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Introduction
Recall: The Flying Penguin Example

1. Tweety is a penguin
2. Penguins are birds
3. Birds can fly

Formalized in PL1, the

knowledge base K B is:
penguin(tweety)

penguin(x) = bird(x)
bird(x) = fly(x)

m [t can be derived (for example, by reso~lution): fly(twetty).
m If penguin(xz) = —fly(x) (= “Penguins cannot fly”) is added to

the knowledge base K B, then —fly(twetty) can also be derived.

=- The knowledge base is inconsistent. (Because the logic is
monotonic; i.e., new knowledge can not void old knowledge.)
= Probabilistic Logic is useful.

m Formalize the statement “Nearly all birds can fly” (e.g., “99% of
all birds can fly”).
m Correctly carry out inferences on it.
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Introduction

Reasoning with uncertain or incomplete knowledge is
important
m In everyday situations and also in many technical
applications of Al, heuristic processes are very important.
m Example: Use heuristic techniques when looking for a
parking space in city traffic.
m Heuristics alone are often not enough, especially when a
quick decision is needed given incomplete knowledge.
7 D
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Introduction

Reasoning with

Example 1 Uncertainty
If a patient experiences pain in the right lower abdomen and a Hoang Anh B1e
raised white blood cell (leukocyte) count, this raises the
suspicion that it might be appendicitis.

Stomach pain right lower A Leukocytes > 10000 — Appendicitis

Introduction

RAISED WHITE BLOOD
CELL COUNT
LEUKOCYTE ——

If Stomach pain right lower A
Leukocytes > 10000 is true, §
we can use Modus Ponens to
derive Appendicitis

= This model is too coarse.
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When building their medical expert system MYCIN, Shortliffe

and Buchanan [Shortliffe 1976] developed a calculus using fneduction
so-called certainty factors, which allowed the certainty of facts

and rules to be represented.

m Each rule A — B is assigned a certain factor f3.
m A —3 B means the conditional probability P(B | A) = p.

m Stomach pain right lower A Leukocytes > 10000 —¢.6
Appendicitis

m Formulas for connecting the factors of rules
m Calculus is incorrect
m Inconsistent results could be derived
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m There were also (unsuccessful) attempts to solve this
problem by using non-monotonic logic and default logic.

m Default logic: a special type of non-monotonic logic.

m In the Flying Penguin Example, the first three given rules
are default. The newly added rule penguin(z) = —fly(x)
“override” the default rule bird(xz) = fly(z) in the case of
penguin, and for other birds the default rule still applies.

m Dempster-Schéfer theory: assigns a belief function Bel(A)
to a logical proposition A, whose value gives the degree of
evidence for the truth of A.

m Fuzzy logic: demonstrates considerable weaknesses
when reasoning under uncertainty in more complex
applications.

m The meaning (semantics) of a proposition in fuzzy logic is
not clearly defined.

Introduction
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Introduction

Reasoning with conditional probabilities

m Conditional probabilities instead of implication (as it is Ressoning wih
known in logic)
m Significantly better in modeling everyday causal reasoning.
m Subjective probabilities
m For example, if you are in the middle of the street and do not (&) nwosucion
know whether you should turn left or right. (That is, the
probabilities of turning left and turning right are unknown.)
m From mathematical viewpoint, if you don’'t know the
probabilities, you do nothing.
m From Al viewpoint, you need to make a decision. So (even if
you don’'t know anything) you “assume” that turning left and
right have the same probability 0.5 and make a decision
based on this “assumption”.
m The “assumption” you made may not be true but it is
subjective to you.
m Probability theory is well-founded.
m Reasoning with uncertain and incomplete knowledge.
m Maximum entropy method (MaxEnt) and the medical expert
system LEXMED.
m Bayesian networks. o

Hoang Anh Buic



Computing with Probabilities

Example 2 Reasoning with

Uncertainty
For a single roll of a fair (unbiased) die (experiment), Hoang Anh Bic
m The probability of the event “rolling a six” equals 1/6.

m The probability of the occurrence “rolling an odd number” Computing wih
|S equal tO ]./2 Probabilities

'-| Definition } 2

m Sample space (): the finite set of all possible outcomes
for an experiment.

m Event: subset of Q.

m If the outcome of an experiment is included in an event E,
then event E has occurred.
m A and B are events = A U B is an event.

m Elementary event: subset of Q2 containing exactly one
element.

m Sure event: Q.
m /mpossible event: (.

\. J
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We will use propositional logic notation for set operations. Uncertainty
Set notation | Propositional logic Description reano e
ANB AANB intersection / and
AUB AV B union / or Computng wih
A -A complement / negation Probabilies
Q t certain event / true
0 f impossible event / false

m A, B, etc.: random variables.
m We consider only discrete random variables with finite
value range.
m Example:
m The variable face_number for a dice roll is discrete with the
values 1,2, 3,4,5,6.
m The probability of rolling a five or a six is equal to 1/3.

P(face_number € {5,6})
= P(face_number =5V face_number = 6) = 1/3.
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"l initi Hoang Anh B
Definition oang Anh Buic

Let @ = {wi,wa,...,w,} be finite. There is no preferred
elementary event, which means that we assume a symmetry Computing with
related to the frequency of how often each elementary event Propaies

appears. The probability P(A) of the event A is then o
P(A) = |A] _ Number of favorable cases for A P
| Number of possible cases

Example 3

Throwing a die, the probability for an even number is

{2,4,6}| 3_1




Computing with Probabilities

m Any elementary event has the probability 1/|2| (Laplace
assumption).
m Applicable only at finite event sets.
m To describe events we use variables with the appropriate
number of values.
m Example: Variable eye_color can take on the values green,
blue, brown.
m eye_color = blue then describes an event because we are
dealing with a proposition with the truth values ¢ or f.
m Binary (boolean) variables (i.e., variables that can take on
the values t and f) are propositions themselves.
m Write P(JohnCalls) instead of P(JohnCalls = t).

Reasoning with
Uncertainty

Hoang Anh Buic

Computing with
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Sonditional Probability




Computing with Probabilities

Theorem 1 M ncerianty
(1) P(Q) = 1. Hoang Anh Bic
(2) P(0) =0, which means that the impossible event has a

probability of 0. Somting it
(3) For pairwise exclusive events A and B, it is true that Probabilies
P(Av B) = P(A)+ P(B).
(4) For two complementary events A and —A, it is true that
P(A)+ P(-A) =1.
(5) For arbitrary events A and B, it is true that
P(AV B) = P(A)+ P(B) — P(AAB).
(6) For A C B, itis true that P(A) < P(B).
(7) If Ay, As, ..., A, are the elementary events, then

> P(4;) = 1 (normalization condition).
i=1

Exercise 1 ([Ertel 2025], Exercise 7.1, p. 171)
Prove the propositions from Theorem 1. 124
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For binary variables A, B,
m P(A A B) = P(A, B) stands for the probability of the event

ANnB. Oithg
m Distribution or joint probability distribution P (A, B) of the o
variables A and B is the vector

(P(A’B)vP(AvﬁB)vP(_'A’B)vP(_'A’_'B))

m Distribution in matrix form

P(A4,B) B=t B=7
A=t P(A, B) P(A,-B)
A=§ P(-A, B) P(-A,-B)
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Computing with Probabilities

In general,
m d variables X1, X», ..., X4 with n values each

m The distribution contains the values
P(X1 :1'17...,Xd :{L‘d)

B z1,...,x4 €ach may have n different values

m The distribution can therefore be represented as a
d-dimensional matrix with a total of n¢ elements.

m By the normalization condition, one of these n? values is
redundant.

m Thus, the distribution is characterized by n? — 1 unique
values.

Reasoning with
Uncertainty

Hoang Anh Buic

Computing with
Probabilities
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Computing with Probabilities

Conditional Probability

Example 4 FleUar;s::r\;g‘;n\xth
On Landsdowne street in Boston, the speed of 100 vehicles is Hoang Anh Bitc
measured. For each measurement it is also noted whether the driver

is a student. The results are

Event Freq. | Relative
freq.
Vehlcle observed 100 1 @ Conditional Probability
Driver is a student (S) 30 0.3
Velocity (speed) too high (V) 10 0.1
Driver is a student and speeding (S A V) 5 0.05

Do students speed more frequently than the average person, or than
non-students?
Answer: conditional probability .
The probability for speeding under the condition that the driver is a
student:

__ |Driver is a student and speeding| 5

1
PV |S —— — =—-=0.17.
V1S3) |Driver is a student| 30 6

The probability for speeding in general: P(V) = 0.1.
Thus, students speed more frequently than the average person.
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Conditional Probability
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Uncertainty
Definition

Hoang Anh Buic
For two events A and B, the probability P(A | B) for A under
the condition B (conditional probability) is defined by

P(AAB)
P(B)

Conditional Probability

P(A|B) =

P(A | B) = probability of A regarding event B only, i.e.

|A A B

PAIB) =g

Indeed, this can be proved as follows.

b PAAB) et anp
AIB) =—pm =18 ~ B

€2




Computing with Probabilities

Conditional Probability

Definition Reasoning with

Uncertainty
If, for two events A and B, P(A | B) = P(A), then these Hoang Anh e
events are called independent. In other words, A and B are

independent if the probability of the event A is not influenced

by the event B.

Theorem 2
For independent events A and B, it follows from the definition
that P(AA B) = P(A) - P(B).
Example 5
m A roll of two dice.

m [f the two dice are independent, the probability of rolling
two sixes
P(D; =6ADy=6)=P(Dy=6)-P(Dy=6)=¢-¢ = 5.
m If, by some magic power, dice 2 is always the same as
dice 1, P(D1 =6A Dy :6) = %
Exercise 2
Prove Theorem 2. 24)

@ Conditional Probability




Computing with Probabilities

Conditional Probability

Reasoning with
Uncertainty

m Product Rule: For two events A and B,
P(ANB)=P(A|B)-P(B). Hoang Anh B
m Chain Rule: For random variables X1, ..., X,

P(X1,...,Xn_1)

P(Xy,...,.Xn)=P(X, | X1,..., X51)
P(anl | Xl» ey Xn72 @ Conditional Probability

=P(X, | X1, ., Xn_1)
P(X1,.. ., Xnla)
=P(X, | X1, , Xp_1) P(Xpo1 | X1, Xnio)
P(Xy, . Xna) . P(X, | X1) - P(XY)

n
=[P | X1, Xiw).

i=1

(Because the chain rule holds for all values of the (random)
variables X1, ..., X, it has been formulated for the distribution

using the symbol P.)
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Conditional Probability
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Uncertainty
Example 6 Hoang Ah Bile
m For n = 3 events, the chain rule for events A, A5, Az is
P(Al’ A2’ AS) = P(A3 | Al’A2) : P(A2 | Al) : P(Al) @ Conditional Probabilty

m We randomly draw 3 cards without replacement from deck
with 52 cards. o e e

m Event A; = {draw an ace in the i-th try}. Exlch
m The probability that we have picked three aces R

P(Ay,As, A3) = P(As | A1, As) - P(Az | A1) - P(Ay)
_2 3 4_ 1
T 50 51 52 5525




Computing with Probabilities

Conditional Probability

Reasoning with
Example 7 Uncertainty
Hoang Anh Buic

m For n = 2 random variables X; and X, which can both
take values ¢t and f, for example, we have
P(Xy =1,Xs=t) = P(X1, X>)
— P()(1 =t | X2 — t) . P(X2 — t) — P(X1 | X2) . P(X2)’ Conditional Probability
P(Xl :taX2 = f) = P(le_‘XQ)
=PXy;=t|Xo=f)-P(Xyo=f)=P(X1]|-Xs) P(—X>).
m Then, the chain rule for distribution P(X;, X5) reads

P(Xl,XQ) = P(XQ | Xl) : P(Xl)a

which means

P(Xl,XQ)) P((Xz ||X1))~ P(X1)
P(X1,~X> P(=X2 | X1) - P(X,)
P(Xy,Xs) = P(~X1, Xo) = P(X, |2—|X11) - P(=X,)

P(=X1,~X2) P(=Xs | 7 X1) - P(=X1) Jus



Computing with Probabilities

Conditional Probability

m Since A < (A A B) VvV (A A—B) is true for binary variables
A and B, we also have
P(A)=P(AAB)V(AAN-B))
=P(AANB)+ P(AAN-B). AABand AAN-B are
pairwise exclusive

m In general,
P(Xi=21,...,Xq-1=24-1)
= ZP(Xl = 1'1,-~-,Xd—1 = xd_l,Xd = xd)
Zq

The application of this formula is called marginalization.

m Marginalization can also be applied to distribution
P(Xy,...,X4). The resulting distribution P(X,..., X4-1)
is called the marginal distribution.

