, Walter Rampf, Wolfgang Ertel
Ravensburg-Weingarten University of Applied Sciences +
Weingarten 14-Nothelfer Hospital + Technical University
Munich
LEXMED = Medical expert system capable of learning.

The project was funded by the german state of
Baden-Wuerttemberg, the AOK Baden-Württemberg, the
Ravensburg-Weingarten University of Applied Sciences and by
the hospital 14 Nothelfer in Weingarten.
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Figure: LEXMED Query form.
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Figure: LEXMED Answer.
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Appendicitis Diagnosis with Formal Methods

The most common serious cause of acute abdominal pain
is appendicitis.
Even today, diagnosis can be difficult in many cases.

Approx. 20% of the surgically removed appendixes without
clinical abnormalities
There are also cases, where an inflamed appendix is not
recognized

In 1972, de Dombal (Great Britain) developed an expert
system for the diagnosis of acute stomach pain.
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LEXMED
Appendicitis Diagnosis with Formal Methods

Nearly all of the formal diagnostic processes used in medicine
to date have been based on scores.

For each value of a symptom (for example fever or lower
right stomach pain) the doctor notes a certain number of
points.
If the sum of the points is over a certain value (threshold), a
certain decision is recommended (for example operation).
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Appendicitis Diagnosis with Formal Methods

With n symptoms S1, S2, . . . , Sn, a score can formally be
defined as

Diagnose =
{

Appendicitis if w1S1 + · · · + wnSn > Θ,
negative else.

Scores are too weak for the modelling of complex
relations.
Score systems cannot consider “contexts”.

E.g. they cannot distinguish between the leukocyte values
of elderly and medium age people.

They demand high requirements on databases
(representative).
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Hybrid Probabilistic Knowledge Base

Query to the expert system: What is the probability for an
inflamed appendix, if the patient is a 23 year old man with pain
in the in downright stomach and a leukocyte value of 13000?

Figure: Symptoms used for the query in LEXMED and their values.
The number of values for the each symptom is given in the column
marked #.
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Hybrid Probabilistic Knowledge Base

Query to the expert system:

P (Diag4 = inflamed ∨ Diag4 = perforated |
Sex2 = male ∧ Age10 ∈ 21–25 ∧ Leuko7 ∈ 12–15k)

Knowledge Base:
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Hybrid Probabilistic Knowledge Base

LEXMED calculates the probabilities of various diagnoses
using the probability distribution of all relevant variables
(see the previous table).
The size of the distribution (that is, the size of the event
space):

210 · 10 · 3 · 4 · 6 · 7 · 4 = 20 643 840.

Normalization condition ⇒ 20 643 839 independent values.
Any rule set with less than 20 643 839 probability values
may not describe the event space completely.
A complete distribution is required.
A human expert can not deliver 20 643 839 values!
Use MaxEnt method . The generalization of about 500 rules
to a complete probability model is done in LEXMED by
maximizing the entropy with the 500 rules as constraints.



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

59 Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

LEXMED
Hybrid Probabilistic Knowledge Base

Knowledge Processing:

Probabilistic rules are
generated from data
and expert knowledge,
which are integrated in
a rule base (knowledge
base) and finally made
complete using the
MaxEnt method.
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System Architecture:

Figure: Rules are generated from the database as well as from expert
knowledge. From these, MaxEnt creates a complete probability
distribution. For a user query, the probability of every possible
diagnosis is calculated. Using the cost matrix (will be defined later) a
decision is then suggested.
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Application of LEXMED

The usage of LEXMED is simple and self-explanatory.
The doctor visits the LEXMED home page at
www.lexmed.de.
Doctor inputs the results of his examination into the input
form.

If certain examination results are missing as input (for
example the sonogram results), then the doctor chooses the
entry not examined.
Naturally the certainty of the diagnosis is higher when more
symptom values are input.

LEXMED outputs the probabilities for the four different
diagnoses as well as a suggestion for a treatment.
Each registered user has access to a private patient
database, in which input data can be archived.
Thus data and diagnoses from earlier patients can be
easily compared with those of a new patient.

www.lexmed.de
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Function of LEXMED

Knowledge is formalized using probabilistic propositions, e.g.,

P (Leuko7 > 20 000 | Diag4 = inflamed) = 0.09.