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability
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Conditional Probability

Reasoning with
Uncertainty

Example 8 Hoang Anh Biic
Leuko Leukocyte value higher than 10000
App Patient has appendicitis (appendix inflammation)

Conditional Probability

| P(App, Leuko) | App | —App | Total |

Leuko 0.23 0.31 0.54
-Leuko 0.05 0.41 0.46
Total 0.28 | 0.72 1

For example, it holds:

P(Leuko) = P(App, Leuko) + P(—App, Leuko) = 0.54

P(Leuko, A 0.23
P(Leuko | App) = ( P(App)pp) =038~ 0.82.
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P(A|B) = % as well as P(B | A) = %_
Theorem 3 (Bayes’ Theorem) (24) condvonat rvasit
P(B[A)-P(4)

P(A|B) = )

Exercise 3
Prove Theorem 3.




Computing with Probabilities

Conditional Probability

Example 9 (Appendicitis example) Ressoning i
P(Leuko | App) - P(App) 0.82-0.28 Hoang Anh Biic
P(App | Leuko) = = ~ 0.43.
(App | Leuko) P(Leuko) 0.54

m Assuming that appendicitis affects the biology of all
humans the same, regardless of ethnicity.

m P(Leuko | App) is a universal value that is valid worldwide.

m P(App | Leuko), on the other hand, is not universal,
because this value is influenced by the a priori probabilities
P(App) and P(Leuko). Each of these can vary according
to on’s life circumstances.

m For example, P(Leuko) is dependent on whether a
population has a high or low rate of exposure to infectious
diseases. In the tropics, this value can differ significantly
from that of cold regions.

m Bayes’ theorem, however, makes it easy for us to take the

universally valid value P(Leuko | App), and compute
P(App | Leuko) which is useful for diagnosis.

Conditional Probability

124
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Conditional Probability

Example 10 Fncaranty

m Sales representative: “Very reliable burglar alarm, reports Hodng A Biic
any burglar with 99% certainty”

m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!

@ Conditional Probability




Computing with Probabilities

Conditional Probability

Example 10 Fncaranty

m Sales representative: “Very reliable burglar alarm, reports Hodng A Biic
any burglar with 99% certainty”
m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!
m No! Be careful!
m What does this mean when we hear the alarm go off?
m Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P(B) = 0.001.
m Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P(A) = 0.1.
m Thus, P(B| A) = (P(A| B)-P(B))/P(A) ~ 0.01 = There
will be too many false alarms!

@ Conditional Probability




Computing with Probabilities

Conditional Probability

Example 10 Fncaranty

m Sales representative: “Very reliable burglar alarm, reports Hodng A Biic
any burglar with 99% certainty”
m A: Alarm, B: Burglar. The seller claims P(A | B) = 0.99
m Thus with high certainty: If alarm then burglary!
. NO/ Be Careful’ @ Conditional Probability
m What does this mean when we hear the alarm go off?
m Suppose we (the buyer) live in a relatively safe area in
which break-ins are rare, with P(B) = 0.001.
m Assume that the alarm system is triggered not only by
burglars, but also by animals, such as birds or cats in the
yard, which results in P(A) = 0.1.
m Thus, P(B| A) = (P(A| B) - P(B))/P(A) =~ 0.01 = There FormatMetnade
will be too many false alarms! .
m Additionally, we have P(A4) = P(A | B) - P(B) + P(A |
-B) - P(B) =0.00099 + P(A | -B)-0.999 = 0.1, which
implies P(A | =B) = 0.1 = The alarm will be triggered
roughly every tenth day that there is not a break-in 124
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Conditional Probability

Exercise 4 ([Ertel 2025], Exercise 7.2, p. 171)

The gardening hobbyist Max wants to statistically analyze his
yearly harvest of peas. For every pea pod he picks he
measures its length z; in centimeters and its weight y; in
grams. He divides the peas into two classes, the good and the
bad (empty pods). The measured data (z;,y;) are

1 2 2 3 3 4 456 x4 6 6 7
bad pea:
y|2 3445 5 6 6 6 yl[2 2 3 3

T

good pea:

(a) From the data, compute the probabilities
P(y > 3| Class = good) and P(y < 3 | Class = good).
Then use Bayes’ formula to determine
P(Class = good | y > 3) and P(Class = good | y < 3).
(b) Which of the probabilities computed in subproblem (a)
contradicts the statement “All good peas are heavier than
3 grams™?

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability
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The Principle of Maximum Entropy

Reasoning with

m A calculus for reasoning under uncertainty can be realized Uncertainty
using probability theory. Hoang Anh Bite
m Often too little knowledge for solving the necessary
equations = new ideas are needed.
m Idea from E.T. Jaynes (Physicist): Given missing
knowledge, one can maximize the entropy of the desired
probability distribution. (&) e Prnipe of
m More precisely, e
B Take the precisely stated prior data or testable information
about a probability distribution. [What you already know.]
B Consider the set of all candidate probability distributions that
satisfy those constraints. [What are the possibilities given
what you know?]
B Choose the distribution from this set that maximizes the
(information) entropy.  [What is the least biased choice given
what you know?]
m Intuition: MaxEnt picks the distribution that agrees with what
you know and is otherwise as uniform as possible — it does
not introduce any extra (unjustified) structure.

m Application to the LEXMED project.
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The Principle of Maximum Entropy

Let X be a discrete random variable with possible values
x1,Za,...,x, and probability distribution P(X) = (p1,p2,...,Pn),
where p; = P(X = z;).

Definition
The (information) entropy H of the distribution P(X) is defined as

H(P) = - pilogp,
i=1

m Entropy is a measure of the uncertainty associated with a random
variable.
m The higher the entropy, the more uncertain or unpredictable the
variable is.
m |f one outcome has probability 1 and all others 0, then the entropy is
0 (no uncertainty).
m If all outcomes are equally likely, then the entropy is maximized
(maximum uncertainty).
m Entropy is measured in nats when using the natural logarithm (In)
and in bits when using the base-2 logarithm (log,). (The choice of
base for log depends on the context and application.)

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability
The Principle of
Maximum Entropy

n Inference Rule for




The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

m Modus Ponens Uncertainty
A, A = B Hoang Anh Buic

B
m Generalization to probability rules

P(A)=a,P(B| A) =8

P(B)=" o
Given: two probability values «, 3, Find: P(B). Panties

Maximum Entroj
Explicit Const

m Marginalization CocitonalProti
P(B) = P(A,B)+ P(—A,B) S
=P(B|A)-P(A)+ P(B|-A)-P(-A)
The values of P(A), P(—A), and P(B | A) are known. But 1;;1\9@ w
P(B | =A) is unknown.
m We cannot make an exact statement about P(B) with

classical probability theory, but at the most we can
estimate P(B) > P(B | A) - P(A). Aopcaton s




The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

Uncertainty
m Distribution Hoang Anh Biie
P(A,B) = (P(A,B),P(A,-B),P(-A, B), P(-A,-B))
m Abbreviation 1Pl
= P(A’ B) An Inference Rule for
P2 = P(A, _\B) E\?T?j\l\‘:‘e:\s ‘\‘ hou
p3:P(‘|A’B) jitional P \“‘
pa = P(=A,-B) o e
m These four parameters (unknowns) py, ..., ps define the Appendiils Diagnos
distribution. Hoi r;“\F,“J i
m Out of it, any probability for A and B can be calculated. Frcin LoD

m Four equations are required to calculate these unknowns. e




The Principle of Maximum Entropy

An Inference Rule for Probabilities

m Normalization condition: p; + p2 + p3 +ps = 1. Mmooty
m From the given values P(A) = aand P(B | A) = g we Hoang Anh Do
calculate

P(A,B)=P(B|A)-P(A) =ap
P(A) = P(A,B) + P(A,-B).
m So far, we have the following system of three equations

An Inference Rule for
Probabilities

p1+p2+p3 +p4:1 Maximum Entro

p1=ap ol
p1+p2 =«
m Solve it as far as is possible, we get
p1=af
p2 = a(l - f)

p3tpi=1-«

One equation is missing! Eparences

124



The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

m To come to a definite solution despite this missing knowledge, Uncertainty
we change our point of view. We use the given equation as a Hoang Anh Blie
constraint for the solution of an optimization problem.

m Find: Distribution p = (p3, p4) which maximizes the entropy

n
H(p) = — Z i lnpi = —p3 lnp3 —pa lnp4 Conditional Probability
i=1
. An Infe!?nce Rule for
under the constraint p3 +py = 1 — a. Probabiltes

Without

Maximum Entre
Explicit Co

m Why should the entropy function be maximized?

m The entropy measures the uncertainty of a distribution up to a
constant factor.

m Negative entropy is then a measure of the amount of
information a distribution contains.

m Maximizing the entropy minimizes the information content of the
distribution.

m Because we are missing information about the distribution, it
must somehow be added in. We could fix an ad hoc value, for
example p3 = 0.1. Yet it is better to determine the values p; and
p4 Such that the information added is minimal.




The Principle of Maximum Entropy

An Inference Rule for Probabilities

Reasoning with

m Problem: Maximizing H (p) = —p3 Inps — ps Inpy w.r.t the Uncertainty
Constraint P3 + P4 — 1+a=0. Hoang Anh Bic

m Method of Lagrange multipliers.
m Lagrange function:

L=H{p)+Aps+ps—1+a)
= —pslnps —pslnps + A(ps +ps — 1 + @)

An Inference Rule for
Probabilities

m Taking the partial derivatives with respect to p3 and py

L
a—:—lnpg—l—k)\zo
Ips3

L
8—:—1r1p4—1—|—)\=0
Op4

m These two equations along with the constraint give us a
system of three equations and three unknowns ps, p4, A.
Solving it, we have p3 = p, = (1 — a)/2.
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]_ — Reasoning with
P(B) :P(A7B)—|—P(—|A7_B) =p1+ps3 :aﬁ+T L\Jncertamty'
Hoang Anh Burc
1 1 1 1
=af-5)+5=PAPBIA)-3)+3.
2 2 2 2
P(B)=P(A) (P(BIA)-1/2)+1/2
1 P(BIA)=1

P(BIA)=0.9 Conditional Probability

08+ P(BIA)=0.8

P(BIA)=0.7
An Inference Rule for

06} P(BIA)=0.6 Probabilities

:E_ P(BIA)=0.5

041 P(BIA)=0.4

P(BIA)=03

02 P(BIA)=0.2

P(BIA)=0.1

0 - - . . P(BIA)=0
0 0.2 0.4 0.6 0.8 1

P(A)
Figure: Curve array for P(B) as a function of
P(A) for different values of P(B | A).