Note: Instead of single numerical values, we might also use
intervals (i.e. [0.06, 0.12]).
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Learning of Rules by Statistical Induction
Raw data in LEXMED: 54 different (anonymized) values
for 14, 646 patients (whose appendixes were surgically
removed).
After a statistical analysis, 14 symptoms among 54
attributes are selected and used for the query in LEXMED.
Two steps to create the rules from this databases:
(1) Determining the dependency structure of the symptoms.
(2) Filling this structure with the respective probability rules.
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Dependency graph computed from the database (see the next
slide)

Node: variable (symptom + diagnosis)
Edge: directed
Edge’s thickness: measures the correlation of the
variables

Two independent variables: correlation = 0.
The pair correlation for each of the 14 symptoms with Diag4
was computed. (Blue edges).
All triple correlations between the diagnosis and two
symptoms were calculated. Of these, only the strongest
values have been drawn as additional edges between the
two participating symptoms. (Green edges.)
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Figure: Dependency graph computed from the database.
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Estimating the Rule Probabilities
Structure of the dependency graph = structure of the
learned rules.
The rules have different complexities.

Rules which only describe the distribution of the possible
diagnoses (a priori rules), e.g., P (Diag4 = inflamed) = 0.40.
Rules which describe the dependency between the
diagnosis and a symptom (rules with simple conditions),
e.g., P (Sono2 = yes | Diag4 = inflamed) = 0.43.
Rules which describe the dependency between the
diagnosis and two symptoms, e.g.,
P (P4Q2 = yes | Diag4 = inflamed ∧ P2Q2 = yes) = 0.61.

The numerical values for these rules are estimated by
counting their frequency in the database.

For example, P (Sono2 = yes | Diag4 = inflamed) = 0.43
because we count in the database and calculate

|Diag4 = inflamed ∧ Sono2 = yes|
|Diag4 = inflamed| = 0.43.
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Some of the LEXMED rules with probability intervals written in
PIT syntax. “*” stands for “∧” here.

1 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=16-20]) = [0.132,0.156];
2 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=16-20]) = [0.257,0.281];
3 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=16-20]) = [0.250,0.274];
4 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=16-20]) = [0.159,0.183];
5 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=16-20]) = [0.087,0.112];
6 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=16-20]) = [0.032,0.056];
7 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=16-20]) = [0.000,0.023];
8 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=21-25]) = [0.132,0.172];
9 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=21-25]) = [0.227,0.266];

10 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=21-25]) = [0.211,0.250];
11 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=21-25]) = [0.166,0.205];
12 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=21-25]) = [0.081,0.120];
13 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=21-25]) = [0.041,0.081];
14 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=21-25]) = [0.004,0.043];
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Expert Rules
Rules for non-specific abdominal pain (NSAP) receive
their values from propositions of medical experts.
To model the uncertainty of expert knowledge, the use of
probability intervals has proven effective.
Once the expert rules have been created, the rule base is
finished.

The complete probability model is calculated with the method
of maximum entropy by the PIT-system.
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Expert Rules
Rules for non-specific abdominal pain (NSAP) receive
their values from propositions of medical experts.
To model the uncertainty of expert knowledge, the use of
probability intervals has proven effective.
Once the expert rules have been created, the rule base is
finished.

The complete probability model is calculated with the method
of maximum entropy by the PIT-system.
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Using its efficiently stored probability model, LEXMED
calculates the probabilities for the four possible diagnoses
within a few seconds. For example, we assume the
following output:

A decision must be made based on these four probability
values.
How to derive an optimal decision from these
probabilities?
Ask LEXMED to calculate a recommended decision.
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Question
How can the computed probabilities now be translated
optimally into decisions?

Naive algorithm

assign a decision to each diagnosis
ultimately select the decision that corresponds to the
highest probability

Example 13 (Naive Algorithm)
0.4 for the diagnosis appendicitis (inflamed or perforated),
0.55 for the diagnosis negative, and 0.05 for the diagnosis
other .
Decide “no operation” (which may be too risky).
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Cost-oriented method
Comparing the costs of the possible errors that can
occur for each decision. (= costs for wrong decisions)

The error is quantified in the form of “(hypothetical)
additional cost of the current decision compared to the
optimum”.
The given values contain the costs to the hospital, to the
insurance company, the patient (for example risk of
post-operative complications), and to other parties (for
example absence from work), taking into account long
term consequences.
Optimal decisions have (additional) costs 0.

The entries are finally averaged for each decision, that
is, summed while taking into account their frequencies.
Finally, the decision with the smallest average cost of
error is suggested.
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Figure: The cost matrix of LEXMED together with a patient’s
computed diagnosis probabilities.

Computed probabilities for the four possible diagnoses:
(0.25, 0.15, 0.55, 0.05).
The last column of the table contains the result of the
calculations of the average expected costs of the errors.

E.g., the cost of the errors corresponds to Operation:

0.25 · 0 + 0.15 · 500 + 0.55 · 5800 + 0.05 · 6000 = 3565.



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

73 Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

LEXMED
Risk Management Using the Cost Matrix

Cost matrix in the binary case
Diagnosis: Appendicitis and NSAP (a.k.a non-specific
abdominal pain).

P (Appendicitis) = p1

P (NSAP) = p2

Therapies: operation, ambulant observ. (= send patient
home).
Cost matrix:

Appendicitis NSAP
operation 0 k2

ambulant observ. k1 0

(
0 k2
k1 0

)
Correct decision: cost 0.
False positive: cost k2 = expected costs which occur when
a patient without an inflamed appendix is operated on
False negative: cost k1 = expected costs which occur when
deciding to send the patient home in the case of
appendicitis
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Cost matrix in the binary case
Average additional cost for the two possible treatments:(

0 k2
k1 0

)
·
(

p1
p2

)
=

(
k2p2
k1p1

)
Multiply the vector (k2p2, k1p1)T by any scalar, say 1/k1,
does not affect the final decision (as we only care about
which one is smaller).
⇒ Only the relationship k = k2/k1 is relevant.

⇒ Same result with the cost matrix
(

0 k
1 0

)
.

Risk management
By changing k we can fit the “working point” of the diagnosis
system.
k → ∞: extremely risky setting, no patient will ever be
operated on ⇒ the system gives no False positive but many
False negatives.
k = 0: all patients are operated.
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Exercise 11 ([Ertel 2025], Exercise 7.9, p. 173)
A probabilistic algorithm calculates the likelihood p that an
inbound email is spam. To classify the emails in classes delete
and read, a cost matrix is then applied to the result.
(a) Give a cost matrix (2 × 2 matrix) for the spam filter.

Assume here that it costs the user 10 cents to delete an
email, while the loss of an email costs 10 dollars. (Note: 1
dollar = 100 cents.)

(b) Show that, for the case of a 2 × 2 matrix, the application of
the cost matrix is equivalent to the application of a
threshold on the spam probability and determine the
threshold.
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To simplify the representation and make for a better
comparison to similar studies, LEXMED was restricted to the
two-value distinction between appendicitis and NSAP, as
described before.
For each k (0 ≤ k < ∞), the sensitivity and specificity are
measured against the test data

Sensitivity = P (classified positive | positive)

= |classified positive and positive|
positive

Specificity = P (classified negative | negative)

= |classified negative and negative|
negative
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Figure: ROC curve from LEXMED compared with the Ohmann score
and two additional models
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Use in the diagnosis
Quality assurance: comparing the diagnosis quality of
hospitals with expert systems.
Since 1999 in use in the 14-Nothelfer hospital in
Weingarten
Diagnosis quality is comparable to an experienced
surgeon
Commercial marketing very difficult
Wrong time?
Wish of patients for personal care!
Since de Dombal 1972, 39 years passed. Will it take
another 39 years to make computer diagnostics become
an established medical tool?
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Reasoning with Bayesian Networks

d variables X1, . . . , Xd with n values each
Probability distribution has nd − 1 values.
In practice the distribution contains many redundancies.
⇒ It can be heavily reduced with the appropriate methods.
Bayesian networks utilize knowledge about the
independence of variables to simplify the model.
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Independent Variables

Simplest case: all variables are pairwise independent

P(X1, X2, . . . , Xd) = P(X1) · P(X2) · · · · · P(Xd)

Conditional probabilities become trivial:1

P (A | B) = P (A, B)
P (B) = P (A)P (B)

P (B) = P (A).

The situation becomes more interesting when only a
portion of the variables are independent or independent
under certain conditions. For reasoning in AI, the
dependencies between variables happen to be important
and must be utilized.

1In the naive Bayes method, the independence of all attributes is assumed,
and this method has been successfully applied to text classification.
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Independent Variables

Example 14 (Alarm-Example, [Pearl 1988]; [Russell and
Norvig 2010])

Bob: single, has an alarm system in his house.
John and Mary: neighbors of Bob in the houses next door to
the left and right, respectively.
Bob asks John and Mary to call him at his office if they hear the
alarm.
Knowledge Base:

Variables: J = “John calls”, M = “Mary calls”, Al = “Alarm siren
sounds”, Bur = “Burglary”, Ear = “Earthquake”
Calling behaviors of John and Mary

P (J | Al) = 0.90
P (J | ¬Al) = 0.05

P (M | Al) = 0.70
P (M | ¬Al) = 0.01

The alarm is triggered by a burglary, but can also be triggered by
a (weak) earthquake, which can lead to a false alarm.