The Principle of Maximum Entropy

An Inference Rule for Probabilities

1—« Reasoning with
P(B) = P(A,B) + P(=A,B) = p1 + p3 = aff + —=
2 Hoang Anh Buic
(B-3)+ 3 =PANPB|A) - 5)+ 3
= —_— - - = P —.
2 2 2 2
m When P(A) =1land P(B)=P(A) (P(BIA) - 1/2) + 112
P(BIA)=1
P(B | A) =1 P<B) =1 P(BIA)=0.9 Conditional Probability
(Modus Ponens holds) osh P08
P(BIA)=0.7
An Inference Rule for
061} P(BIA)=0.6 Probabilities
—~ Maximum Entropy Without
;‘;‘ P(BIA)=0.5 Explic
04+f P(BIA)=0.4
P(BIA)=0.3
02 P(BIA)=0.2
P(BIA)=0.1
0 . . L L P(BIA)=0
0 0.2 04 0.6 0.8 1

P(A)
Figure: Curve array for P(B) as a function of
P(A) for different values of P(B | A).




The Principle of Maximum Entropy

An Inference Rule for Probabilities

1 — Reasoning with
P(B) :P(A7B)+P(—|A,B) =p1 +p3 :aﬁ+7 Uncertainty
2 Hoang Anh Burc
1 1 1 1
=a(B—=2)+==PA)(PB|A) —=)+-.
a(f—5)+5 = PA)P(B | 4) - 5) +
m When P(A) =1land P(B)=P(A) (P(BIA) - 1/2) + 112
P(B|A)=1,PB)=1 PubiA= :
P(BIA)=0.9 Conditional Probability
(Modus Ponens holds) sl s
= When P(A) = 1and PEIm=0T An Inference Rule for
P(B | A) =0, P(B) =0 06t PBIAY=0.6 ’P‘robabi\iﬂe[s‘ .
(Modus Ponens holds) £ B0 Exic o
041 P(BIA)=0.4 v
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P(A) for different values of P(B | A).
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m When P(A) =1 and P(B) = P(A) (P(BIA) - 1/2) + 112
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

1 — easoning wi
P(B) = P(A,B) + P(=A,B) = p) +p3 = aff + —2 Fncerianty
2 Hoang Anh Buic
—a(8— )+ 5 = PAYP(B | 4)~ 5)+
ST T T 2/ Ty

m When P(A) =1 and P(B) = P(A) (P(BIA) - 1/2) + 172

P(B|A)=1,PB)=1 e
P(BIA)=0.9
(Modus Ponens holds) osh P08
m When P(A) =1and P@BIA=07 An Inference Rule for
P(B | A) =0, P(B) =0 06k P(BIA)=0.6 Probabilities
(Modus Ponens holds) £ REIS0S
04} P(BIA)=0.4
m When P(A) =0, Modus P(BIA)=03
Ponens cannot be 02} PBIAY=02
applied, but our formula P(BIA)=0.1
reSU|tS In the Value 1/2 OU O‘.l ()‘.4 ()T('u UT& IP(B‘AFO
for P(B) irrespective of P(A)

P(B | A). When A is Figure: Curve array for P(B) as a function of
false, we know nothing P(A) for different values of P(B | A).

abou’t B, which reflects m We cannot make any prediction

our intuition exactly. about B when P(B | A) = 1/2.
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

A set of probabilistic equations is called consistent if there is at
least one solution, that is, one distribution which satisfies all
equations.

Theorem 4

Let there be a consistent set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function
with the given equations as constraints. The MaxEnt
distribution thereby defined has minimum information content
under the constraints.

m It follows from this theorem that there is no distribution
which satisfies the constraints and has higher entropy than
the MaxEnt distribution.

m A calculus, which leads to distributions with a higher
entropy is adding informations ad hoc, which again is not
justified.

Reasoning with
Uncertainty

Hoang Anh Buic

An Inference Rule for
Probabilities
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The Principle of Maximum Entropy

An Inference Rule for Probabilities

m p; and p, always occur symmetrically.
m Therefore, ps = p4 (indifference).

Definition

If an arbitrary exchange of two or more variables in the
Lagrange equations results in equivalent equations, these
variables are called indifferent.

Theorem 5

If a set of variables {pi, ,pi,,- - ., pi, } is indifferent, then the
maximum of the entropy under the given constraints is at the
point where p;, = p;, = -+ = p;,.
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An Inference Rule for
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The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Reasoning with
Uncertainty

Hoang Anh Buic

m No knowledge given = All varibles are indifferent.
(Indifference Principle.)

m No constraints beside the normalization condition
prtp2t-+pn =1

1
m Wecansetp, =---=p, = —.
n Maximum Entropy Without

m Given a complete lack of knowledge, all worlds are equally Explct Gonsirains

Conditional Probabil

probable. That is, the distribution is uniform. Vorss Matra npicat

Example 11 (Special case: two variables A and B)
m P(A,B) = P(A,-B) = P(=A,B) = P(-A,-B) = 1/4.
m P(A)=P(B)=1/2and P(B | A) = 1/2.
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The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Reasoning with
Uncertainty

As soon as the value of a condition deviates from the one Hoéng Anh Buic
derived from the uniform distribution, the probabilities of the
worlds shift.

Example 12 (Special case: two variables A and B)

m Assume that only P(B | A) = /3 is known.

m Thus, P(A,B) = P(B | A)P(A) = BP(A). Therefore, oo irnce
p1 = Bpy+p2). () e v

m We derived two constraints: ol o

Bp2+(B—1)p1=0
p1+p2+p3+ps—1=0

m No symbolic solutions!
m Solving the Lagrange equations numerically.




The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Exercise 5 ([Ertel 2025], Exercise 7.3, p. 172) M ncerianty
You are supposed to predict the afternoon weather using a few Hoang Anh Bde
simple weather values from the morning of this day. The

classical probability calculation for this requires a complete

model, which is given in the following table.

Sky Bar Prec P (Sky, Bar, Prec)

Clear Rising _Dry 040 Sky:  The sky is clear or
Clear Rising  Raining  0.07 cloudy in the morning
Clear Falling  Dry 0.08 Bar:  Barometer rising or (©) B Contrara et
Clear Falling Raining 0.10 falling in the morning
Cloudy Rising  Dry 0.09 Prec:  Raining or dry in the
Cloudy  Rising  Raining 0.1 afternoon

Cloudy Falling Dry 0.03

(a) How many events are in the distribution for these three variables?
(b) Compute P(Prec = dry | Sky = clear, Bar = rising).

(c) Compute P(Prec = rain | Sky = cloudy).

(d) What would you do if the last row were missing from the table?
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The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Exercise 6 ([Ertel 2025], Exercise 7.4, p. 172)

In a television quiz show, the contestant must choose between
three closed doors. Behind one door the prize awaits: a car.
Behind both of the other doors are goats. The contestant
chooses a door, e.g. number one. The host, who knows where
the car is, opens another door, e.g. number three, and a goat
appears. The contestant is now given the opportunity to
choose between the two remaining doors (one and two). What
is the better choice from his point of view? To stay with the
door he originally chose or to switch to the other closed door?

Reasoning with
Uncertainty

Hoang Anh Buic

Maximum Entropy Without
Explicit Constraints
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The Principle of Maximum Entropy

Maximum Entropy Without Explicit Constraints

Exercise 7 ([Ertel 2025], Exercise 7.5, p. 172)
Using the Lagrange multiplier method, show that, without

explicit constraints, the uniform distribution
p1 =p2 =+ = p, = 1/n represents maximum entropy. Do not

forget the implicitly ever-present constraint
p1+p2+ -+ p, = 1. How can we show this same result using

indifference?

Reasoning with
Uncertainty

Hoang Anh Buic

An Inference

Probabilities

Maximum Entropy Without

Explicit Constraints

nditional Probabil
v I




The Principle of Maximum Entropy

Conditional Probability Versus Material Implication

Reasoning with
Uncertainty

Hoang Anh Buic

We will now show that, for modeling reasoning, conditional
probability is better than what is known in logic as material
implication.

A[B]A=B[PA [ PB) ]| PB|A

t t t 1 1 1

t|f f 1 0 0

flt t 0 1 Undefined

flr t 0 0 Undefined
Question: What value does P(B | A) have, if only P(A) = a

and P(B) = ~ are given?
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The Principle of Maximum Entropy

Conditional Probability Versus Material Implication

Hp = P(A,B), P2 = P(A,_'B), p3 = P(_'A,B),
P4 = P(—|A, —|B)
m Constraints:

pP1+p2 =
p1+p3=7
P1L+p2+p3t+ps=1

m Again we maximize entropy under the given constraints
and obtain:

pr=oy, ppr=o(l-y), pz=7(1-a), ps=1-a)(l-y)

m From p; = ay, we have P(A, B) = P(A) - P(B), which
means A and B are independent.
Exercise 8 ([Ertel 2025], Exercise 7.8, p. 173)

Prove that the above-mentioned results for pq, ps, p3, p4 are
correct.

Reasoning with
Uncertainty

Hoang Anh Buic

Versus Material Implication
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The Tweety example
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The Principle of Maximum Entropy

Conditional Probability Versus Material Implication

m From definition, P(B | A) =

P(A, B)
P(A)

m For P(A) # 0, we have P(B | A) = P(B).
m For P(A) =0, P(B | A) stays undefined.

A|B| A= B | P(A) | P(B)| P(B|A
flt t a v v
flf t 0 ~ Undefined

Reasoning with
Uncertainty

Hoang Anh Buic
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The Principle of Maximum Entropy

MaxEnt-Systems

m Often, MaxEnt optimization has no symbolic solution.

m Therefore: numerical entropy maximization.

m SPIRIT (Symmetrical Probabilistic Intensional Reasoning
in Inference Networks in Transition, www.xspirit.de):
Fernuniversitat Hagen.

m PIT (Probability Induction Tool, http://www.maxent.de):
Munich Technical University.

m PIT uses Sequential Quadratic Programming (SQP) to find
an extremum of the entropy function numerically.

m As input, PIT expects a file with the constraints:

var A{t,f}, B{t,f};

P([A=t]) = 0.6;
P([B=t] |

QP([B=t]);
QP([B=t] | [A=t]);

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability

An Inference Rule for
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probability
Versus Material Implication

MaxEnt-Systems
The Tweety example

Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilistic
Knowledge Base

Application of LEXMED
Function of LEXMED

Risk Management Using
the Cost Matrix

Performance

Application Areas and
Experiences


www.xspirit.de
http://www.maxent.de

The Principle of Maximum Entropy

MaxEnt-Systems

Reasoning with

m Request QP([B=t]) Uncertainty
m Web front end on www.pit-systems.de (Inactive) Hoang Anh Bic
m Result

Nr. | Truth value | Probability Query

1 UNSPECIFIED | 3.800e-01 QP([B=t]);

2 | UNSPECIFIED | 3.000e-01 | qp([A=t]-|>[B=t]); Sonditional Probabi

m P(B)=0.38and P(B| A) =0.3.

Condit
Versus Mate!

@ MaxEnt-Systems
The Tweety example

jitional Probabil
l



www.pit-systems.de
http://www.pit-systems.de
http://www.xspirit.de

The Principle of Maximum Entropy

MaxEnt-Systems

Reasoning with

m Request QP([B=t]) Uncertainty
m Web front end on www.pit-systems.de (Inactive) Hoang Anh Bic
m Result

Nr. | Truth value | Probability Query

1 UNSPECIFIED | 3.800e-01 QP([B=t1);

2 | UNSPECIFIED | 3.000e-01 | qp([A=t]-|>[B=t]);

m P(B)=0.38and P(B| A) =0.3.
Exercise 9 ([Ertel 2025], Exercise 7.6, p. 172)
Use the PIT system (http://www.pit-systems.de) or SPIRIT
(http://www.xspirit.de) to calculate the MaxEnt solution for () wotnsrams
P(B) under the constraint P(A) = o« and P(B | A) = 5. Which
disadvantage of PIT, compared with calculation by hand, do
you notice here?