P (Al | Bur, Ear) = 0.95
P (Al | Bur, ¬Ear) = 0.94

P (Al | ¬Bur, Ear) = 0.29
P (Al | ¬Bur, ¬Ear) = 0.001

A priori probabilities: P (Bur) = 0.001, P (Ear) = 0.002. (Bur and
Ear are independent.)

Requests: P (Bur | J ∨ M), P (J | Bur), P (M | Bur)
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Graphical Representation of Knowledge as a Bayesian Network

A Bayesian network is a directed acyclic graph (DAG) in
which

each node represents a random variable,
each edge Xi → Xj represents a direct influence of
variable Xi on variable Xj , and
each node is associated with a conditional probability table
(CPT) that quantifies the effects that the parents have on
the node.

The structure of the graph encodes conditional
independence assumptions that can be exploited to
simplify the representation of the joint probability
distribution.
The joint probability distribution over all variables
X1, . . . , Xd can be expressed as

P(X1, X2, . . . , Xd) =
d∏

i=1
P(Xi | Parents(Xi)),

where Parents(Xi) denotes the set of parent nodes of Xi

in the graph.
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Graphical Representation of Knowledge as a Bayesian Network

Burglary

Bur Ear P (Al)
t t
t

t
f

f
f f

0.95
0.94
0.29
0.001

P (Bur)
0.001

Earthquake
P (Ear)
0.002

Alarm

John
Al P (J)
t 0.90 Mary

Al P (M)
t 0.70

f 0.05 f 0.01

Figure: Bayesian network for the alarm example with the associated
CPTs (conditional probability tables). The CPT of a node lists all the
conditional probabilities of the node’s variable conditioned on all the
nodes connected by incoming edges.
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Conditional Independence

Definition
Two variables A and B are called conditionally independent ,
given C if

P(A, B | C) = P(A | C) · P(B | C).

(This equation is true for all combinations of values for all three
variables (that is, for the distribution).)

Remark
independent ̸⇒ conditional independent.
conditional independent ̸⇒ independent.

A and B are independent events means knowing that A
happened would not tell you anything about whether B
happened (or vice versa).
A and B are conditionally independent events, given C means
that if you already knew that C happened, then knowing that
A happened would not tell you further information about
whether B happened.
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Conditional Independence

Example 15 (independent ̸⇒ cond. independent)
There are two fair coins: tossing a coin result heads 50% of the
time. Toss these two coins once.

Variable Value
E(Same result) t, f

F (First coin) H(Head), T (Tail)
S(Second coin) H(Head), T (Tail)

P(F, S) = P(F ) · P(S)
As we toss two coins at the same time, the result of the first
coin does not affect the result of the second coin and vice
versa.

P(F, S | E) ̸= P(F | E) · P(S | E)
When you know that, say E = t (i.e., the result of the two
coins, by some magic power, must be the same), then
knowing the result of the first coin tells you exactly the result
of the second coin.
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Example 16 (cond. independent ̸⇒ independent)
There are two biased coins: tossing coin1 results heads 99% of
the time and tossing coin2 results tails 99% of the time. Choose
one coin at random and toss it twice.

Variable Value
C(Coin) c1(coin1), c2(coin2)

F (First toss) H(Head), T (Tail)
S(Second toss) H(Head), T (Tail)

P(F, S | C) = P(F | C) · P(S | C)
If you already know which coin is taken, then knowing the
result of the first toss does not help predicting the result of
the second toss.

P(F, S) ̸= P(F ) · P(S)
If you do not know which coin is taken, then knowing the
result of the first toss is useful. For example, if the result of
the first toss is head, then it is a strong evidence that you
take coin1, and thus the second toss is unlikely to result
head.
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Example 17 (Alarm-Example (cont.))
John and Mary independently react to an alarm.
P(J, M | Al) = P(J | Al) · P(M | Al).
Thus, given an alarm, two variables J and M are
independent .
(Without any condition,) J and M are not independent, that is,
P(J, M) ̸= P(J) · P(M). [Why?]