Exercise 10 ([Ertel 2025], Exercise 7.7, p. 172)

Given the constraints P(A) = « and P(A Vv B) = 3, manually
calculate P(B) using the MaxEnt method. Use PIT to check

your solution. e


www.pit-systems.de
http://www.pit-systems.de
http://www.xspirit.de

The Principle of Maximum Entropy

The Tweety example

“penguins are birds”
“(almost all) birds can fly”
“penguins cannot fly”

P(bird | penguin) = 1
P(flies | bird) € [0.95,1]
P(flies | penguin) = 0

m PIT input file:
var penguin{yes,no}, bird{yes,no}, flies{yes,no}
P([bird=yes] |

P([flies=yes] |
P([flies=yes] |

[penguin=yes]) = 1;
[bird=yes]) IN [0.95,1];
[penguin=yes]) = 0;

QP ([flies=yes] |

[penguin=yes]) ;

m Answer
Nr.
1

Probability
0.000e+00

Query
QP ([penguin=yes]-|

Truth value
UNSPECIFIED
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The Principle of Maximum Entropy

The Tweety example

Reasoning with
Uncertainty

Hoang Anh Buic

m Probability intervals are often very helpful

m second rule in the sense of “normally birds fly”:
P(flies| | bird) € (0.5,1]

m MaxEnt enables non monotonic inference

m MaxEnt is also successful on challenging benchmarks for
non monotonic inference

m Application of MaxEnt within the medical expert system (1) e eay oram
LEXMED

124



LEXMED

Reasoning with
Uncertainty

Hoang Anh Buic

m Manfred Schramm, Walter Rampf, Wolfgang Ertel

m Ravensburg-Weingarten University of Applied Sciences +
Weingarten 14-Nothelfer Hospital + Technical University
Munich

m LEXMED = Medical expert system capable of learning.
The project was funded by the german state of
Baden-Wuerttemberg, the AOK Baden-Wirttemberg, the

Ravensburg-Weingarten University of Applied Sciences and by (=) exwen
the hospital 14 Nothelfer in Weingarten.
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LEXMED

Personal Details | unknown values

Gender . - male c female [ ]

Age-group R 4:; £ g;gsf:;;a © 16-20 - 21-25 - 26-35 - 36-45 ﬂ
Results of not
examination done Relies

1st quadrant .  yes  no

2nd quadrant . yes © no

3rd quadrant ® yes © no

4th quadrant «  yes  no

guarding ® « local © global © none
rebound tenderness . © yes © no
pain on tapping ® © yes  no
rectal pain " © yes © no

bowel sounds

« weak r normal r increased r none

abnormal ultrasound

© yes ¢ no

abnormal urine sediment

temperature range (rectal)

© yes r no

¢ -873 r 37.4-37.6  37.7-38.0 - 38.1-384  38.5-38.9 r 39.0-

leucocyte count

© 0-6k r Bk-8k r 8k-10k r 10k-12k ~ 12k-15k r 15k-20k r 20k-

EEEEEEE S S =

Abfragen

Figure: LEXMED Query form.
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LEXMED

Result of the PIT diagnosis

Diagnosis

App. inflamed

App. perforated

Negative

Other

Probability

0.70

0.17

0.06

0.07

Figure: LEXMED Answer.
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LEXMED

Appendicitis Diagnosis with Formal Methods

\;,l

WL
01 woc Ty nmien|

%

Jo

o

Reasoning with
Uncertainty

Hoang Anh Buic

m The most common serious cause of acute abdominal pain
is appendicitis.

m Even today, diagnosis can be difficult in many cases.

m Approx. 20% of the surgically removed appendixes without A nfernce F
clinical abnormalities e

m There are also cases, where an inflamed appendix is not e
recognized

m In 1972, de Dombal (Great Britain) developed an expert
system for the diagnosis of acute stomach pain.

Appendicitis Diagnosis with
Formal Methods

Hybrid Probabilsti

Kno dg
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LEXMED

Appendicitis Diagnosis with Formal Methods

Reasoning with
Uncertainty

Hoang Anh Buic

Nearly all of the formal diagnostic processes used in medicine
to date have been based on scores.

m For each value of a symptom (for example fever or lower
right stomach pain) the doctor notes a certain number of
points.

m If the sum of the points is over a certain value (threshold), a
certain decision is recommended (for example operation).

Conditional Probability

@ Appendicitis Diagnosis with
Formal Methods




LEXMED

Appendicitis Diagnosis with Formal Methods

With n symptoms 51, 5., ..., S,, a score can formally be
defined as

Appendicitis  if w1S; + -+ + w, S, > 6,

Diagnose = .
negative else.

m Scores are too weak for the modelling of complex
relations.
m Score systems cannot consider “contexts”.
m E.g. they cannot distinguish between the leukocyte values
of elderly and medium age people.
m They demand high requirements on databases
(representative).
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Appendicitis Diagnosis with
Formal Methods



LEXMED

Hybrid Probabilistic Knowledge Base

Query to the expert system: What is the probability for an Ressoning wih
inflamed appendix, if the patient is a 23 year old man with pain Hoang Anh Bitc
in the in downright stomach and a leukocyte value of 130007
Symptom Values # Short
Gender Male, female 2 Sex2
Age 0-5, 6-10, 11-15, 16-20, 21-25, 26-35, 3645, 46-55, 5665, 65— 10 Agel0
Pain Ist Quad. Yes, no 2 PIQ2 onditional Probability
Pain 2nd Quad. Yes, no 2 P202
Pain 3rd Quad. Yes, no 2 P302
Pain 4th Quad. Yes, no 2 P4Q2 A erence e
Guarding Local, global, none 3 Gua3 Maximum Ent
Rebound tendemess  Yes, no 2 Reb2 Explict Con
Pain on tapping Yes, no 2 Tapp2 .—\‘ A‘
Rectal pain Yes, no 2 RecP2 ne
Bowel sounds Weak, normal, increased, none 4 BowS4 e
Abnormal ultrasound  Yes, no 2 Sono2
Abnormal urine sedim. Yes, no 2 Urin2 : “ ; ,‘ H,l, ,,’,‘,‘ e
Temperature (rectal) ~ —37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0— 6  TRec6 @ Hybrid Probabilistic
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k-12k, 12k15Kk, 5k-20k, 20k- 7 Leuko? e o
Diagnosis Inflamed, perforated, negative, other 4 Diag4 Function of

Figure: Symptoms used for the query in LEXMED and their values. e
The number of values for the each symptom is given in the column oo prese
marked #. T Evpeien



LEXMED

Hybrid Probabilistic Knowledge Base

Query to the expert system:

P(Diag4 = inflamed v Diag4 = perforated |
Sex2 = male N Age10 € 21-25 A Leuko7 € 12—15k)

Knowledge Base:

Database Expert knowledge

Dr. Rampf

15000 patients from ‘
Baden-Wiirttemberg 1995 Dr. Hontschik
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LEXMED

Hybrid Probabilistic Knowledge Base

m LEXMED calculates the probabilities of various diagnoses
using the probability distribution of all relevant variables
(see the previous table).

m The size of the distribution (that is, the size of the event
space):

219.10-3-4-6-7-4 = 20643 840.
m Normalization condition = 20 643 839 independent values.

m Any rule set with less than 20 643 839 probability values
may not describe the event space completely.

m A complete distribution is required.
m A human expert can not deliver 20 643 839 values!

m Use MaxEnt method. The generalization of about 500 rules
to a complete probability model is done in LEXMED by
maximizing the entropy with the 500 rules as constraints.

Reasoning with
Uncertainty

Hoang Anh Buic

Hybrid Probabilistic
Knowledge Base
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LEXMED

Hybrid Probabilistic Knowledge Base Probabilistic rules are
generated from data

Knowledge Processing: and expert knowledge, i
which are integrated in

a rule base (knowledge
base) and finally made
complete using the

y

P
“04 Hoc Ty NHIEN

o

Jo

o

h Y. Hoang Anh Burc
pnysician

query ; i
diagnosis| \jaxEnt method. e
[ complete probability distribution ] Nl!na: E :It e
Probabiliti s e
Maximum Entropy Without
automatic | completion R

Versus Material Implicatic

| Plleuko> 100] App=positive) =07 | - The base e

almost automatic Appendicits Diagnos
manual Formal Methods
@ Hybrid Probabilistic

Knowledge Base

yplication of LEXMED

database expert Funtonof LEXVED

Management Using
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LEXMED

Application of LEXMED

System Archltecture

symptoms ( f \ diagnosis

user interface ‘

diagnosis

‘doctor-specif.
patient-database

query answer (private)

rule-
induction

Figure: Rules are generated from the database as well as from expert
knowledge. From these, MaxEnt creates a complete probability
distribution. For a user query, the probability of every possible
diagnosis is calculated. Using the cost matrix (will be defined later) a
decision is then suggested.

database = rule set
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LEXMED

Application of LEXMED

Reasoning with
Uncertainty

The usage of LEXMED is simple and self-explanatory.
m The doctor visits the LEXMED home page at

www.lexmed.de.
m Doctor inputs the results of his examination into the input
form.

m If certain examination results are missing as input (for
example the sonogram results), then the doctor chooses the
entry not examined.

m Naturally the certainty of the diagnosis is higher when more
symptom values are input.

m LEXMED outputs the probabilities for the four different
diagnoses as well as a suggestion for a treatment.

m Each registered user has access to a private patient
database, in which input data can be archived. (61) Appicaton or LexvieD

m Thus data and diagnoses from earlier patients can be
easily compared with those of a new patient.

Hoang Anh Buic

124
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LEXMED

Function of LEXMED

Knowledge is formalized using probabilistic propositions, e.g.,
P(Leuko7 > 20000 | Diag4 = inflamed) = 0.09.

Note: Instead of single numerical values, we might also use
intervals (i.e. [0.06,0.12]).
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Learning of Rules by Statistical Induction

m Raw data in LEXMED: 54 different (anonymized) values -
for 14,646 patients (whose appendixes were surgically S
removed).

m After a statistical analysis, 14 symptoms among 54
attributes are selected and used for the query in LEXMED.

m Two steps to create the rules from this databases:

(1) Determining the dependency structure of the symptoms. T ety el
(2) Filling this structure with the respective probability rules.

yplication of LEXMED
e Function of LEXMED

Risk Management Using
the Cost Matr
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Dependency graph computed from the database (see the next
slide)

m Node: variable (symptom + diagnosis)
m Edge: directed

m Edge’s thickness: measures the correlation of the
variables

m Two independent variables: correlation = 0.

m The pair correlation for each of the 14 symptoms with Diag4
was computed. (Blue edges).

m All triple correlations between the diagnosis and two
symptoms were calculated. Of these, only the strongest
values have been drawn as additional edges between the
two participating symptoms. (Green edges.) O
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LEXMED

Function of LEXMED

Reasoning with

Estimating the Rule Probabilities Uncertainty

m Structure of the dependency graph = structure of the Hoang Anh Bie
learned rules.
m The rules have different complexities.
m Rules which only describe the distribution of the possible
diagnoses (a priori rules), e.g., P(Diag4 = inflamed) = 0.40.
m Rules which describe the dependency between the
diagnosis and a symptom (rules with simple conditions),
e.g., P(Sono2 = yes | Diag4 = inflamed) = 0.43.
m Rules which describe the dependency between the
diagnosis and two symptoms, e.g.,
P(P4Q2 = yes | Diag4 = inflamed A P2Q2 = yes) = 0.61.
m The numerical values for these rules are estimated by
counting their frequency in the database.
m For example, P(Sono2 = yes | Diag4 = inflamed) = 0.43
because we count in the database and calculate (55) Funcion of LExMED

|Diag4 = inflamed A Sono2 = yes|

|Diag4 = inflamed) =043.
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Function of LEXMED

P([Leuco7=12-15k]
P([Leuco7=15-20k]
P([Leuco7=20k-]

P([Leuco7=20k-]

[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]

[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]
[Diag4=negativ]

Some of the LEXMED rules with probability intervals written in
PIT syntax. “x” stands for “A” here.

[Age10=16-20]) =

[Age10=16-20])
[Age10=16-20])
[Age10=16-20])
[Age10=16-20])
[Age10=16-20])
[Age10=16-20])
[Age10=21-25])
[Age10=21-25])
[Age10=21-25])
[Age10=21-25])
[Age10=21-25])
[Age10=21-25])

[Age10=21-25]) =
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Expert Rules

m Rules for non-specific abdominal pain (NSAP) receive
their values from propositions of medical experts.

m To model the uncertainty of expert knowledge, the use of
probability intervals has proven effective.

m Once the expert rules have been created, the rule base is
finished.

@ Function of LEXMED
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Expert Rules

m Rules for non-specific abdominal pain (NSAP) receive
their values from propositions of medical experts.

m To model the uncertainty of expert knowledge, the use of
probability intervals has proven effective.

m Once the expert rules have been created, the rule base is
finished.

The complete probability model is calculated with the method
of maximum entropy by the PIT-system.

@ Function of LEXMED

124
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m Using its efficiently stored probability model, LEXMED
calculates the probabilities for the four possible diagnoses
within a few seconds. For example, we assume the
following output:

Results of the PIT diagnosis

Diagnosis Appendix inflamed Appendix perforated Negative Other
Probability 0.24 0.16 0.57 0.03

m A decision must be made based on these four probability
values.

m How to derive an optimal decision from these
probabilities?
m Ask LEXMED to calculate a recommended decision.

@ Function of LEXMED

124
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Risk Management Using the Cost Matrix

Reasoning with
Uncertainty

( Question : ~ Hoang Anh Burc

How can the computed probabilities now be translated
optimally into decisions?

,-[ Naive algorithm } Soniional Probabi

m assign a decision to each diagnosis

m ultimately select the decision that corresponds to the
highest probability

Example 13 (Naive Algorithm)

m 0.4 for the diagnosis appendicitis (inflamed or perforated), Ly P
0.55 for the diagnosis negative, and 0.05 for the diagnosis N
other. (70) rsvamgement g

the Cost Matrix

m Decide “no operation” (which may be too risky). perfomance

Experienc



LEXMED

Risk Management Using the Cost Matrix

,-{ Cost-oriented method ]

m Comparing the costs of the possible errors that can
occur for each decision. (= costs for wrong decisions)
m The error is quantified in the form of “(hypothetical)
additional cost of the current decision compared to the

optimum?”.

m The given values contain the costs fo the hospital, to the
insurance company, the patient (for example risk of
post-operative complications), and to other parties (for
example absence from work), taking into account long
term consequences.

m Optimal decisions have (additional) costs 0.

m The entries are finally averaged for each decision, that
is, summed while taking into account their frequencies.

m Finally, the decision with the smallest average cost of
error is suggested.

124
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LEXMED

Risk Management Using the Cost Matrix

Reasoning with

Probability of various diagnoses Uncertainty
inflamed | perforated | negative | other Hoang Anh Bic

Therapy 0.25 0.15 0.55 0.05

Operation 0 500 5800 6000 | 3565
Emergency operation 500 0 6300 6500 || 3915
Ambulant observ. 12000 150000 0 16500 || 26325
Other 3000 5000 1300 0 2215
Stationary observ. 3500 7000 400 600 2175

Figure: The cost matrix of LEXMED together with a patient’s
computed diagnosis probabilities.

m Computed probabilities for the four possible diagnoses:
(0.25,0.15,0.55, 0.05).
m The last column of the table contains the result of the
calculations of the average expected costs of the errors. o
m E.g., the cost of the errors corresponds to Operation: the Cost Matix

0.25-0+ 0.15 - 500 + 0.55 - 5800 + 0.05 - 6000 = 3565.

124
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Risk Management Using the Cost Matrix

Reasoning with

Cost matrix in the binary case Uncertainty
m Diagnosis: Appendicitis and NSAP (a.k.a non-specific Hoang Anh Butc
abdominal pain).
P(Appendicitis) = p;
P(NSAP) = p,
m Therapies: operation, ambulant observ. (= send patient
home).
m Cost matrix:
Appendicitis | NSAP
operation 0 ks <0 k2)
ambulant observ. kq 0 ki 0

m Correct decision: cost 0.

m False positive: cost ke = expected costs which occur when
a patient without an inflamed appendix is operated on

m false negative: cost k1 = expected costs which occur when ek anagement Using
deciding to send the patient home in the case of
appendicitis -
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Risk Management Using the Cost Matrix

Reasoning with

Cost matrix in the binary case Uncertainty
m Average additional cost for the two possible treatments: Hoang Anh Bl

<0 k‘z) ) <P1) _ (kzpz)

ki 0 D2 k1p1

m Multiply the vector (kopo, k1p1)T by any scalar, say 1/k1,
does not affect the final decision (as we only care about

which one is smaller).
= Only the relationship k = k2/k; is relevant.

= Same result with the cost matrix <(1) g)

m Risk management
m By changing k& we can fit the “working point” of the diagnosis
system.
m k — oo: extremely risky setting, no patient will ever be
operated on = the system gives no False positive but many (%) Fisk Management Using
False negatives.
m k = 0: all patients are operated.
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Exercise 11 ([Ertel 2025], Exercise 7.9, p. 173)

A probabilistic algorithm calculates the likelihood p that an
inbound email is spam. To classify the emails in classes delete
and read, a cost matrix is then applied to the result.

(a) Give a cost matrix (2 x 2 matrix) for the spam filter.
Assume here that it costs the user 10 cents to delete an
email, while the loss of an email costs 10 dollars. (Note: 1
dollar = 100 cents.)

(b) Show that, for the case of a 2 x 2 matrix, the application of
the cost matrix is equivalent to the application of a
threshold on the spam probability and determine the
threshold.

Risk Management Using
the Cost Matrix

124
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Performance

Reasoning with
Uncertainty

To simplify the representation and make for a better Hoang Anh Do
comparison to similar studies, LEXMED was restricted to the

two-value distinction between appendicitis and NSAP, as

described before.

For each k (0 < k < o0), the sensitivity and specificity are
measured against the test data

Sensitivity = P(classified positive | positive)
|classified positive and positive)|
- positive
Specificity = P(classified negative | negative)
|classified negative and negative|
- negative

@ Performance

124



i

LEXMED

Performance

¥

R
01 woc Ty nmien|

2z

(

&
o

1 T F~orore P = _ Reasoning with
™ " %@WW Uncertainty
T : x&"bv%ng i - Hoang Anh Blic
WVVVV
e
0.8 &
7z
= 0.6 Conditional Probability
z
g
=
2 H
“ 04 T - »
LEXMED —e—
Ohmann—Score ----v---
[ +"Score w. LEXMED-data v+
0.2 RProp w. LEXMED—data o """
random decision
o | |

0 0.2 04 0.6 0.8 1
1 — Specificity

Figure: ROC curve from LEXMED compared with the Ohmann score
and two additional models




LEXMED

Application Areas and Experiences

m Use in the diagnosis

m Quality assurance: comparing the diagnosis quality of
hospitals with expert systems.

m Since 1999 in use in the 14-Nothelfer hospital in
Weingarten

m Diagnosis quality is comparable to an experienced
surgeon

m Commercial marketing very difficult
m Wrong time?
m Wish of patients for personal care!

m Since de Dombal 1972, 39 years passed. Will it take
another 39 years to make computer diagnostics become
an established medical tool?

Reasoning with
Uncertainty

Hoang Anh Buic

Application Areas and
Experiences
124
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m d variables X, ..., Xy with n values each
m Probability distribution has n? — 1 values.

m In practice the distribution contains many redundancies.
= It can be heavily reduced with the appropriate methods.

m Bayesian networks utilize knowledge about the
independence of variables to simplify the model.




Reasoning with Bayesian Networks

Independent Variables

Reasoning with
Uncertainty

Hoang Anh Buic

m Simplest case: all variables are pairwise independent
P(X1,Xs,...,Xq) =P(X1) -P(X3) - P(Xy)
m Conditional probabilities become trivial:

pa|B) =L ](;?5) _r (?)(ggB) = P(A).

m The situation becomes more interesting when only a
portion of the variables are independent or independent
under certain conditions. For reasoning in Al, the
dependencies between variables happen to be important
and must be utilized.

"In the naive Bayes method, the independence of all attributes is assumed,
and this method has been successfully applied to text classification.



Reasoning with Bayesian Networks

Independent Variables

Example 14 (Alarm-Example, [Pearl 1988]; [Russell and Ressoning wih
NOFVIg 201 0]) Hoang Anh Buic

m Bob: single, has an alarm system in his house.
m John and Mary: neighbors of Bob in the houses next door to
the left and right, respectively.
m Bob asks John and Mary to call him at his office if they hear the
alarm. Conditional Probability
m Knowledge Base:
m Variables: J = “John calls”, M = “Mary calls”, Al = “Alarm siren
sounds”, Bur = “Burglary”, Ear = “Earthquake”
m Calling behaviors of John and Mary
P(J | Al)=0.90 P(M | Al) =0.70
P(J | ~Al) = 0.05 P(M | -Al) = 0.01
m The alarm is triggered by a burglary, but can also be triggered by
a (weak) earthquake, which can lead to a false alarm.
P(Al| Bur, Ear) = 0.95 P(Al| =Bur, Ear) = 0.29
P(Al| Bur,—Ear) = 0.94 P(Al| =Bur,—Ear) = 0.001
m A priori probabilities: P(Bur) = 0.001, P(Ear) = 0.002. (Bur and
Ear are independent.)
®m Requests: P(Bur| JV M), P(J | Bur), P(M | Bur)




Reasoning with Bayesian Networks

Graphical Representation of Knowledge as a Bayesian Network

m A Bayesian network is a directed acyclic graph (DAG) in Ressoning wih
WhICh Hoang Anh Burc
m each node represents a random variable,
m each edge X; — X represents a direct influence of
variable X; on variable X, and
m each node is associated with a conditional probability table
(CPT) that quantifies the effects that the parents have on
the node.
m The structure of the graph encodes conditional
independence assumptions that can be exploited to
simplify the representation of the joint probability
distribution.
m The joint probability distribution over all variables

X1,..., X, can be expressed as

d
P(X1, Xa,..., Xa) = [[P(X; | Parents(X;)),
=1
where Parents(X;) denotes the set of parent nodes of X;
in the graph.
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Graphical Representation of Knowledge as a Bayesian Network

P(Ear)
0.002

Burglary Earthquake

D(A))
0.95
0.94
0.29

0.001

Al [ P(M)

t ]0.70
7 |oo1

Figure: Bayesian network for the alarm example with the associated
CPTs (conditional probability tables). The CPT of a node lists all the
conditional probabilities of the node’s variable conditioned on all the
nodes connected by incoming edges.
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Reasoning with Bayesian Networks

Conditional Independence

A Definition N Foncrtanty
Two variables A and B are called conditionally independent, Fosng Anm e
given C'if

P(A,B|C)=P(A|C)-P(B|C).
(This equation is true for all combinations of values for all three
kvariables (that is, for the distribution).)

r-| Remark

m independent 4 conditional independent.
m conditional independent % independent.