Hint: It suffices to show that the equation does not hold for one
combination of values of J and M , say P (J, M) ̸= P (J) · P (M).
(More precisely, P (J = t, M = t) ̸= P (J = t) · P (M = t).)
Calculate P (Al) using the given probabilities, marginalization,
and independence of Bur and Ear.
(Result: P (Al) ≈ 0.00252.)
Then calculate P (J) and P (M) using conditional probabilities
and the computed P (Al).
(Result: P (J) = 0.052 and P (M) = 0.0117.)
Similarly, calculate P (J, M) using conditional probabilities,
conditional independence of J and M given Al.
(Result: P (J, M) ≈ 0.002086.)
Compare P (J, M) and P (J) · P (M).
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Conditional Independence

Example 18 (Alarm-Example (cont.))
John react to an alarm, but does not react to a burglary.
(This could be, for example, because of a high wall that
blocks his view on Bob’s property, but he can still hear the
alarm.)

P(J, Bur | Al) = P(J | Al) · P(Bur | Al).

Given an alarm, the variables J and Ear, M and Bur, as
well as M and Ear are also independent.

P(J, Ear | Al) = P(J | Al) · P(Ear | Al)
P(M, Bur | Al) = P(M | Al) · P(Bur | Al)
P(M, Ear | Al) = P(M | Al) · P(Ear | Al)
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Theorem 6
The following equations are pairwise equivalent, which means
that each individual equation describes the conditional
independence for the variables A and B given C.

P(A, B | C) = P(A | C) · P(B | C) (1)
P(A | B, C) = P(A | C) (2)
P(B | A, C) = P(B | C) (3)

Proof.
We prove Eq. (1) ⇔ Eq. (2). Similarly for Eq. (1) and Eq. (3).
(a) Chain rule: P(A, B, C) = P(A | B, C)P(B | C)P(C).
(b) Definition: P(A, B, C) = P(A, B | C)P(C).
(c) Eq. (1) ⇒ Eq. (2): From Eq. (1) and (b),

P(A, B, C) = P(A | C)P (B | C)P(C). Comparing with (a).
(d) Eq. (2) ⇒ Eq. (1): From Eq. (2) and (a),

P(A, B, C) = P(A | C)P (B | C)P(C). Comparing with (b).
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Now we turn again to the alarm example and show how the
Bayesian network can be used for reasoning.

P (J | Bur) = P (J, Bur)
P (Bur) = P (J, Bur, Al) + P (J, Bur, ¬Al)

P (Bur)

P(J, Bur, Al) = P(J | Bur, Al)P(Al | Bur)P(Bur) Chain rule
= P(J | Al)P(Al | Bur)P(Bur) J and Bur

are independent
given Al

P (J | Bur) = P (J | Al)P (Al | Bur)P (Bur)
P (Bur)

+ P (J | ¬Al)P (¬Al | Bur)P (Bur)
P (Bur)

= P (J | Al)P (Al | Bur) + P (J | ¬Al)P (¬Al | Bur)



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

91 Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

Reasoning with Bayesian Networks
Practical Application

P (Al | Bur) = P (Al, Bur)
P (Bur) = P (Al, Bur, Ear) + P (Al, Bur, ¬Ear)

P (Bur)

= P (Al | Bur, Ear)P (Bur, Ear)
P (Bur)

+ P (Al | Bur, ¬Ear)P (Bur, ¬Ear)
P (Bur)

= P (Al | Bur, Ear)P (Bur)P (Ear)
P (Bur)

+ P (Al | Bur, ¬Ear)P (Bur)P (¬Ear)
P (Bur)

= P (Al | Bur, Ear)P (Ear) + P (Al | Bur, ¬Ear)P (¬Ear)
= 0.95 · 0.002 + 0.94 · 0.998 = 0.94

Similarly, P (¬Al | Bur) = 0.06.
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Therefore,

P (J | Bur) = P (J | Al)P (Al | Bur) + P (J | ¬Al)P (¬Al | Bur)
= 0.9 · 0.94 + 0.05 · 0.06 = 0.849.

Analogously, P (M | Bur) = 0.659.

Similar to P (J | Bur), we can calculate

P (J, M | Bur) = P (J, M | Al)P (Al | Bur)
+ P (J, M | ¬Al)P (¬Al | Bur)
= P (J | Al)P (M | Al)P (Al | Bur)
+ P (J | ¬Al)P (M | ¬Al)P (¬Al | Bur)
= 0.9 · 0.7 · 0.94 + 0.05 · 0.01 · 0.06 = 0.5922.

John calls for about 85% of all break-ins and Mary for about
66% of all break-ins. Both of them call for about of 59% of all
break-ins.