J

m A and B are independent events means knowing that A
happened would not tell you anything about whether B
happened (or vice versa).

m A and B are conditionally independent events, given C' means
that if you already knew that C' happened, then knowing that
A happened would not tell you further information about
whether B happened. Sooreness
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Conditional Independence

Reasoning with

Example 15 (independent # cond. independent) Uncertainty

There are two fair coins: tossing a coin result heads 50% of the Fosno Annbrie
time. Toss these two coins once.

Variable Value
E(Same result) t, f
F'(First coin) H(Head), T(Tail)
S(Second coin) | H(Head), T'(Tail)

m P(F,S)=P(F) -P(S)
m As we toss two coins at the same time, the result of the first
coin does not affect the result of the second coin and vice
versa.

mP(FS|E)£P(F|E)-P(S|E)

m When you know that, say E = ¢ (i.e., the result of the two
coins, by some magic power, must be the same), then
knowing the result of the first coin tells you exactly the result
of the second coin.
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Conditional Independence

Reasoning with

Example 16 (cond. independent #- independent) rasoring wi
There are two biased coins: tossing coin1 results heads 99% of Hoang Anh Bite
the time and tossing coin2 results tails 99% of the time. Choose

one coin at random and toss it twice.

Variable Value
C(Coin) c1(coint), ex(coin2)
F(First toss) H(Head), T(Tail)
S(Second toss) | H(Head), T'(Tail)
mP(FS|C)=PF|C)-PS|C)

m If you already know which coin is taken, then knowing the
result of the first toss does not help predicting the result of
the second toss.

m P(F,S)#P(F) -P(S)

m If you do not know which coin is taken, then knowing the
result of the first toss is useful. For example, if the result of
the first toss is head, then it is a strong evidence that you
take coin, and thus the second toss is unlikely to result
head.

Head




Reasoning with Bayesian Networks

Conditional Independence

Example 17 (Alarm-Example (cont.)) Foncrtanty
m John and Mary independently react to an alarm. Hoang Anh Biie
P M |A)=P(J|A)-P(M | Al.
m Thus, given an alarm, two variables J and M are
independent.
m (Without any condition,) J and M are not independent, that is,
P(J, M) #P(J)-P(M). [Why?]
m Hint: It suffices to show that the equation does not hold for one
combination of values of J and M, say P(J, M) # P(J)- P(M).
(More precisely, P(J =t,M =t) # P(J =t)- P(M =1t).)
m Calculate P(Al) using the given probabilities, marginalization,
and independence of Burand Ear.
(Result: P(Al) = 0.00252.)
m Then calculate P(.J) and P(M) using conditional probabilities
and the computed P(A).
(Result: P(J) = 0.052 and P(M) = 0.0117.)
m Similarly, calculate P(J, M) using conditional probabilities,
conditional independence of J and M given Al.
(Result: P(J, M) ~ 0.002086.)
m Compare P(J, M) and P(J) - P(M).
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Conditional Independence
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Example 18 (Alarm-Example (cont.))

m John react to an alarm, but does not react to a burglary.
(This could be, for example, because of a high wall that
blocks his view on Bob’s property, but he can still hear the
alarm.)

P(J,Bur| Al) = P(J | Al) - P(Bur| Al.

m Given an alarm, the variables J and Ear, M and Bur, as
well as M and Ear are also independent.

P(J, Ear| Al) =P(J | Al) - P(Ear| Al
P(M,Bur| Al)=P(M | Al) - P(Bur| Al
P(M, Ear| A) =P (M | Al)-P(Ear| Al



Reasoning with Bayesian Networks

Conditional Independence

Reasoning with

Theorem 6 Uncertainty
The following equations are pairwise equivalent, which means Hoang Anh Bic
that each individual equation describes the conditional

independence for the variables A and B given C.

P(A,B[C)=P(A]|C)-P(B|C) (1)
P(A|B,C)=P(A|C) (2)
P(B[A,C)=P(B|0C) (3)

Proof.
We prove Eq. (1) < Eq. (2). Similarly for Eq. (1) and Eq. (3).
(a) Chainrule: P(A,B,C)=P(A| B,C)P(B | CYP(C).
(b) Definition: P(A4, B,C) =P(A,B | C)P(C).
(¢) Eq. (1) = Eq. (2): From Eq. (1) and (b),
P(A,B,C)=P(A| C)P(B| C)P(C). Comparing with (a).
(d) Eg. (2) = Eq. (1): From Eq. (2) and (a),
P(A,B,C)=P(A | C)P(B | C)P(C). Comparing with (b).
O



Reasoning with Bayesian Networks

Practical Application

Now we turn again to the alarm example and show how the Reasoning with

Uncertainty
Bayesian network can be used for reasoning. Hoang Anh Bitc

P(J | Bur) = DU-BUn _ P(J. Bur. A + P(J, Bur, ~A)

P(Bur) P(Bur)
P(J, Bur, Al) = P(J | Bur, A)P(Al| Bur)P(Bur) Chain rule .
=P(J | A)P(Al| Bur)P (Bur) J and Bur
are independent

given Al

P(J | Bur) = P(J | Al)Pjgl(fté Lgur)P(Bur)
P(J | ~ANP(=Al| Bur) P(Bur)
B P(Bur)
= P(J | A)P(Al| Bur) + P(J | =Al\P(~Al | Bur)




Reasoning with Bayesian Networks

Practical Application

Reasoning with
Uncertainty

P(Al,Bur)  P(Al,Bur, Ear) + P(Al, Bur,—-Ear) Hoang Anh D
P(Bur) - P(Bur)
P(Al| Bur, Earn)P(Bur, Ear)
- P(Bun)
P(Al| Bur,—~Ear)P(Bur,-Ear)
+ P(Bur)
P(Al| Bur, Ear)P(Bur)P(Ear)
- P(Bur)
P(Al| Bur,—~Ear)P(Bur)P(—Ear)
+ P(Bur)
= P(Al| Bur, Ear)P(Ear) + P(Al| Bur,—Ear)P(—Ear)
=0.95-0.002 4 0.94 - 0.998 = 0.94

P(Al| Bur) =

Similarly, P(—Al| Bur) = 0.06.



Reasoning with Bayesian Networks

Practical Application

Therefore, Reasoning with

Uncertainty
P(J | Bur) = P(J | A)P(Al| Bur) + P(J | =Al\P(-Al| Bur) peinofan ote
=0.9-0.94 + 0.05- 0.06 = 0.849.
Analogously, P(M | Bur) = 0.659.

Similar to P(J | Bur), we can calculate
P(J,M | Bur) = P(J,M | A)P(Al| Bur)
P(J,M | ~A)P(-Al| Bur)
P(J | AhP(M | A)P(Al| Bur)
+ P(J | ~A)P(M | ~AlP(-Al| Bur)
0.9-0.7-0.9440.05-0.01-0.06 = 0.5922.

_|_

John calls for about 85% of all break-ins and Mary for about
66% of all break-ins. Both of them call for about of 59% of all
break-ins.




Reasoning with Bayesian Networks

Practical Application

P(JV M | Bur) = P(~(~J A ~M) | Bur)
= 1— P(~J,~M | Bur)
P(~J,~M | Bur) = P(~J | A)P(~M | A)P(Al| Bur)
+ P(~J | ~ANP(=M | ~Al)P(=Al | Bur)
=0.1-0.3-0.944+0.95-0.99-0.06 = 0.085.
P(JV M | Bur) =1 — P(~J,~M | Bur)
= 1-0.085 = 0.915.

Bob thus receives a naotification from either John or Mary for
about 92% of all burglaries

|

Reasoning with
Uncertainty

Hoang Anh Buic
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Practical Application

J | Bur)P(Bur) — 0.849 -0.001

P

P(Bur|J) = ( P = o0z 0.016
P(M | Bur)P(Bur)  0.659-0.001

P(Bur| M) = ( |P(M)) (Bur) _ 00117 = 0.056

J, M | Bur)P(Bur)
P(J,M)

~0.5922-0.001

~0.002086

P(Bur| J,M) = B

= 0.284.

m If John calls, the probability of a burglary is 1.6%. If Mary
calls, it is 5.6%, which is about five times higher than
John.
= Significantly higher confidence given a call from Mary.

m Bob should only be seriously concerned about his home
if both of them call, as the probability of a burglary in that
case is 28.4%.

N\

Reasoning with
Uncertainty

Hoang Anh Buic
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,-[ Conditioning } .

onditional Probability

P(A|B)=Y P(A|B,C=c)P(C=c|B).

If furthermore A and B are conditionally independent given C,
this formula simplifies to

P(A|B) = ZPA|C_C P(C =c| B).
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Software for Bayesian Networks

Reasoning with

Uncertainty
PIT input for the alarm example. Hoang Anh Blic
Additional Materials
var Alarm{t,f}, Burglary{t,f}, Earthquake{t,f}, John{t,f}, Mary{t,f}; Introduction
= = . Computing with
P([Earthquake=t]) = 0.002; R

P([Burglary=t]) = 0.001;
P([Alarm=t] | [Burglary=t] AND [Earthquake=t]) =
P([Alar | [T . The Principle of
3 . 2 Maximum Entropy
P([Alarm=t] | [Burglary=f] AND [Earthquake=t])
|

Conditional Probability

An Inference Rule for

P([Alarm=t] [Burglary=f] AND [Earthquake £]) = 0. ; Probabiliies

_ = - Maximum Entropy Without
P([John=t] | [Alarm=t]) 5 E;phst Constamts
P([John=t] | [Alarm=f]) = Conditional Probabilty
P([Mary=t] | [Alarm=t]) . Versus Material Implication
P([Mary=t] | [Alarm=f]) = O. . MaxEnt-Systems

The Tweely example

QP ([Burglary=t] | [John=t] AND [Mary=t]); LEXMED

Appendicitis Diagnosis with
Formal Methods

. Hybrid Probabilistic

Response: Knowlecge Base
Application of LEXMED
Function of LEXMED

P([Burglary=t] | [John=t] AND [Mary=t]) = 0.2841. Risk Management Using
the Cost Matrix
Performance
Application Areas and
Experiences
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Software for Bayesian Networks

Reasoning with
Uncertainty

Hoang Anh Buic

m PIT is not a classical Bayesian network tool.

m PIT can take arbitrary conditional probabilities and queries
as input and calculate correct results.

m On input of CPTs or equivalent rules, the MaxEnt principle
implies the same conditional independences and thus also
the same answers as a Bayesian network.

m Bayesian networks are thus a special case of MaxEnt.
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Fle Options _Help

@ g /1 variables) nc 2 valu
Burghary Earthquake 0.016283729946769937 pu
. 05sar1527005325:
a
Alarm,
!‘/ II
JohnCalls MaryCalls

Edit variable Edit Function Edit Network.

mA classw system is JavaBayes. Two windows: graphical
editor + console

m With the graphical network editor, nodes and edges can
be manipulated and the values in the CPTs edited.

m The values of variables can be assigned with “Observe”
and the values of other variables called up with “Query”.
The answers to queries then appear in the console
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Conditional Probability

m More powerful is the professional tool Hugin.
m Continuous variables possible.

m Can also learn Bayesian networks, that is, generate the
network fully automatically from statistical data.
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m For the variables vy, ..., v, with |v1], ..., |v,| different

values each, the distribution has a total of Gonitonal Probabilly
[Tl -1

i=1

independent entries.
m Alarm example: 2° — 1 = 31 independent entries.
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€ik;

CPT of V;
eia ... e | v
A node v has |v| values  v; : : :
Size of CPT at v;
ki
(Joil = 1) H1 e

=

P(vi | en, e, ..., en,)

Total size of all CPTs

n (Require all combinations of values)

ki
> (Jvil = 1) 1;[1 leij]

i=1

Alarm example: 2+ 2 + 4 + 1 + 1 = 10 entries which uniquely
describe the network.
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Special case:
m n variables
m Equal number b of values
m Each node has k parent nodes
m All CPTs together have n(b — 1)b* entries
m Complete distribution contains b™ — 1 entries
m Local connection
m Network becomes modularized = reduction in complexity
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m Size of the distribution: 20 643 839 values. Uncertainty
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ki 2 PIQ2 Sonditional Probability
Z(|Uz| -1) H leij| = .
i=1 =1 Y snrrce e
Maximum Entropy Without
3 Gua3 Explicit Constraints
2 Reb2 A
SRR .
2 RecP2
4 BowS4 Appendicitis Diagnosi
2 Sono2 o enecs
2 Urin2
Temperature (rectal)  —37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0— 6  TRec6 .
Leukocytes 06k, 6k—8k, Sk—10k, 10k—12k, 12k—15k, 15k-20k, 20k— 7 Leuko7 Risk Managemer
Diagnosis Inflamed, perforated, negative, other 4 Diag4 Performance
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. . . . . Reasoning with
m Size of the distribution: 20 643 839 values. Uncertainty
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
Gender Male, female 2 Sex2
65- 10 Agel0
w ks 2 PIQ2 Sonditional Probability
E (|’Uz|—1)|||€m|:()b4+ 2 P02
- . 2 P302 An Inference Rule it
i=1 Jj=1 2 Pao2 Probabilties
0 Maximum Entropy Without
3 Gua3 Explicit Constraints
2 Reb2 C \\‘E‘H»I‘\‘«\
2 Tapp2
2 RecP2
4 BowS4 Appendicitis Diagnosi
3 Formal Methods
2 Sono2 Hybrid Probabilisti
2 Urin2 Knowledg F‘
Temperature (rectal) -37.3, 37.4-37.6, 37. —33.2’, 5‘8.1—38.4, 33.3—33.9, 39.0— 6 TRec6
Leukocytes 06k, 6k-8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k— 7 o i
Diagnosis Inflamed, perforated, negative, other Performar
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Uncertainty

m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Hoang Anh Buic

Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65— 10  Agel0

P1Q2
P2Q2
P3Q2
P402
Gua3

n ki

> (vil =) ] lessl =6-6-4+5-4+

i=1 j=1

An Inference Rule fc
Probabilities

Maximum Entropy Without
Explicit Constraints

Conditional Probabil

Appendicitis Diagnos
Formal Methods
Hybrid Probabilisti
Knowledge Base

Temperature (rectal) -37.3, 37.4-37.6, 37. —33.2’, 5‘8.1—38.4, 33.3—33.9, 39.0—
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values. et
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Buc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ki 2 PIQ2 nditional Probabi
vl —1 eil=6-6-44+5-4+2-4+ 2 P22
;(' z| ) li[l | zg| T F Y peoe s E
) ~ S .
3 Explicit ( wl\‘w

Conditional Probabil

2 Reb2
2 Tapp2
2 RecP2
4 BowS4
2 Sono2
2
6
7

Appendicitis Diagnos

Formal Methods

Hybrid Probabilistic
Knowledge Base

Urin2
TRec6
Leuko7

Temperature (rectal) -37.3, 37.4-37.6, 37. —33.2’, 5‘8.1—38.4, 33.3—33.9, 39.0—
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values. et
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2

n ki PIQ2 nditional Probabi
| —1 | =6-6-4+5-4+2.4 P202
e I R Y

P402
Gua3
Reb2

Maximum Entropy Without
Explicit Constraints

9.7-4+

Conditional Probabil

Tapp2
RecP2
BowS4

Appendicitis Diagnos

Formal Methods

Hybrid Probabilistic
Knowledge Base

Sono2
Urin2
TRec6

Temperature (rectal) -37.3, 37.4-37.6, 37. —33.2’, 5‘8.1—38.4, 33.3—33.9, 39.0—
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Diagnosis Inflamed, perforated, negative, other

4 Diag4
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m Size of the distribution: 20 643 839 values. et
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ki 2 PIQ2 nditional Probabi
N | —=6.6. . . 2 P202
Z(|vz| 1)H|em|—6 6-4+5-4+2-4+ i
o=l ‘]:1 ;:r~‘w\“\—‘\ C
2 P40z Maximum Entropy Without
9.7-44+1-3-4+ 3 Explicit Constraints

Conditional Probabil

2 Tapp2
2 RecP2
4 BowS4
2 Sono2
2
6
7

Appendicitis Diagnos

Formal Methods

Hybrid Probabilistic
Knowledge Base

Urin2
TRec6
Leuko7

Temperature (rectal) -37.3, 37.4-37.6, 37. —33.2’, 5‘8.1—38.4, 33.3—33.9, 39.0—
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gender Male, ferngle
n ki

i=1

il

S (vil =) [J lessl =6-6-4+5-4+2-4+

9.7-4+1-3-44+1-4+

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other

# Short

65— 10
2
2
2
2
3 Gua3
2
2
2
4
2

4 Diag4
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An Inference Rule ¢

Maximum Entropy Witho

Explicit Constraints

Conditional Probabil

Appendicitis Diagnos

Formal Methods

Hybrid Probabilistic
Knowledge Base
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m Size of the distribution: 20 643 839 values. Uncertanty
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Biie

Symptom Values # Short

ﬁgkdcr Male, female 2 Sex2

65- 10 Agel0
n ki 2 PIQ2 nditional Probabi
S (il =) [ leisl =6-6-4+5-4+2.4+ [ =z re
: g 2 P3Q2 o e e
i=1 Jj=1 Probabilties
2 P4Q2 Maximum Entropy Without
974+134+14+ 3 Gua3 Explicit Constraints
Conditional Probabil
9 A 2 Versus Material Implicatic
124+ MaxEnt-Systems
The Tweety example
2 RecP2
4 BowS4 Appendicitis Diagnosi
2 Sono2 I
2 Urin2 Knowledge Base
yplication of LEXMED

Temperature (rectal)  —37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0— 6  TRec6 Function of LEXMED

Leukocytes 06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k-20k, 20k— 7 Leuko? Risk Management Usin

Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values. Mmooty
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ki 2 PIQ2 nditional Probabi
S (ol =) [ lesl =6-6-4+5-4+2.44 | 2 me
< ] 2 P3Q2 o oo P
i=1 Jj=1 Probabilites
2 P40z Maximum Entropy Without
974+134+14+ 3 Explicit Constraints
Conditional Probabil
1-2-4+3-3-4+ H_,H,ﬂ,‘ plcati
The Tweety exa ple
Appendicitis Diagnosi:
Formal Methods
2 Hybrid Probabilistic
2 Urin2 o ‘1‘ F‘L .
Tomperature (oot 373, 343706, 377350, 381387, 385350, 0.0= 6  TRec6 oo ot XD
Leukocytes 0-6k, Gk-8k, 8k—10k, 10k-12k, 12k—-15k, 15k-20k, 20k 7 Leuko? Risk Management Usin
Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values.

m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gender Male, ferngle
n ki

i=1

S (vil =) [J lessl =6-6-4+5-4+2-4+

j=1
9.7-4+1-3-44+1-4+
1.2-443-3-4+41-4+

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other
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Uncertainty

# Short
65— 10  Agel0
2 PIQ2
2 P202
2 P302
2 P4Q2
3 Gua3
2 Reb2
2 Tapp2
2

4

2

2

6

7

An Inference Rule f
Probabilities
Maximum Entropy W
Explicit Constraints
Conditional Probabil
Versus Material Impl
MaxEnt-Systems
The Tweety example
RecP2
BowS4 Appendicitis Diagno:
Formal Methods
Hybrid Probabilisti
Knowledge Base

Sono2
Urin2
TRec6
Leuko7

plication of LEX
Function of LEXMED

Reasoning with

Hoang Anh Buic

MED

Risk Management Using
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m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gender Male, ferngle
n ki

i=1

S (vil =) [J lessl =6-6-4+5-4+2-4+

j=1
9.7-4+1-3-44+1-4+
IR R R B Y
1-4-2+4

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other

# Short
2 Sex2
65- 10  Agel0
2 PIQ2
2

3 Gua3
2 Reb2
2 Tapp2
2 RecP2
4 BowS4
2 Sono2
2 Urin2
6 TRec6
7 Leuko7
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An Inference Rule ¢

Maximum Entropy Withol
Explicit Constraints
Conditional Probabi
Versus Material Implicati
MaxEnt-Systems

The Tweety example
Appendicitis Diagnosi
Formal Methods
Hybrid Probabilistic
Knowledge Base
yplication of LEXMED

Function of LEXMED

Management Using
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m Size of the distribution: 20 643 839 values. et
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2

65- 10  Agel0

n ki nditional Probabi
S (vil =) [J lessl =6-6-4+5-4+2-4+

=1 j=1 r:‘r‘—w‘ﬂ‘ 2 Rule f
9-7-44+1-3-44+1-4+ B l”ﬁﬂ”f‘yﬂ A
1-2-443-3-44+1-4+ ,‘f,”;;:f_"‘,f"‘ ‘

1-4-24+1-4-24+ The Tweety example

Urin2 Kno «“ F‘L .
Temperature (roctal) 37,3, 374376, 37 7380, 33.1-33.7, 38.5-35.0, 30.0 TRec6 o e

Leukocytes 06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k— Leuko7 ; ,"‘ e
Diagnosis Inflamed, perforated, negative, other 4 Diag4



Reasoning with Bayesian Networks

Development of Bayesian Networks

m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gender Male, ferngle
n ki

i=1

S (vil =) [J lessl =6-6-4+5-4+2-4+

j=1
9-7-44+1-3-44+1-4+
1-2-4+3-3-44+1-4+
1-4-24+1-4-2+1-4+

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other
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# Short
2 Sex2
65- 10  Agel0

P3Q2
P402
Gua3
Reb2

2 An Inference Rule f

2 Probabilities
Maximum Entropy W

3 Explicit Constraints
Conditional Probabi

2 Versus Material Imp!

2 Tapp? MaxEnt-Systems

2 RecP2

4

2

2

6

7

The Tweety example

BowS4

Appendicitis Diagno:
Formal Methods
Hybrid Probabilisti
Knowledge Base

Sono2
Urin2
TRec6
Leuko7

plication of LEX
Function of LEXMED

Hoang Anh Buic

PI1Q2 Sonditional Probability

MED

Risk Management Using
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m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gendor Male, femgle
n ki
S (vil =) [J lessl =6-6-4+5-4+2-4+
i=1 j=1
9-7-4+1-3-4+1-4+
1:2-4+3-3-4+41-4+
1-4-24+1-4-2+41-4+
1-4+

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other

# Short
2 Sex2

65— 10  Agel0
2 PIQ2
2 P202
2 P302
2 P4Q2
3 Gua3
2 Reb2
2 Tapp2
BowS4

Sono2
Urin2
TRec6
Leuko7
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An Inference Rule ¢

Maximum Entropy W
Explicit Constraints
Conditional Probabi
Versus Material Imp
MaxEnt-Systems
The Tweety example
Appendicitis Diagnos
Formal Methods
Hybrid Probabilistic
Knowledge Base
plication of LEX
Function of LEXMED

MED

Risk Management Using
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m Size of the distribution: 20 643 839 values.
m Size of the Bayesian network: 521 values. [Why?]