124

Reasoning with
Uncertainty

Hoàng Anh Đức

Additional Materials

Introduction

Computing with
Probabilities
Conditional Probability

The Principle of
Maximum Entropy
An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems

The Tweety example

LEXMED
Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED

Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences

Reasoning with
Bayesian Networks
Independent Variables

Graphical Representation
of Knowledge as a
Bayesian Network

Conditional Independence

93 Practical Application

Software for Bayesian
Networks

Development of Bayesian
Networks

Semantics of Bayesian
Networks

Summary

References

Reasoning with Bayesian Networks
Practical Application

P (J ∨ M | Bur) = P (¬(¬J ∧ ¬M) | Bur)
= 1 − P (¬J, ¬M | Bur)

P (¬J, ¬M | Bur) = P (¬J | Al)P (¬M | Al)P (Al | Bur)
+ P (¬J | ¬Al)P (¬M | ¬Al)P (¬Al | Bur)
= 0.1 · 0.3 · 0.94 + 0.95 · 0.99 · 0.06 = 0.085.

P (J ∨ M | Bur) = 1 − P (¬J, ¬M | Bur)
= 1 − 0.085 = 0.915.

Bob thus receives a notification from either John or Mary for
about 92% of all burglaries
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P (Bur | J) = P (J | Bur)P (Bur)
P (J) = 0.849 · 0.001

0.052 = 0.016

P (Bur | M) = P (M | Bur)P (Bur)
P (M) = 0.659 · 0.001

0.0117 = 0.056

P (Bur | J, M) = P (J, M | Bur)P (Bur)
P (J, M)

= 0.5922 · 0.001
0.002086 = 0.284.

If John calls, the probability of a burglary is 1.6%. If Mary
calls, it is 5.6%, which is about five times higher than
John.
⇒ Significantly higher confidence given a call from Mary.
Bob should only be seriously concerned about his home
if both of them call, as the probability of a burglary in that
case is 28.4%.
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Conditioning

P (A | B) =
∑

c

P (A | B, C = c)P (C = c | B).

If furthermore A and B are conditionally independent given C,
this formula simplifies to

P (A | B) =
∑

c

P (A | C = c)P (C = c | B).
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PIT input for the alarm example.

1 var Alarm{t,f}, Burglary{t,f}, Earthquake{t,f}, John{t,f}, Mary{t,f};
2
3 P([Earthquake=t]) = 0.002;
4 P([Burglary=t]) = 0.001;
5 P([Alarm=t] | [Burglary=t] AND [Earthquake=t]) = 0.95;
6 P([Alarm=t] | [Burglary=t] AND [Earthquake=f]) = 0.94;
7 P([Alarm=t] | [Burglary=f] AND [Earthquake=t]) = 0.29;
8 P([Alarm=t] | [Burglary=f] AND [Earthquake=f]) = 0.001;
9 P([John=t] | [Alarm=t]) = 0.90;

10 P([John=t] | [Alarm=f]) = 0.05;
11 P([Mary=t] | [Alarm=t]) = 0.70;
12 P([Mary=t] | [Alarm=f]) = 0.01;
13
14 QP([Burglary=t] | [John=t] AND [Mary=t]);

Response:

P([Burglary=t] | [John=t] AND [Mary=t]) = 0.2841.
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PIT is not a classical Bayesian network tool.
PIT can take arbitrary conditional probabilities and queries
as input and calculate correct results.
On input of CPTs or equivalent rules, the MaxEnt principle
implies the same conditional independences and thus also
the same answers as a Bayesian network.
Bayesian networks are thus a special case of MaxEnt.
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A classic system is JavaBayes. Two windows: graphical
editor + console
With the graphical network editor, nodes and edges can
be manipulated and the values in the CPTs edited.
The values of variables can be assigned with “Observe”
and the values of other variables called up with “Query”.
The answers to queries then appear in the console
window.
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More powerful is the professional tool Hugin.
Continuous variables possible.
Can also learn Bayesian networks, that is, generate the
network fully automatically from statistical data.
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For the variables v1, . . . , vn with |v1|, . . . , |vn| different
values each, the distribution has a total of

n∏
i=1

|vi| − 1

independent entries.
Alarm example: 25 − 1 = 31 independent entries.
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vi

ei1 ei2 eiki

ei1 ei2 eiki vi

. . .

. . .

CPT of vi

P(vi | ei1, ei2, . . . , eiki)
(Require all combinations of values)

Size of CPT at vi

(|vi| − 1)
ki∏
j=1

|eij|

A node v has |v| values

Total size of all CPTs
n∑

i=1

(|vi| − 1)
ki∏
j=1

|eij|

Alarm example: 2 + 2 + 4 + 1 + 1 = 10 entries which uniquely
describe the network.
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Special case:
n variables
Equal number b of values
Each node has k parent nodes
All CPTs together have n(b − 1)bk entries
Complete distribution contains bn − 1 entries
Local connection
Network becomes modularized ⇒ reduction in complexity
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Bayesian network
for the LEXMED
application
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Size of the distribution: 20 643 839 values.
Size of the Bayesian network: 521 values. [Why?]

n∑
i=1

(|vi| − 1)
ki∏

j=1
|eij | =

6 · 6 · 4 + 5 · 4 + 2 · 4 +

9 · 7 · 4 + 1 · 3 · 4 + 1 · 4 +
1 · 2 · 4 + 3 · 3 · 4 + 1 · 4 +
1 · 4 · 2 + 1 · 4 · 2 + 1 · 4 +
1 · 4 + 1 · 4 + 1 · 4 + 1
= 521.
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Construction of a Bayesian network

(1) Design of the network structure (usually performed
manually)

(2) Entering the probabilities in the CPTs (usually
automated)

Construction of the network in the alarm example.
Causes: burglary and earthquake
Symptoms: John and Mary
Alarm: hidden variable

Because John and Mary do not directly react to a burglar or
earthquake, rather only to the alarm, it is appropriate to add
this as an additional variable which is not observable by
Bob.

Considering causality: going from cause to effect
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A

C

B C

A B

A

C

B

A and B are
independent

A and B are
independent given C

Figure: There is no edge between A and B if they are independent
(left) or conditionally independent (middle, right).
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Figure: Stepwise construction of the alarm network considering
causality
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The structure of the Bayesian network heavily depends on
the chosen variable ordering.
If the order of variables is chosen to reflect the causal
relationship beginning with the causes and proceeding to
the diagnosis variables, then the result will be a simple
network .
Otherwise the network may contain significantly more
edges. Such non-causal networks are often very difficult to
understand and have a higher complexity for reasoning.
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Requirements

Bayesian network has no cycles.
The variables are numbered such that no variable has a
lower index than any variable that predecessor .

It holds

P(Xn | X1, . . . , Xn−1) = P(Xn | Parent(Xn))

⇔ An arbitrary variable Xi in a Bayesian network is
conditionally independent of its ancestors, given its parents.
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More generally,

Theorem 7
A node in a Bayesian network is conditionally independent from
all non-successor nodes, given its parents.

Example of conditional
independence in a Bayesian
network. If the parent nodes
E1 and E2 are given, then
all non-successor nodes
B1, . . . , B8 are independent
of A.
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Chain rule for Bayesian network

P(X1, . . . , Xn) =
n∏

i=1
P(Xi | X1, . . . , Xi−1)

=
n∏

i=1
P(Xi | Parent(Xi))

Using this rule in the alarm example,

P(J, Bur, Al) = P(J | Al)P(Al | Bur)P(Bur)
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Basics of Bayesian Networks

A Bayesian network is defined by:
A set of variables and a set of directed edges between
these variables.
Each variable has finitely many possible values.
The variables together with the edges form a directed
acyclic graph (DAG). A DAG is a graph without cycles,
that is, without paths of the form (A, . . . , A).
For every variable A the CPT (that is, the table of
conditional probabilities P (A | Parents(A))) is given.

Two variables A and B are called conditionally
independent given C if P(A, B | C) = P(A | C)P(B | C)
or, equivalently, if P(A | B, C) = P(A | C).
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Basics of Bayesian Networks (cont.)

Besides the foundational rules of computation for
probabilities, the following rules are also true:

Bayes’ Theorem P (A | B) = P (B | A)P (A)
P (B) .

Marginalization P (B) = P (A, B) + P (¬A, B) = P (B |
A)P (A) + P (B | ¬A)P (¬A).

Conditioning P (A | B) =
∑

c

P (A | B, C = c)P (C = c |

B).
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Basics of Bayesian Networks (cont.)

A variable in a Bayesian network is conditionally
independent of all non-successor variables given its
parent variables. If X1, . . . , Xn−1 are no successors of
Xn, we have
P (Xn | X1, . . . , Xn−1) = P (Xn | Parents(Xn)). This
condition must be honored during the construction of a
network.
During construction of a Bayesian network the variables
should be ordered according to causality . First the
causes, then the hidden variables, and the diagnosis
variables last.

Chain rule: P(X1, . . . , Xn) =
n∏

i=1
P(Xi | Parent(Xi)).
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Exercise 12 ([Ertel 2025], Exercise 7.10, p. 173)
Given a Bayesian network with the three binary variables
A, B, C and P (A) = 0.2, P (B) = 0.9, as well as the CPT shown
below:

(a) Compute P (A | B).
(b) Compute P (C | A).