Symptom Values
Gender Male, ferngle
n ki

i=1

S (vil =) [J lessl =6-6-4+5-4+2-4+

j=1
9.-7-4+1-3-4+1-4+
1-2-44+3-3-4+1-4+
1-4-241-4-24+1-4+
1-441-4+

Temperature (rectal)
Leukocytes

Diagnosis

=37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 30.0—
06k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k—

Inflamed, perforated, negative, other

Short
Sex2
Agel0
P1Q2
P2Q2
P3Q2
P402
Gua3
Reb2
Tapp2
RecP2
BowS4

Sono2

Reasoning with
Uncertainty

Hoang Anh Buic

Appendicitis Diagnosi:
Formal Methods
Hybrid Prot
Knoy

oilisti
ige Base
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m Size of the distribution: 20 643 839 values. i
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ki 2 PIQ2 onditional Probal
> (vil =) ] leisl =6-6-4+5-4+2-4+ 2 e
i=1 j=1 2 Probatiltiss
2 P4Q2
9-7-44+1-3-4+1-4+ 3 Guas Euic Conrans
Condi | Probabil
1-2-4+3-3-4+1-4+ 2 Rz v e
2 Tapp2 o ' ‘
1-4-24+1-4-24+1-4+ 2 RecP2
1-4+1-441-4+ 4 Bowst
2 Sono2 b Probabiiei
2 Urin2 Knowledge Bas« o
Temperature (rectal)  —37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0— 6  TRec6 o : . ru‘
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k— 7 Leuko7 N

Diagnosis Inflamed, perforated, negative, other
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m Size of the distribution: 20 643 839 values. Uncertainty
m Size of the Bayesian network: 521 values. [Why?] Hoang Anh Butc
Symptom Values # Short
ﬁgkdcr Male, female 2 Sex2
65- 10  Agel0
n ks 2 PIQ2 onditional Probal
v — 1 eil=6-6-44+5-4+2-4 2 P2
;u i )El i +5-4+2:44 | 2 ne i
- " 2 pig2 S
9.7-44+1-3-44+1-4+ 3 Gua3 ;““JN‘J}]‘_
1:2:4+3-3-4+1-4+ A
2 Tapp2 - ' ‘
1-4.2+1-4-241-4+ 2 RecP2
1-441-441-4+1 4 Bowsd
2 Sono2 b Probabiiei
= 521 2 Urin2 Knowledge Base o
Temperature (rectal)  —37.3, 37.4-37.6, 37.7-38.0, 38.1-38.4, 38.5-38.9, 39.0— 6  TRec6 P :ru‘
Leukocytes 0-6k, 6k—8k, 8k—10k, 10k—12k, 12k—15k, 15k—20k, 20k— 7 Leuko7 :

Diagnosis Inflamed, perforated, negative, other 4 Diag4
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Construction of a Bayesian network } Hoang Anh Bie

(1) Design of the network structure (usually performed
manually)

(2) Entering the probabilities in the CPTs (usually Conetonat by
automated)

Construction of the network in the alarm example.
m Causes: burglary and earthquake
m Symptoms: John and Mary

m Alarm: hidden variable

m Because John and Mary do not directly react to a burglar or
earthquake, rather only to the alarm, it is appropriate to add
this as an additional variable which is not observable by
Bob.

m Considering causality: going from cause to effect
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()
0. (5) ()
v )
©) @)
O C
A and B are A and B are

independent independent given C'

Figure: There is no edge between A and B if they are independent
(left) or conditionally independent (middle, right).

Reasoning with
Uncertainty

Hoang Anh Buic

Conditional Probability
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Cause Burglary Earthquake
Hidden

Effect

Figure: Stepwise construction of the alarm network considering
causality
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Cause Burglary Earthquake
Hidden

Effect

Figure: Stepwise construction of the alarm network considering
causality
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Cause Burglary

ndi | Probal
Hidden An nforence
Probabilities
Maximum Entropy Without
Explicit Constraints
Conditiol 7 i
The Tweety example
Hybrid Probabilistic
Kno dge Base
plication of MED
Function c
Figure: Stepwise construction of the alarm network considering Fis Maragemer
causality Perfomance
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Cause Burglary

Hidden

Effect

Figure: Stepwise construction of the alarm network considering
causality
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Cause Burglary

Hidden

Effect

Figure: Stepwise construction of the alarm network considering
causality
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m The structure of the Bayesian network heavily depends on
the chosen variable ordering.

m [f the order of variables is chosen to reflect the causal
relationship beginning with the causes and proceeding to
the diagnosis variables, then the result will be a simple
network.

m Otherwise the network may contain significantly more
edges. Such non-causal networks are often very difficult to
understand and have a higher complexity for reasoning.
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Requirements }

m Bayesian network has no cycles.

m The variables are numbered such that no variable has a
lower index than any variable that predecessor.

Conditional Probability

hout

It holds

al Probabi

al Implicatior

P(Xn | X1,.. ~aXn71) = P(Xn | Parent(Xn))

< An arbitrary variable X; in a Bayesian network is
conditionally independent of its ancestors, given its parents.
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Theorem 7 Hoang Anh Buic
A node in a Bayesian network is conditionally independent from
all non-successor nodes, given its parents.

Example of conditional
independence in a Bayesian
network. If the parent nodes
E; and E, are given, then
all non-successor nodes
By, ..., Bg are independent
of A.
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m Chain rule for Bayesian network

—-

«
Il
i

P(Xl,...,Xn) = P(Xz | Xla"'7Xi—1) ContionalFrobabily

P(X; | Parent(X;))

Il
=

.
Il
_

m Using this rule in the alarm example,

P(J, Bur, Al) = P(J | AhP(Al | Bur)P(Bur)
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m A Bayesian network is defined by:

m A set of variables and a set of directed edges between
these variables.

m Each variable has finitely many possible values.

m The variables together with the edges form a directed
acyclic graph (DAG). A DAG is a graph without cycles,
that is, without paths of the form (A, ..., A).

m For every variable A the CPT (that is, the table of
conditional probabilities P(A | Parents(A))) is given.

m Two variables A and B are called conditionally
independent given C if P(A,B | C)=P(A| C)P(B | C)
or, equivalently, if P(A | B,C) =P(A | C).

Reasoning with
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,-[ Basics of Bayesian Networks (cont.) }

m Besides the foundational rules of computation for
probabilities, the following rules are also true:
Bayes’ Theorem P(A | B) = —P(BILS};;D(A).
Marginalization P(B) = P(A,B)+ P(—A,B) = P(B |
A)P(A) + P(B | —A)P(=A).
Conditioning P(A | B) =Y P(A| B,C =¢)P(C =c|

B).

MED
of LEXMED
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,-[ Basics of Bayesian Networks (cont.) }

m A variable in a Bayesian network is conditionally
independent of all non-successor variables given its
parent variables. If X5, ..., X,_1 are no successors of
X,,, we have
P(X, | Xiy,...,X,_1) = P(X, | Parents(X,,)). This
condition must be honored during the construction of a
network.

m During construction of a Bayesian network the variables
should be ordered according to causality. First the
causes, then the hidden variables, and the diagnosis
variables last.

m Chain rule: P(X,...,X,) = [[ P(X: | Parent(X;)).

i=1
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Exercise 12 ([Ertel 2025], Exercise 7.10, p. 173)

Given a Bayesian network with the three binary variables Conditonal Probabity
A,B,C and P(A) = 0.2, P(B) = 0.9, as well as the CPT shown

below: ‘
A B[P .
o @ O

(a) Compute P(A | B). ; P

(b) Compute P(C'| A). | f ¢ | 0.9 ™o :
[ [

0.4 Q
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Exercise 13 ([Ertel 2025], Exercise 7.11, p. 173)

For the alarm example (Example 14), calculate the following
conditional probabilities:

(a) Calculate the a priori probabilities P(Al), P(J), P(M).

(b) Calculate P(M | Bur) using the product rule,
marginalization, the chain rule, and conditional
independence.

(c) Use Bayes’ formula to calculate P(Bur| M).

(d) Compute P(Al| J, M) and P(Bur| J, M).

(e) Show that the variables J and M are not independent.
(f) Check all of your results with JavaBayes and with PIT.
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(g) Design a Bayesian network for the alarm example, but with
the altered variable ordering M, Al, Ear, Bur, J. According
to the semantics of Bayesian networks, only the necessary
edges must be drawn in. (Hint: the variable order given
here does NOT represent causality. Thus it will be difficult
to intuitively determine conditional independences.)

(h) In the original Bayesian network of the alarm example, the
earthquake nodes is removed. Which CPTs does this
change? (Why these in particular?)

(i) Calculate the CPT of the alarm node in the new network.
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A diagnostic system is to be made for a dynamo-powered

bicycle light using a Bayesian network. The variables in the

following table are given.

Abbr. Meaning Value

Li Light is on t/f

Str Street condition dry, wet, snow_covered
Flw | Dynamo flywheel worn out t/f

R Dynamo sliding t/f

\% Dynamo shows voltage t/f

B Light bulb o.k. t/f

K Cable o.k. t/f

The following variables are pairwise independent: Str, Flw, B,
K. Furthermore: (R, B), (R, K), (V, B), (V, K) are independent
and the following equation holds:
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pLi|v,r) =pLilv)y  CGw) @) Py

P(V | R,St) = P(V | R)

P(V | R,Flw) = P(V | R) @
(a) Draw all of the edges into the
graph (taking causality into @ @
account).
(b) Enter all missing CPTs into the @

graph (table of conditional
probabilities). Freely insert
plausible values for the
probabilities.

(c) Show that the network does not
contain an edge (Str, Li).

(d) Compute
P(V | Str= snow_covered).

e e iy
o
o
[e=)
=

R e B
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m Probabilistic logic for reasoning under uncertain
knowledge.

Method of maximum entropy models non-monotonic
reasoning.

m Bayesian networks as special case of MaxEnt.

m Bayesian networks rely on independence assumptions.

m In a Bayesian network, all CPTs must be filled completely.
]

With MaxEnt, arbitrary knowledge can be formulated.

m E.g.: “l am pretty sure that A is true.”: P(A) € [0.6, 1].

m The freedom that the developer has when modeling with
MaxEnt can be a disadvantage (especially for a beginner)
because, in contrast to the Bayesian approach, it is not
necessarily clear what knowledge should be modeled.
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m Combining MaxEnt and Bayesian networks ’

m Building a network according to the Bayesian methodology,

enter all the edges accordingly and then fill the CPTs with

values.
m If certain values for the CPTs are unavailable, then they can

be replaced with intervals or by other probabilistic logic

formulas.
m Such a network no longer has the special semantics of a

Bayesian network. It must be processed and completed by

a MaxEnt system.

m Arbitrary rule sets may be inconsistent: P(A) = 0.7 and
P(A)=0.8.

m PIT recognizes inconsistency.

m In some cases reasoning is possible anyway.



Summary

Reasoning with
Uncertainty

Hoang Anh Buic
m Medial expert system LEXMED
m can be modeled and implemented using MaxEnt and
Bayesian networks
m can replace the well-established, but too weak linear
scoring systems used in medicine

m Better than linear score systems.

m Scores are equivalent to the special case Naive-Bayes,
that is, to the assumption that all symptoms are
conditionally independent given the diagnosis.

m In the LEXMED example we showed that it is possible to
build an expert system for reasoning under uncertainty
that is capable of discovering (learning) knowledge from
the data in a database
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m Nowadays, bayesian inference is very important and
well-developed

m We have completely left out the handling of continuous
variables.

m For the case of normally distributed random variables
there are procedures and systems.

m For arbitrary distributions, however, the computational
complexity is a big problem.

m |n addition to the directed networks that are heavily based
on causality, there are also undirected networks.
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