C

BAA B P (C)
t f 0.1
t t 0.2
f t 0.9
f f 0.4
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Exercise 13 ([Ertel 2025], Exercise 7.11, p. 173)
For the alarm example (Example 14), calculate the following
conditional probabilities:
(a) Calculate the a priori probabilities P (Al), P (J), P (M).
(b) Calculate P (M | Bur) using the product rule,

marginalization, the chain rule, and conditional
independence.

(c) Use Bayes’ formula to calculate P (Bur | M).
(d) Compute P (Al | J, M) and P (Bur | J, M).
(e) Show that the variables J and M are not independent.
(f) Check all of your results with JavaBayes and with PIT.
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(g) Design a Bayesian network for the alarm example, but with
the altered variable ordering M , Al, Ear, Bur, J . According
to the semantics of Bayesian networks, only the necessary
edges must be drawn in. (Hint: the variable order given
here does NOT represent causality. Thus it will be difficult
to intuitively determine conditional independences.)

(h) In the original Bayesian network of the alarm example, the
earthquake nodes is removed. Which CPTs does this
change? (Why these in particular?)

(i) Calculate the CPT of the alarm node in the new network.
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Exercise 14 ([Ertel 2025], Exercise 7.12, p. 173)
A diagnostic system is to be made for a dynamo-powered
bicycle light using a Bayesian network. The variables in the
following table are given.

Abbr. Meaning Value
Li Light is on t/f
Str Street condition dry, wet, snow_covered
Flw Dynamo flywheel worn out t/f
R Dynamo sliding t/f
V Dynamo shows voltage t/f
B Light bulb o.k. t/f
K Cable o.k. t/f

The following variables are pairwise independent: Str, Flw, B,
K. Furthermore: (R, B), (R, K), (V, B), (V, K) are independent
and the following equation holds:
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P (Li | V, R) = P (Li | V )
P (V | R, Str) = P (V | R)

P (V | R, Flw) = P (V | R)
(a) Draw all of the edges into the

graph (taking causality into
account).

(b) Enter all missing CPTs into the
graph (table of conditional
probabilities). Freely insert
plausible values for the
probabilities.

(c) Show that the network does not
contain an edge (Str, Li).

(d) Compute
P (V | Str = snow_covered).

FlwStr

R

V KB

Li

V B K P (Li)
t t
t t
t
t

t

t
f

f
f f

0.99
0.01
0.01
0.001
0.3
0.005t

t
f f
f f
f f f

f t t

0.005
0
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Summary

Probabilistic logic for reasoning under uncertain
knowledge.
Method of maximum entropy models non-monotonic
reasoning.
Bayesian networks as special case of MaxEnt.
Bayesian networks rely on independence assumptions.
In a Bayesian network, all CPTs must be filled completely.
With MaxEnt, arbitrary knowledge can be formulated.

E.g.: “I am pretty sure that A is true.”: P (A) ∈ [0.6, 1].
The freedom that the developer has when modeling with
MaxEnt can be a disadvantage (especially for a beginner)
because, in contrast to the Bayesian approach, it is not
necessarily clear what knowledge should be modeled.
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Summary

Combining MaxEnt and Bayesian networks
Building a network according to the Bayesian methodology,
enter all the edges accordingly and then fill the CPTs with
values.
If certain values for the CPTs are unavailable, then they can
be replaced with intervals or by other probabilistic logic
formulas.
Such a network no longer has the special semantics of a
Bayesian network. It must be processed and completed by
a MaxEnt system.

Arbitrary rule sets may be inconsistent: P (A) = 0.7 and
P (A) = 0.8.
PIT recognizes inconsistency.
In some cases reasoning is possible anyway.
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Summary

Medial expert system LEXMED
can be modeled and implemented using MaxEnt and
Bayesian networks
can replace the well-established, but too weak linear
scoring systems used in medicine

Better than linear score systems.
Scores are equivalent to the special case Naive-Bayes,
that is, to the assumption that all symptoms are
conditionally independent given the diagnosis.
In the LEXMED example we showed that it is possible to
build an expert system for reasoning under uncertainty
that is capable of discovering (learning) knowledge from
the data in a database
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Summary

Nowadays, bayesian inference is very important and
well-developed
We have completely left out the handling of continuous
variables.
For the case of normally distributed random variables
there are procedures and systems.
For arbitrary distributions, however, the computational
complexity is a big problem.
In addition to the directed networks that are heavily based
on causality, there are also undirected networks.
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